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[1] As multicentury records of natural hydrologic variability, tree ring reconstructions of
streamflow have proven valuable in water resources planning and management. All
previous reconstructions have used parametric methods, most often regression, to
develop a model relating a set of tree ring data to a target hydrology. In this paper, we
present the first development and application of a K nearest neighbor (KNN)
nonparametric method to reconstruct naturalized annual streamflow ensembles from tree
ring chronology data in the Upper Colorado River Basin region. The method is
developed using tree ring chronologies from the period 1400–2005 and naturalized
streamflow from the period 1906–2005 at the important Lees Ferry, Arizona, gauge on
the Colorado River to develop annual streamflow ensembles for this gauge for the 1400–
1905 period. The proposed KNN algorithm was developed and tested using cross
validation for the overlap period, i.e., the contemporary observed period for which both
the tree ring and streamflow data are available (1906–2005). The cross-validated
streamflow reconstructions for the selected contemporary period compare very well with
the observed flows and also with published parametric streamflow reconstructions for
this gauge. The proposed nonparametric method provides an ensemble of streamflows
for each year in the paleohydrologic reconstruction period (1400–1905) and,
consequently, a more realistic asymmetric confidence interval than one obtained through
most parametric approaches. Also, the K nearest neighbors are obtained only from the
tree ring chronology data, and thus, the method can be used to reconstruct structured and
even nonnumerical data for use in water resources modeling.
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1. Introduction

[2] Paleohydrologic reconstructions of streamflows are
very useful for understanding multidecadal variability and
for drought mitigation planning. Nowhere is this more
evident than in the western United States, especially in
the Upper Colorado River Basin (Figure 1). The utility of
the paleohydrologic reconstructions in this basin is under-
scored by the recent severe and sustained drought. This is
illustrated in Figure 2: a paleohydrologic reconstructed
streamflow for the period 1490–1997, on the Colorado
River at Lees Ferry, Arizona [Woodhouse et al., 2006], a
key gauge on the river along with the observed flows. It is
evident that the recent 5-year drought of 2000–2004 is

unprecedented during the observed period, but the recon-
structed streamflows prior to 1906 show severe droughts
of 5 years length at least 4 times over the approximately
500-year period, indicating that the recent drought is not
unusual.
[3] All previous paleohydrologic reconstructions, includ-

ing the ones shown in Figure 2, have been developed using
a parametric statistical model which fits a set of tree ring
chronologies to the historical naturalized streamflows over a
calibration period (typically 50–100 years) for which the
two sets of records overlap [e.g., Stockton and Jacoby,
1976; Meko et al., 1995]. A tree ring chronology is a time
series of dimensionless ring width indices derived from a
group of trees at one site and corrected for physiological
and other biases. The full-length tree ring chronologies
(>300 years) are put into that model to estimate streamflows
during the precalibration period. In most cases, the model
has been derived through a multiple linear regression
(MLR) approach, with many variations on this approach.
For example, the set of chronologies is sometimes reduced
using principal components analysis (PCA), with the lead-
ing principle components (PCs) used in calibrating the MLR
model [e.g., Stockton and Jacoby, 1976; Hidalgo et al.,
2000]. The reconstructions in this approach are sensitive to
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the number of PCs retained as shown by Hidalgo et al.
[2000].
[4] These parametric reconstruction techniques generally

capture the variability of the historical flow very well;
however, because a single model is fitted to a limited
number of cases and is used to project the precalibration
flows, the reconstructed flow magnitudes are sensitive to
several aspects of the model-building process. For example,
seven different parametric (MLR-based) reconstructions of
Lees Ferry flows [Stockton and Jacoby, 1976; Hidalgo et
al., 2000; Woodhouse et al., 2006] are shown in Figure 3.
The divergence of streamflows among the various recon-
structions during the preobservation period is due to the use
of different calibration techniques, different tree ring data

treatment (i.e., prewhitened versus nonprewhitened chro-
nologies and the inclusion of lagged predictors), different
sets of tree ring data, and different observed data (both the
years used and the hydrologic time series itself) for the
calibration. All of these are potential sources of the differ-
ences, and these differences should be expected. The fact
that these different reconstructions do vary coherently is a
testament to the robustness of the hydroclimatic signal in
the trees. This is evident in Figure 4, which represents the
sequences of annual hydrologic states (wet or dry) on the
basis of conditions in a 10-year window. For a particular
reconstruction, a wet state (black bar) is defined as when the
10-year mean flow is greater than the mean flow over that
entire reconstruction; otherwise it is classified as dry (gray

Figure 1. The Upper Colorado River Basin showing the location of chronologies used for this study
and the Lees Ferry gauge.

