Exploring the Origins of Snow Droughts in the Northern Sierra Nevada, California

Benjamin J. Hatchett1,2,* and Daniel J. McEvoy1,2

1Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada
2Western Regional Climate Center, Desert Research Institute, Reno, Nevada

Revised for *Earth Interactions*

December 15, 2017

*Corresponding Author

Benjamin J. Hatchett
benjamin.hatchett@gmail.com
775-673-7111

Division of Atmospheric Sciences
Desert Research Institute, Reno, Nevada
2215 Raggio Parkway
Reno, Nevada, 89512
Abstract

The concept of snow drought is gaining widespread interest as the climate of snow-dominated mountain watersheds continues to change. Warm snow drought is defined as above or near average accumulated precipitation coinciding with below average snow water equivalent at a point in time. Dry snow drought is defined as below average accumulated precipitation and snow water equivalent at a point in time. We contend that such point-in-time definitions might miss important components of how snow droughts originate, persist, and terminate. Using these simple definitions and a variety of observations at monthly, daily, and hourly timescales, we explore the hydrometeorological origins of potential snow droughts in the northern Sierra Nevada from water years 1951 to 2017. We find that snow droughts can result from extreme early season precipitation, frequent rain on snow events, and low precipitation years. Late season snow droughts can follow persistent warm and dry periods with effects that depend upon elevation. Many snow droughts were characterized by lower snow fractions and frequent midwinter peak runoff events. Our findings can guide improved evaluations of historical and potential future snow droughts, particularly with regards to how impacts on water resources and mountain ecosystems may vary depending on how snow droughts originate and evolve in time.

1. Introduction

Drought conditions and record low snowpacks in the western United States during water years (WY; 1 October-30 September) 2014 and 2015 provided incentive to study the emerging phenomenon known as snow drought (Cooper et al. 2016, Mote et al. 2016). The simplest definition of snow drought is near or above average accumulated precipitation (P) coinciding with below average snow water equivalent (SWE) at a point in time, typically 1 April when the
climatological maximum of SWE occurs (Pederson et al. 2011). Harpold et al. (2017) expanded this definition into two types of snow droughts: warm snow drought, where October through March accumulated P is greater than 100% of normal and SWE is less than 100% of normal on 1 April and dry snow drought, where October through March accumulated P is less than 100% of normal and SWE is less than 100% of normal on 1 April. Beyond simple evaluations (e.g., Sproles et al. 2017) little attention has been given to the temporal evolution of snow droughts in terms of persistent dry spells or individual storm events. Understanding the hydrometeorological processes that create snow droughts will aid in evaluating their impacts on consumptive uses that depend on snowmelt-derived runoff or ecological processes that depend on the presence of a snowpack. At present, these specific impacts are not well characterized beyond broad knowledge that shifts from snow to rain reduce warm season streamflow (Berghuijs et al. 2014) and that warming winters cause less efficient snowmelt (Barnhart et al. 2016).

We postulate that defining snow drought based upon single points in time (i.e., 1 April) may result in misleading evaluations of snow droughts by ignoring the mechanisms that lead to their onset. Our purpose is to show how eight snow drought years identified on 1 April in the northern Sierra Nevada (Fig. 1) can have varying hydrometeorological origins through the use of observational data at monthly, daily, and hourly timescales. The results lead us to recommend that snow droughts identified by the simple definitions given by Harpold et al. (2017) are explored temporally to understand the root cause of the identified P/SWE divergence. We also recommend that continuous observations of snow drought be implemented in order to identify early- and mid-winter snow droughts that were later terminated by subsequent snowfall prior to 1 April. The goals of these recommendations are to improve subsequent studies focused on
examining how snow droughts impact hydrologic, ecologic, and socioeconomic systems as well as identifying future snow drought likelihood in regions dependent on snow-derived water resources.