2 of 14

W06417 GANGOPADHYAY ET AL.: NPP ANNUAL STREAMFLOW ENSEMBLES W06417



bar). However, because of the divergence of the reconstruc-
tions, some water managers have expressed reluctance to
use them in their planning efforts. To address this problem,
Prairie et al. [2008] developed a technique to combine the
state information from the reconstructions with the magni-
tude information of the observed flows to generate a rich
variety of streamflow sequences for use in water resources
systems analysis.
[5] The MLR technique suffers from four main draw-

backs: (1) it assumes that the data are normally distributed,
(2) it assumes that there is no correlation between the
predictor variables, (3) it produces variance compression
of the predictand, and (4) outliers can have an undue
influence on the fitted MLR model. To address the first
drawback, data have to be tested and, in some cases,
transformed to follow a normal distribution via Box-Cox
and normal probability swap transformations [Helsel and

Hirsch, 2002; Wilks, 1995; Deutsch and Journel, 1992]. In
developing a predictive model using MLR, it is assumed
that there is no correlation between the predictor variables.
However, when several predictor variables are used in
MLR, a fairly high level of predictability may exist for
one or more predictors from the other predictors. This
condition is referred to as multicollinearity and can lead to
instability of the regression coefficients [e.g., Myers, 1990].
Stepwise regression can largely alleviate multicollinearity,
but principal component–based regression can be used to
eliminate multicollinearity. To address variance compres-
sion in streamflow reconstructions, Meko et al. [2001]
adopted a noise-added probabilistic approach to interpreta-
tion of the reconstructions. In other tree ring studies [e.g.,
Cook et al., 2004], it was deemed desirable to scale the
variance of reconstructions up to that of the observed
predictand so that their construction would more realistically

Figure 3. Seven reconstructions of Colorado River annual flow at Lees Ferry. The lines labeled
Stockton1 and Stockton2 are from Stockton and Jacoby [1976]; the line labeled Hidalgo is from Hidalgo
et al. [2000]; and the Lees A, Lees B, Lees C, and Lees D traces are from Woodhouse et al. [2006].

Figure 2. Annual Lees Ferry flows for the period 1490–2005 showing historical (U.S. Bureau of
Reclamation) and reconstructed (Lees B and Lees D) data from Woodhouse et al. [2006]. Notable
droughts are shown with rectangular boxes. Note that the Lees B and Lees D reconstructions are based on
standard chronologies (standard chronologies were also used for the NPP reconstructions). Two
additional reconstructions, Lees A and Lees C, based on residual chronologies were also developed by
Woodhouse et al. [2006]. 1 KAF = 1.234 � 106 m3.
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portray extremes. The outlier effect can be addressed only to
a limited extent by robust regression techniques [Helsel and
Hirsch, 2002]. Since the MLR approach involves fitting a
single function to the entire observed data, the effect of
outliers cannot be fully eliminated. One other shortcoming
is that the uncertainty estimates are based on the regression
theory and are symmetric and wide. However, several
streamflow reconstructions [e.g., Smith and Stockton,
1981; Meko and Graybill, 1995; Meko et al., 2001] have
used regression of log-transformed flow on tree rings. In

these cases the error bars around the predicted log 10
flows are symmetric, but after back transforming to
original flow units, the error bars are asymmetric. Though
such asymmetric uncertainty estimates may be obtained,
flow transformation does complicate the interpretation of
the regression statistics and the reconstruction.
[6] Thus, the motivation for this research is to develop a

simple and flexible technique that alleviates the drawbacks
of the traditional MLR approach. To this end, we develop a
nonparametric paleohydrologic (NPP) method based on the