2. Data and Methods

Monthly snow course data (https://wcc.sc.egov.usda.gov/nwcc/rgrpt?report=snowcourse) from 18 snow courses (Fig. 1) and P estimates from the Parameter Regression Independent Slope Method model (PRISM; Daly et al. 2008) were used to identify warm snow droughts based upon 1 April accumulated P > 100% and SWE < 100% of normal. Dry snow droughts were identified based upon 1 April accumulated P <100% and SWE < 100% of normal. Each snow course had at least 80% of the 1981-2010 climatology period in the record. Monthly values of temperature (T) and P from the PRISM grid point nearest to three snow courses (Fig. 1) spanning low (1997 m), middle (2103 m), and high elevations (2591 m) are included to examine the evolution of these snow droughts as a function of elevation. We define early, middle, and late onset snow droughts based upon the time their onset was identified, with October-November characterizing early, December-February as middle, and late onset as March-April.

To explain the observed accumulated P/SWE ratios and explore impacts on streamflow, we included the following additional observations in our analysis: 1) Daily, quality controlled P, T, and SWE from three SNOWpack TELEmetry (SNOVEL) stations (Tahoe City Cross (2072 m), Squaw Valley Gold Coast (2442 m), and Fallen Leaf Lake (1903 m); Fig. 1) acquired from the National Resources Conservation Service (https://www.wcc.nrcs.usda.gov/snow/), 2) brightband-derived snow levels (White et al. 2010) from the NOAA Hydrometeorological
Testbed/California Department of Water Resources (DWR)-supported snow level radar located at Colfax, CA, which was acquired from the Earth Systems Research Laboratory (http://www.esrl.noaa.gov), 3) daily streamflow from the North Fork of the American River acquired from the United States Geological Survey (https://waterdata.usgs.gov/nwis/uv?site_no=11427000), 4) GPS-measured precipitable water from the Bodega Bay Atmospheric River Observatory acquired from suominet (http://www.suominet.ucar.edu; Ware et al. 2000), 5) P values from a DWR weather station at Blue Canyon (1610m; http://cdec.water.ca.gov), and 6) daily maximum T and accumulated P from five National Weather Service Cooperative Observer (COOP) stations located in the northern Sierra Nevada above 1300 m elevation with 90% complete records from October 1950 to February 2017 acquired from the ACIS database (http://scacis.rcc-acis.org).

We calculated the fraction of precipitation as snow (hereafter snow fraction) using the Dai (2008) equation, which estimates conditional probabilities of snow as a function of T with parameter values for the Sierra Nevada ecoregion (Rajagopal and Harpold 2016). We calculated the snow fraction for October-March (February in 2017) and took the five-station average over this period.

3. Results and Discussion

3.1 A Historical Monthly Perspective Using Snow Courses

Seven snow drought years are identified from snow course data using the 1 April P/SWE criteria (Fig. 2a). One is a warm snow drought (WY1951), two are influenced by singular wet events (WY1963) or wet periods (WY1997), two are late onset snow droughts (WY1970 and WY2016),
and two are dry snow droughts (WY1977 and WY2015). Figure 3 shows monthly evolutions of these snow droughts via PRISM estimates of T and P and first-of-the-month SWE measurements for three snow courses (bold outlined dots in Fig. 1). WY1951 represents a classic warm snow drought. This year was characterized by late fall (October-November) having well above normal P and anomalously warm conditions followed by a wetter than normal winter (December-January) while late winter (February-March) was dry and cool. WY1963 demonstrates how a singular wet event can obscure an otherwise dry snow drought year, instead leading to its categorization as a warm snow drought. WY1963 began with an extremely wet October resulting from the warm and wet Columbus Day Storm of 1962 and was followed by a dry and anomalously warm winter. The October event created early snow drought conditions with divergent P (above normal) and SWE (below normal). Wetter than normal conditions during February-March provided marginal SWE gains, however the 1 April P/SWE ratio satisfied the snow drought criteria. WY1997 provides another example of how an extremely wet period (the 1997 flood; Lott et al. 1997; Kaplan et al. 2009) can facilitate producing a snow drought year. Average T during WY1997 did not appear to play a major role in producing snow drought conditions, although a dry and warm March reduced SWE at the low elevation snow course (Fig. 3g). This created a late onset snow drought due to above average accumulated P. The high snow levels during the 1997 flood event melted substantial snow (Underwood et al. 2009; Kaplan et al. 2009) and resulted in strong elevation dependence of warm snow drought conditions (Figure 2c). WY1970 and WY2016 (see next section) also appear as late onset snow droughts. The limitation of using a monthly time step becomes evident when trying to assess the precise processes causing WY1970 to transition into snow drought. WY1977 is a classic dry snow drought where P and SWE were both much below normal. WY2015, noted for its exceptional lack of snow
(Belmecheri et al. 2015) and persistent above normal T (Fig. 3), is classified as a dry snow drought due to low P (Fig. 3; Harpold et al. 2017).

3.2 Daily Data Reveals Onset of the 2016 Snow Drought

Daily observations of P and SWE from SNOTEL stations provided information relevant to the late season snow drought onset during WY2016. As previously shown in other water years, the influence of elevation on snow drought appears in snow course data (Fig. 2c). In 2016, the elevation dependence of % of normal 1 April SWE is shown by above normal conditions at the highest elevation station but below normal at the lowest elevation station (cf. Fig. 3c and 3i). Daily data at the Tahoe City Cross station illustrates this further (Fig. 4) as both accumulated P and SWE were near or above median values through February 2016. However, two dry periods with anomalously warm conditions during February (Fig. 3a,d,g and Fig. 4a; right y-axis) coincided with SWE depletion to below median values. This period marked the onset of snow drought at Tahoe City, with accumulated P above and SWE below normal. Although P accumulations continued in March and April, only marginal SWE recovery occurred due to above normal T during March (Fig. 3). Using the normalized difference snow index (NDSI) values from the MODIS mission and acquired using the Google Earth Engine-driven Climate Engine (Huntington et al. 2017), the shift from an above-normal early season snowpack to widespread low-elevation snow drought (cf. Fig 4b and 4c) following the warm, dry period is shown spatially. Remotely sensed products such as NDSI may provide valuable data for real-time snow drought monitoring in conjunction with ground-based station observations.

3.3 A Case Study of 2017
Daily and hourly observations add further insight to the physical processes driving onset and termination phases of snow droughts. During the early portion of WY2017, concern mounted as to whether WY2017 would become a warm snow drought year. Lack of snow during the Christmas-New Year’s period can have marked economic impacts on winter tourism in the northern Sierra Nevada. To examine the sequence of events leading to warm snow drought onset and termination between 1 October – 28 February 2017, we use daily P and SWE data from two SNOTEL stations, a higher elevation station at Squaw Valley Gold Coast (2442 m; hereafter Squaw; Fig. 5a) and a lower elevation station at Fallen Leaf (1902 m; Fig. 5b). Hourly observations (Fig. 5c-e) are included to facilitate explanation of the processes driving snow drought variability.

Early WY2017 featured multiple landfalling atmospheric rivers (Fig. 5e; defined following Ralph et al. 2004) producing copious P with very high snow levels (> 2500 m) and little snow accumulation. A dry November marked the onset of snow drought conditions (O1; brown boxes) at Squaw. A higher snow level storm in early December led to recovery at Squaw, but produced snow drought onset (O1F) at Fallen Leaf. A moderate snow level atmospheric river event contributed substantial P with SWE increase at both SNOTEL stations leading to snow drought termination (T1F) on 3-5 January at Fallen Leaf. A higher snow level atmospheric river event during 8-10 January nearly brought Fallen Leaf back into snow drought due to appreciable rain-on-snow. During the remainder of February, SWE at both elevations rose steadily, with one exception being another high snow level and wet atmospheric river on 8-9 February. No further periods of snow drought were observed.
WY2017 demonstrated the utility of employing daily and sub-daily observations in terms of monitoring potential snow drought onsets and terminations and their root causes including prolonged dry spells and high snow level precipitation events. Snow level radar data showed how differing phases of P associated with heavy P events caused melting and accumulation of snow to vary with time and by elevation on a storm-by-storm basis. Atmospheric rivers, which provide large P totals and frequent rain-on-snow events due to warmer temperatures and higher snow levels (Guan et al. 2016; Hatchett et al. 2017), appeared to contribute to snow drought onset and termination during WY2017. The correspondence between atmospheric river conditions, heavy P and high snow levels with varying low elevation SWE behavior and streamflow peaks (Fig. 5d) emphasizes how high frequency observations facilitate explanation of the hydrometeorological processes that contribute to snow drought variability. Examination of multiple stations at high frequency intervals can also aid in identifying potentially impactful snow drought conditions, such as low elevation snow drought (“O1F” in Figure 5).