Figure 4. Common signal in tree ring chronologies for Lees Ferry flows. The dark areas represent wet
spells, whereas the gray areas represent the dry spells. The plot labeled ‘‘Historical’’ represents the wet-
dry spells in the historical period 1906–2005. ‘‘Lees A’’ through ‘‘Lees D’’ are the Woodhouse et al.
[2006] reconstructions for the 1490–1997 period. The ‘‘Hidalgo’’ plot is the Hidalgo et al. [2000]
reconstruction (1520–1962), and ‘‘Stockton1’’ and ‘‘Stockton2’’ are the reconstructions by Stockton and
Jacoby [1976] for the period 1520–1961. Since these reconstructions span different periods,
nonoverlapping years are shown as white spaces.
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K nearest neighbor bootstrap [see, e.g., Lall and Sharma,
1996; Gangopadhyay et al., 2005] in empirical orthogonal
function (EOF), or principal component (PC) (EOFs are
also referred to as PCs), space and apply it to reconstruct
annual streamflow ensembles at the Lees Ferry gauge.
[7] This nonparametric approach has important advan-

tages over the standard parametric modeling approach such
as the quantification of uncertainty in paleohydrologic
streamflow reconstruction using ensembles. Also, in the
proposed nonparametric framework, neighbors are obtained
only from the tree ring chronology data, so the approach can
be used to develop reconstructions of other hydrologic
marker variables (e.g., the Palmer drought severity index).
These are important contributions to the fields of stochastic
hydrology and dendrohydrology.
[8] The paper is organized as follows. A description of

the data sets used for the study is given in section 2. The
nonparametric algorithm is described in section 3, and the
results are discussed in section 4, followed by a summary
(section 5).

2. Description of Tree Ring Chronology
and Streamflow Data Sets

2.1. Tree Ring Chronology Data Set

[9] This study used 51 tree ring chronologies from across
the Upper Colorado River Basin and adjacent basins
(Figure 1). The width of annual tree rings in the interior
western United States often provides a robust proxy mea-
sure of annual streamflow since the same climatic factors
(mainly precipitation and evapotranspiration) influence the
variability of both tree growth and streamflow. The tree
species in the region best suited to capture hydroclimatic
variability include ponderosa pine, Douglas fir, and pinyon
pine [Meko et al., 1995]. Generally, two core samples are
collected from each of 15–30 trees from one species at a
given site. The annual rings are cross dated (patterns of
wide and narrow rings are matched across samples) to
ensure absolute dating to the calendar year, and then these
annual ring widths for each sample are measured [Stokes
and Smiley, 1968; Fritts, 1976]. For this study, these raw
annual ring width measurements from each sample were
then detrended with a fixed-length cubic spline (50%
frequency response at a 300-year wavelength) to remove
age- and geometry-related growth trends, and then a robust
biweight mean was used to calculate an average site ring
width index for each year [Cook and Briffa, 1990;Cook et al.,
1990], with the time series of these annual ring width indices
constituting the chronology. Tree ring chronologies typically
contain significant low-order autocorrelation, which is either
retained in the ‘‘standard’’ chronologies or removed using
autoregressive modeling (prewhitened) to produce ‘‘residu-
al’’ chronologies. For this study, the standard chronologies
were used in the analyses and reconstructions.
[10] The 51 chronologies used in this study include all 38

chronologies located within the Upper Colorado River and
North Platte River basins that were used in the MLR
streamflow reconstructions by Woodhouse et al. [2006].
The other 13 chronologies include 9 chronologies more
recently collected from the Upper Colorado River Basin and
4 chronologies from the Upper Rio Grande Basin. All 51
chronologies are from species known to be moisture sensi-

tive, and nearly all have significant (p < 0.05) relationships
with local annual precipitation and streamflow records. In
an MLR approach, it would be advisable to reduce the pool
of chronologies (i.e., candidate predictors) through some
screening or data reduction procedure, but this is not
necessary with the NPP approach since there is no para-
metric model at risk of being over fitted. All 51 chronolo-
gies begin in 1604 or earlier and extend through 1997 or
later. Since most (32) of the chronologies extend back to at
least 1400, for the purposes of the NPP methodology the
beginning of the paleohydrologic reconstruction period was
set at 1400.

2.2. Lees Ferry Naturalized Streamflow Data Set

[11] The natural streamflow data for the Colorado River
Basin are developed by the U.S. Bureau of Reclamation and
are updated regularly. Annual updates addressing data
changes and additions are typical. Naturalized streamflows
are computed by removing anthropogenic impacts (i.e.,
reservoir regulation, consumptive water use, etc.) from the
recorded historic flows. J. Prairie and R. Callejo (Natural
flow and salt computation methods: Calendar years 1971–
1995, U.S. Bureau of Reclamation report, 2005, available at
http://www.usbr.gov/lc/region/g4000/NaturalFlow/Final-
MethodsCmptgNatFlow.pdf) present a detailed description
of methods and data used for the computation of natural
flows in the Colorado River Basin. This study uses the
annual water year (October–September) naturalized stream-
flow at Lees Ferry, Arizona, for the period 1906–2005.
Both the tree ring chronology data set and Lees Ferry
naturalized streamflow data set are available in the auxiliary
material.1

3. Methodology

[12] Description of the ensemble streamflow reconstruc-
tion algorithm using tree ring chronologies is presented in
the following steps.
[13] Step 1. Let [X] represent the data matrix of tree ring

chronologies for T years (rows) and M sites (columns). Tree
ring chronologies for the Upper Colorado River Basin are
presently available for 51 sites (M = 51). Matrix [X]
represents data for the entire period of record (paleohydro-
logic period, 1400–1905, and the overlap period, 1906–
2005; T = 606). Since the tree ring chronologies evolve over
space and time, it should be noted that there would be
missing entries in matrix [X].
[14] Step 2. Partition matrix [X] into two submatrices, [A]

and [B], such that [A] is of order N � M and [B] is of order
(T � N) � M, where N is the length of the paleohydrologic
period (506 years, 1400–1905). Both the paleohydrologic
period and the overlap period contain missing values for
some sites in some years. This is due to the fact that not all
chronologies start and end in the same year. A summary of
the numbers of chronologies available over selected periods
is given in Table 1.
[15] Step 3. For feature year i, i.e., the year for which

reconstruction is sought in the paleohydrologic period,
identify the chronology sites mi (mi � M) that are also

1Auxiliary materials are available at ftp://ftp.agu.org/apend/wr/
2008WR007201.
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present for the overlap period. The mi chronologies of the
feature year i represent the feature vector {F} (row vector of
length mi).
[16] Step 4. Obtain a subset of data matrix [B], say, [S] of

order n � mi, where n � (T � N). In the actual implemen-
tation of this algorithm for the paper, 3 end years in the
overlap period are considered, 1997, 2002, and 2005, so
that n equals 92, 97, and 100, respectively.

[17] Step 5. Estimate correlation matrix [C] (ordermi�mi)
from data matrix [S].
[18] Step 6. Perform PCA [e.g., Haan, 1977;Wilks, 1995]

using matrix [C] to obtain the mi eigenvalues l(1), . . ., l(mi)

and the eigenmatrix (matrix of eigenvectors as columns) [E]
(order mi � mi).
[19] Step 7. Project the feature vector {F} for feature year

i onto the eigenvectors in matrix [E]. The projected feature
vector {F0} is given by

F0f g1�mi
¼ Ff g1�mi

E½ 	mi�mi
: ð1Þ

[20] Step 8. Calculate the mi principal components. The
principal component matrix [Z] is obtained from

Z½ 	n�mi
¼ S½ 	n�mi

E½ 	mi�mi
: ð2Þ

[21] Step 9. For each element t (t = 1, . . ., n) compute the
weighted Euclidian distance (dt) between the projected
feature vector {F0} (step 7) and the principal components
contained in matrix [Z] (step 8):

dt ¼
Xnret
j¼1

ljXmi

p¼1

lp

f 0j � ztj

� �2

2
66664

3
77775

1=2

; ð3Þ

Table 1. Number of Chronologies Used in Paleohydrologic

Reconstruction When the Overlap Period is 1906–1997

Years Number of Chronologies

1400–1404 32
1405–1436 34
1437–1439 35
1440–1449 36
1450–1453 37
1454–1479 38
1480–1507 39
1508–1510 40
1511–1519 41
1520–1523 42
1524–1535 43
1536–1565 44
1566–1568 46
1569–1570 47
1571–1574 48
1575–1583 49
1584–1603 50
1604–1905 51

Figure 5. Scatterplot of reconstructed naturalized flow using scheme BSW1997 and observed naturalized
flow at Lees Ferry for the period 1922–1997. BSW1997 implies that the reconstruction was done using the
bisquare weight function and that chronologies extend up to 1997. The least squares fit line to the scatter
data set is also shown in the plot along with the equation and the coefficient of determination R2.
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where nret is the number of principal components retained

such that
Pnret
j¼1

l jð Þ � 0.90, ztj are the elements of [Z], and fj
0 are

the elements of the projected feature vector {F0}. This gives
a set of n distances as possible neighbors from the overlap
period to feature year i in the paleohydrologic period.