3.4 Snow Fraction and Midwinter Streamflow

Partitioning total P into snow fractions and examining midwinter peaks in streamflow gives additional process-based insight into the origins and implications of snow droughts. In six of seven snow droughts, the snow fractions (Fig. 6a) are below the five-year moving average (thick black line on Fig. 6a). Four of the lowest snow fractions observed over the period studied occurred during snow drought years. Four of the seven snow drought years coincided with peak midwinter runoff events in the North Fork of the American River (Fig. 6b). This result is consistent with low snow fractions as rain-on-snow contributes to mid-winter runoff and snowpack losses or minimal gains (Fig. 5). Under future climate regimes (Klos et al. 2014)
where stronger storms are likely (Lavers et al. 2015), the concern of shifting P phase towards
more rain (lower snow fractions) in T sensitive mountain ranges such as the Sierra Nevada
(Safeeq et al. 2015; Hatchett et al. 2017) implies that snow drought may become increasingly
frequent, especially in lower elevation mountains such as the northern Sierra Nevada. The
WY2015-2017 period may be an excellent test case for future climate regimes and how
managers can adapt to them. During these three years, P covered the full range of hydroclimatic
extremes (anomalously low to anomalously high) and three consecutive years of different flavors
of snow droughts were observed: dry in WY2015, late onset in WY2016, and early season in
WY2017.

4. Concluding Remarks

While not a comprehensive evaluation of all historic snow droughts in the northern Sierra
Nevada, our preliminary findings indicate that snow droughts have varied mechanistic origins.
The temporal divergence of P to SWE can be used as a metric to estimate the onset of snow
drought conditions (Sproles et al. 2017), particularly when examined in conjunction with
anomalous T (Cooper et al. 2016, Harpold et al. 2017) and the characteristics of individual
storms. These characteristics include snow levels during significant P events, persistence of
warm and dry conditions, or singular storm events. Years that do not satisfy the snow drought
criteria applied on 1 April (WY2017) should still be evaluated to identify early winter snow
drought conditions and potential impacts to ecological processes (e.g., Campbell et al. 2005) and
socioeconomic impacts (e.g., Harpold et al. 2017). Warm snow droughts frequently
corresponded with water years that included lower fractions of total precipitation falling as snow
and often included midwinter flood events, implying that rain-on-snow events often create warm
snow drought conditions. We hope that the considerations presented herein will yield robust
snow drought climatologies, assist in developing real-time snow drought monitoring that
assimilates high-resolution observational data, and in characterizing time-dependent snow
drought impacts. The importance of sub-monthly data is highlighted by aiding the identification
of specific processes producing (or terminating) snow droughts, such as winter heat waves or
extreme precipitation events with high snow levels. It also facilitates understanding of potential
impacts, such as midwinter peak streamflow following rain-on-snow events. Future research
should focus on identifying relevant timescales (durations and timing of onset) of snow drought
impacts for hydrologic and ecological processes. For example, hydrologic modeling could
identify threshold responses in watersheds to changes in precipitation phase and snowpack
accumulation patterns relevant for water resource management.

Acknowledgements
The project described in this publication was supported by Grant Number G14AP00076 from the
United States Geological Survey. Its contents are solely the responsibility of the authors and do
not necessarily represent the official views of the USGS. This manuscript is submitted for
publication with the understanding that the United States Government is authorized to reproduce
and distribute reprints for Governmental purposes. We thank N. Oakley, S. Hatchett, and two
anonymous reviewers for constructive comments that improved this manuscript.

References

Ware, R.H. D. W. Fulker, S. A. Stein, D. N. Anderson, S. K. Avery, R. D. Clark, K.

Figure 1: Map of the Northern Sierra Nevada study area. Snow course dots with bold outlines were used in Fig. 3.

Figure 2: (a) Scatterplot of PRISM October-March accumulated P and snow course SWE for 1 April during the period spanning WY1951-2017 as a percentage of 1981-2010 medians. Each dot represents a different snow course. All years are shown in grey with identified snow droughts colored. WY2017 (black dots) is also shown since although it failed to be classified as a snow drought on 1 April, snow drought conditions were present during November-December. WY2017 is presented as a case study in section 3.3. (b) Percentage of 1 April 1981-2010 median snow course SWE versus elevation for WY1970. (c) As in (b) except for WY1997.