[22] Step 10. Sort the distances dt in ascending order
and retain only the first K neighbors [Gangopadhyay et
al., 2005]. The prescribed choice for K is

ffiffiffi
n

p
� 9 in this

case. The K nearest neighbors represent the K most similar
years from the overlap period to the paleohydrologic
feature year i.

Figure 6. Lees Ferry streamflow reconstructions for years (top) 1922–1971 and (bottom) 1972–1997.
The triangle is the expected flow from nonparametric reconstructions, and the squares represent the
historical natural flow. Horizontal dashed lines are the terciles calculated from the 1922–1997 flow
record.
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[23] Step 11. Select streamflow for each of the K neighbor
years from the overlap period, which represents the set of
possible streamflow magnitudes for paleohydrologic year i.
[24] Step 12. Assign weights to each of the K streamflow

values. Several weighting schemes based either on K
[Lall and Sharma, 1996; Rajagopalan and Lall, 1999]
or on distance such as the bisquare weight function
[Gangopadhyay et al., 2005] and inverse distance weighting
[Chow et al., 1988] are available. We tested our results
using these three weighting schemes and found that they
produce very similar results. We present results in this paper
primarily on the basis of the bisquare weighting (BSW)
scheme. The bisquare weight wk for neighbor k is given by

wk ¼
1�

d kð Þ

d Kð Þ

� 
2
" #2

XK
k¼1

1�
d kð Þ

d Kð Þ

� 
2
" #2

: ð4Þ

[25] Step 13. Bootstrap [Venables and Ripley, 2002] the K
streamflow values (step 11) using the weights wk, k = 1, . . .,
K (step 12) to generate an ensemble of streamflows for
year i.
[26] Step 14. For each of the paleohydrologic years

1400–1905 repeat steps 3–13 to obtain an ensemble
streamflow reconstruction. In addition, since streamflow
quantiles are of significant interest to water managers and
decision makers, we summarized our paleohydrologic
streamflow ensembles for each of the paleohydrologic
reconstruction years from minimum to maximum at a 5%
interval.

4. Results and Discussion

[27] The results for the overlap period, 1922–1997,
which also serves as verification of the method, are first
presented followed by comparisons with parametric recon-
structions of Woodhouse et al. [2006]. The period 1922–
1997 was selected as the verification period because of the
uncertainty in the gauge record prior to 1922 (the year the
Lees Ferry gauge was installed) and the scarcity of chro-
nologies that extend to 2005.

4.1. Overlap Period Verification

[28] Streamflow ensembles are generated using the non-
parametric technique based on tree ring chronologies for the
period 1922–1997 in a leave-one-out cross-validation
mode. For example, to estimate the flow distribution for
the year 1922, data from 1923 to 1997 are used to estimate
the EOF projections and loadings, the tree ring data of the
feature year (1922) is projected on to the EOFs, and a set of
K nearest years are identified. The streamflows from these K
years are used to generate an ensemble following the boot-
strapping approach using bisquare weights (i.e., the
BSW1997 scheme, which is the reconstruction done using
the bisquare weight function with chronologies extending
up to 1997). We calculate a weighted mean of the generated
ensembles to provide a mean value similar to what would be
obtained from a regression approach [e.g.,Woodhouse et al.,
2006].
[29] The mean reconstructed flow and the observed flows

are shown as scatterplots in Figure 5 with an R2 = 0.76
(which is significant at the 95% confidence level), implying
that the reconstruction captures 76% of the observed flow
variance. This cross-validated R2 is comparable to the fitted
R2 of 0.81, 0.84, 0.72, and 0.77 from MLR for the four
reconstructions Lees A, Lees B, Lees C, and Lees D,
respectively, given by Woodhouse et al. [2006, Table 2].
The standard deviations of the cross-validated mean recon-
structed and observed flows are 3.63 and 4.22 MAF (1
MAF = 1.233 � 109 m3), respectively, which are statisti-
cally similar at the 95% confidence level using a nonpara-
metric Fligner-Killeen test [Conover et al., 1981]. The lower
variance of our reconstructions is consistent with that of
Woodhouse et al. [2006]. However, the underlying mecha-
nism of variance reduction is different for the NPP and
MLR reconstructions. Observed variance will be repro-
duced if resampling is done in the same proportion in the
NPP approach. But here we are doing a conditional resam-
pling using a weighting scheme, where reconstructed
streamflow is resampled from the observed flows on the
basis of tree ring information. The variance explained by an
MLR model is based on the observed period model fit, i.e.,
the R2 of the fitted model. That the cross-validated results
from the nonparametric approach are comparable to the
estimates from the parametric regression approaches is
noteworthy and quite impressive.
[30] Box plots of reconstructed flows along with the

observed flows for the 1922–1997 period are shown in
Figure 6. The box in a box plot is bounded by the lower
quartile (25th percentile) and upper quartile (75th percen-
tile) of the reconstructed flow ensemble. The horizontal line
within the box represents the median, and the whiskers are
the approximate 5th and 95th percentile confidence bounds.
Also, the squares represent the historical natural flow, the
triangles are the bisquare weighted mean from the ensem-
bles, and the horizontal dashed lines in the plot (Figure 6)
are the lower and upper terciles calculated from the 1922–
1997 naturalized streamflow record. The observed flows are
mostly within the box (interquartile range of the simulated
streamflow ensembles) or close to it. The box plots provide
the uncertainty range of the mean estimates. Notice that the
boxes are asymmetric around the median (horizontal line
within the box), reflective of the nonlinearity and non-
normal features in the data. Whereas, with a regression-

Table 2. Coefficient of Determination and Hit Rate of the NPP

Algorithm and Seven Existing Reconstructions of Lees Ferry

Annual Flows for the 76-Year Verification Period, 1922–1997a

Reconstruction R2 Hit Rate

NPP 0.76 0.91
Lees A 0.77 0.88
Lees B 0.79 0.92
Lees C 0.70 0.87
Lees D 0.73 0.87
Hidalgo 0.81 0.88
Stockton 1 0.72 0.90
Stockton 2 0.75 0.88

aThe Hidalgo et al. [2000] and the Stockton and Jacoby [1976]
reconstructions are considered from 1922 to 1961.
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based parametric model the uncertainty range is generally
symmetric and is normally distributed from theory.
[31] It can be seen that the ensembles largely capture the

state (wet or dry) of the observed flow very well. To

quantify this, we assume two states, wet if the estimated
mean flow or the observed flow is above the historical
(1922–1997) mean flow of 14.7 MAF and dry if it is below,
and compute the hit rate. The hit rate is defined as the sum

Figure 7. Lees Ferry reconstructions for two selected 50-year periods, (top) 1400–1449 and (bottom)
1850–1899, using the scheme BSW1997. The triangles represent the expected flow.
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of the joint state probability matrix, and for two states (dry
and wet) it is the sum of the joint dry and wet probabilities
[Wilks, 1995]. There are 38 dry and 38 wet years in the
1922–1997 historical record, and the mean flow estimates
from the nonparametric method got 34 dry and 35 wet years

correctly. The joint probability of dry and wet states is
0.4474 and 0.4605, respectively, resulting in a hit rate of
0.9079 � 91%; that is, in about 91% of the years (69 out of
76) the nonparametric reconstruction technique correctly
simulated the hydrologic state of the system. Similarly, hit

Figure 8. Similar to Figure 7 but using the scheme BSW2005.
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rates and coefficient of determination (R2) values were
computed for the seven existing Lees Ferry reconstructions
over the 1922–1997 observed period (the Hidalgo et al.
[2000] and the Stockton and Jacoby [1976] reconstructions
are considered from 1922 to 1961) and are given in Table 2.
We found that the nonparametric algorithm does extremely
well in capturing the state statistic. The ability to capture
the hydrologic state is important as it can be coupled with
observed streamflows to generate a rich variety of stream-
flow sequences [Prairie et al., 2006, 2008] useful for
system risk and reliability analysis.