Figure 3: Monthly evolution of T (a) P (b), and SWE (c) for seven snow droughts at Carson Pass (elevation 2591 m). (d-f) as in (a-c) but for Donner Pass (elevation 2103 m). (g-i) as in (a-c) but for Camp Richardson (elevation 1997 m). T values are anomalies (in °C) and P and SWE values are percent of 1981-2010 climatology.

Figure 4: (a) Time series of 1981-2010 median and WY2016 observed SWE, P, and T anomalies for the Tahoe City Cross SNOTEL spanning 1 October 2015 to 30 April 2016. MODIS-derived normalized snow difference index values (differenced from 2002-2017 averages) for the 30-day periods during no snow drought (b) and after the onset of low elevation snow drought (c).
Figure 5: (a) Median 1981-2010 precipitation (P; salmon) and snow water equivalent (SWE; light blue) and WY2017 observed P (red) and SWE (dark blue) at Squaw Valley Gold Coast SNOTEL for 1 October – 28 February 2017. (b) As in (a) but for Fallen Leaf SNOTEL. (c) Brightband-derived snow levels derived from the Colfax, CA snow level radar. (d) Streamflow at gauge on the North Fork of the American River. (e) GPS-derived total precipitable water at Bodega Bay (left) and precipitation at Blue Canyon (right). Blue bars denote atmospheric river events.

Figure 6: (a) Fraction of October-March precipitation estimated as snow and averaged over five COOP stations. Black line shows the five-year moving average. Dots are colored by total October-March precipitation and sized proportional to the median number of precipitation days. (b) Daily observations of October-March streamflow at the North Fork of the American River. The dashed blue line shows the top 0.02% of streamflow from the period 1950-2017. Red boxes on both plots show identified snow drought years (cf. Fig. 2) and the black box shows WY2017.
Figure 1: Map of the Northern Sierra Nevada study area. Snow course dots with bold outlines were used in Fig. 3.
Figure 2: (a) Scatterplot of PRISM October-March accumulated P and snow course SWE for 1 April during the period spanning WY1951-2017 as a percentage of 1981-2010 median values. Each dot represents a different snow course and year. All years are shown in grey with identified snow droughts colored. WY2017 (black dots) is also shown since although it failed to be
classified as a snow drought on 1 April, snow drought conditions were present during November-December. WY2017 is presented as a case study in section 3.3. (b) Percentage of 1 April 1981-2010 median snow course SWE versus elevation for WY1970. (c) As in (b) except for WY1997.
Figure 3: Monthly evolution of T (a) P (b), and SWE (c) for seven snow droughts at Carson Pass (elevation 2591 m). (d-f) as in (a-c) but for Donner Pass (elevation 2103 m). (g-i) as in (a-c) but for Camp Richardson (elevation 1997 m). T values are anomalies (in °C) and P and SWE values are percent of 1981-2010 climatology.
Figure 4: (a) Time series of 1981-2010 median and WY2016 observed SWE, P, and T anomalies for the Tahoe City Cross SNOTEL spanning 1 October 2015 to 30 April 2016. MODIS-derived
normalized snow difference index values (differenced from 2002-2017 averages) for the 30-day periods during no snow drought (b) and after the onset of low elevation snow drought (c).
Figure 5: (a) Median 1981-2010 precipitation (P; salmon) and snow water equivalent (SWE; light blue) and WY2017 observed P (red) and SWE (dark blue) at Squaw Valley Gold Coast SNOTEL for 1 October – 28 February 2017. (b) As in (a) but for Fallen Leaf SNOTEL. (c) Brightband-derived snow levels derived from the Colfax, CA snow level radar. (d) Streamflow at gauge on the North Fork of the American River. (e) GPS-derived total precipitable water at Bodega Bay (left) and precipitation at Blue Canyon (right). Blue bars denote atmospheric river events.
Figure 6: (a) Fraction of October-March precipitation estimated as snow and averaged over five COOP stations. Black line shows the five-year moving average. Dots are colored by total October-March precipitation and sized proportional to the median number of precipitation days. (b) Daily observations of October-March streamflow at the North Fork of the American River. The dashed blue line shows the top 0.02% of streamflow from the period 1950-2017. Red boxes on both plots show identified snow drought years (cf. Fig. 2) and the black box shows WY2017.