4.2. Comparison of Nonparametric and Parametric
Reconstructions

[32] Reconstructions for two 50-year periods, 1400–
1449, using a variable number of chronologies (refer to
Table 1), and 1850–1899, using 51 chronologies, in con-
junction with the BSW1997 scheme and the 1906–1997
overlap period, are shown in Figure 7. This shows the
ability of the nonparametric approach to easily adapt to a
variable sample size, unlike the parametric models, which
require new calibration and verification whenever chronolo-
gies are either added or dropped. To see the effect of sample
size, we also generated reconstructions for the same periods
using BSW but with the overlap period of 1906–2005
(Figure 8, scheme BSW2005, which is the reconstruction
done using the bisquare weight function with chronologies
extending up to 2005). Only seven chronologies were
available that span the entire period of 1400–2005; this is

mainly because long-lived trees are less and less common as
one goes back in time and few chronologies have been
updated to 2005. Reconstructions from a smaller sample
size (Figure 8) show wider boxes, indicative of sampling
variability, relative to those from a bigger sample (Figure 7).
This shows the capability of the nonparametric technique to
better reflect the uncertainty in the estimates due to sam-
pling variability.
[33] In order to capture the uncertainty arising from

sample size and the different weighting schemes (bisquare,
inverse distance square, and one over k), we computed the
median from the nine possible mean combinations (3
weighting schemes times 3 ending years of the overlap
period, 1997, 2002, and 2005, for each of the weighting
schemes) as the ‘‘reconstructed flow estimate’’ from the
nonparametric method. Reconstructed flow estimates from
the nonparametric approach are compared (Figure 9) with
two most recent reconstructions from Woodhouse et al.
[2006], Lees B (based on MLR using standard chronolo-
gies) and Lees D (based on PCA and MLR using standard
chronologies). For easy visual comparison of the estimates
the 11-year running means of the three estimates are shown
in Figure 9 along with the maximum and minimum flows
from the nonparametric ensemble. All the reconstructions
are very similar and fall within the ensemble range from the
nonparametric method. To quantify their association, scat-
terplots of the reconstructed 11-year mean flows from Lees
B and Lees D with the nonparametric approach are shown
in Figure 10. The nonparametric estimate shows close

Figure 9. Comparison of paleohydrologic reconstructions, 1495–1900, of Lees Ferry streamflows from
the NPP method and the Woodhouse et al. [2006] reconstructions, Lees B and Lees D. The streamflow
reconstructions were smoothed using an 11-year moving window for this comparison. The minimum and
maximum flows from the NPP model provide an estimate of the uncertainty of these reconstructions.
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agreement with the other two methods: R2 of 0.85 with Lees
B and 0.89 with Lees D. The scatterplots indicate that the
nonparametric approach tends to generate nominally higher
11-year mean flows than the parametric methods; the box
plots of the three reconstructions (Figure 11) show this bias.
The box plots are quite similar, but the nonparametric
reconstruction has a higher range in the lower flows
compared to the parametric reconstructions. The parametric
approaches generate lower 11-year mean flows in some
periods, such as those centered on 1500, 1585, and 1850,
which is the reason for their longer whiskers on the lower-
flow side. Regardless, the variance from the three recon-

structions is statistically the same at 95% confidence from a
nonparametric Fligner-Killeen test [Conover et al., 1981].
[34] The agreement between the nonparametric and para-

metric reconstructions at annual time scales (not shown) is
also very high and is comparable to that for the 11-year
reconstructed flows: R2 of 0.82 with Lees B and 0.89 with
Lees D. When examining the annual flows, there is a
tendency for the nonparametric method to generate higher
estimates of the lowest flows compared to the parametric
method. This is because the observed flows which are
conditionally resampled provide absolute upper and lower
bounds on the reconstructed flows generated by the non-

Figure 10. Scatterplots of 11-year moving average values for nonparametrically reconstructed Lees
Ferry streamflows and Woodhouse et al.’s [2006] (top) Lees B and (bottom) Lees D. The least squares fit
line to the scatter data set is also shown in the plots along with the equation and the coefficient of
determination R2.
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parametric method, while the parametric methods are not
constrained by the range of the observed flows. In practice,
the nonparametric reconstructed flows can approach but will
not reach the bounds imposed by the observed record
because the estimation from nearest neighbors will tend to
pull extreme values toward a central tendency, with that
influence dependent on the weighting scheme.
[35] Because of this conditional resampling based on

weights, NPP reconstructions have a compressed variance
relative to the observed flows, similar to the Woodhouse et
al. [2006] and other MLR reconstructions. Approaches for
circumventing the problem of variance compression have
been proposed by Meko et al. [2001]. Variance inflation in
the NPP approach can be introduced by resampling from a
limited number of tree ring chronologies. Also, the fitting of
a local polynomial (see section 5) could be used to extend
the range of the nonparametric estimates. But it is worth
noting that in the context of water management, the very
robust dry/wet state information in tree ring data, and the
resulting sequences of dry and wet years, is probably of
greater relevance than the specific annual flow magnitudes,
which will be less certain than the state information regard-
less of the method used to specify them. However, the NPP
reconstructions provide a robust characterization of uncer-
tainty using ensembles and confidence intervals that are
asymmetric. Asymmetric confidence intervals are extremely
important as water managers use the threshold exceedance
to estimate system risk and reliability.
[36] As a last point, it is worthwhile to note that there are

many different aspects to the setup of a reconstruction and
that differences in results can have sources other than the
choice of statistical model. For example, the Woodhouse et
al. [2006] reconstructions used 62 chronologies, and in this
study a subset of 38 of those chronologies, along with 13
other chronologies, were used. That the results of the two
reconstruction approaches are so similar is evidence of the
robustness of the tree ring data in describing the regional

hydrologic condition as well as the utility of the NPP
method in developing paleohydrologic reconstructions.

5. Summary and Conclusions

[37] A nonparametric approach that is flexible, simple,
and data driven is presented for generating paleohydrologic
ensemble streamflow reconstruction on the basis of tree ring
chronologies. In this approach, neighbors (i.e., years in the
overlap period) for each year in the reconstruction period
are identified in a mutually orthogonal eigenspace and are
conditionally bootstrapped to provide ensembles. This elim-
inates the multicollinearity (correlation among variables)
that is often a serious issue in traditional MLR. The
selection of neighbors is guided only by the tree ring data,
not by the observed flows. In essence, the pattern of
association between the chronologies in the overlap period
and reconstruction period is identified for each reconstruc-
tion year and is the basis for the reconstruction. This
information is the foundation of the reconstruction process
from which analog streamflow values are selected for each
of the reconstruction years. Application to streamflow
reconstruction at Lees Ferry gauge on the Colorado River
shows that the method compares well with the parametric
reconstructions. The local estimation of neighbors provides
the ability to capture local features (nonlinearities) that
might be present which cannot be captured with a single
regression equation in the MLR approach. The ensembles
provide for asymmetric confidence and uncertainty esti-
mates reflective of the underlying nonnormal features and
sampling variability, while the MLR generally results in a
symmetric interval based on normal distribution. For MLR,
data have to be normally distributed or they have to be
transformed before fitting the model. This is obviated in the
nonparametric approach. Furthermore, the nonparametric
method can provide ensembles easily from varying sample
length as seen in the application presented.
[38] The reconstructed ensembles from the nonparametric

method are combinations of observed streamflows; thus, the
variety is limited to the length of the overlap period. This
apparently can be limiting. This limitation can be alleviated
by fitting a local polynomial [Loader, 1999] to the K nearest
neighbors and using it for the mean flow estimation. This
approach was developed and demonstrated for streamflow
simulation [Prairie et al., 2006] and ensemble streamflow
forecast [Grantz et al., 2005].
[39] Given the efficiency and simplicity of the approach,

it can be used in the reconstruction of other hydrologic
markers such as the Palmer drought severity index and for
hydrologic record extensions and can be used to develop
ensembles of model inputs for water allocation modeling.
This is possible because the NPP algorithm identifies
neighbors (i.e., similar years) using only tree ring chronol-
ogies, thereby allowing a model or any other hydrologic
variable of interest to be resampled from the ensemble of
similar years. It is important to note that the tree ring data
should be robust to reflect the variability of the water
supply, and to that end the trees in the Upper Colorado
River Basin are particularly well tuned to the water year.
This is mostly because of the snowpack that is important to
both the growth of the trees and the water supply for this
region. Thus, the performance of the NPP method is
implicitly tied to the degree of this relationship.

Figure 11. Box plots comparing 11-year moving average
values from the NPP method and the parametric Woodhouse
et al.’s [2006] Lees B and Lees D reconstructions.
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