Can Reservoir Storage Be Uneconomically Large?
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Abstract: The cffect of reservoir losses on the economically optimal use of reservoir storage capacity is explored theoretically and
numericatly, We demonstrate that reservoir seepage and evaporation losses lead (o a trade-off between the reliability and mean level of
water deliveries, and that as the price elasticity of demand increases and variability of inflows decreases, the optimal reservoir storage
decreases. Corresponding reductions in the optimal maximum use of reservoir storage capacity as price elasticity of demand increases,
variability of inflows decreases, and losses increase are illustrated. The approach helps clarify the role of storage in maximizing economic

benefits from consumptive nses.
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Introduction

The problem of reservoir storage to meet water resources objec-
tives has largely been one of estimating the minimum reservoir
capacity required to meet a predetermined schedule of deliveries,
The maturation of many analytic and numerical techniques [e.g.,
Loucks et al. (1981)] coincided with the period where capturing
water resources was the primary objective. We present a comple-
mentary approach, which seeks to identify the set of reservoir
releases and hence storage levels that maximize the economic
benefits from a predetermined water resource. We focus our at-
tention on large river basins with over-year carryover storage and
demoenstrate that storage levels that maximize net economic ben-
efits are highly sensitive to the desired reliability of downstream
deliveries.

We examine the simple case of a watershed with inflows to a
single pre-existing reservoir. Costs of the existing reservoir are
entirely sunk, and operating costs are assumed to be negligible,
Benefits of water delivery are given by a constant elasticity de-
mand funetion. Reservoir releases are the decision variable and
storage in each period is the state variable. We estimate numeri-
cally the set of releases that maximize the economic benefits to a
single water user of deliveries from the reservoir. Our major focus
then is the sensitivity of the resulting maximum storage level over
the planning period to the price elasticity of demand, the variabil-
ity of inflows, and reservoir losses (e.g., from evaporation.} The
approach is useful for policy and planning purposes because it
helps clarify the role of reservoir capacity in maximizing eco-
nomic benefits from consumptive uses.
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Background

Sizing reservoir storage to meet a predetermined release is a stan-
dard problem [e.g., Rippl (1883), Hazen (1914}] te which Dorf-
man (1965) applied linear programming by minimizing storage
capacity subject to a constant release. In other approaches a pre-
determined reliability for a fixed water delivery is used to define
“successful” project operation (Linsley et al. 1982). Moving be-
yond reliability, Moy et al. (1986) introduce performance mea-
sures focusing on maximum shortfalls and the maximum period
of shortfalls, which they identify as system vulnerability and re-
silience, respectively. Several engineering approaches have recog-
nized that the cost of shortages can be explicitly included in the
optimization problem [e.g., Klemes (1979)]. Yeh (1985) identifies
a typical planning objective as the maximization of total net an-
nual benefits, while Hashimoto et al. (1982} suggest the desirabil-
ity (and difficulty) of including “risk-related system performance
criterta” in a multichjective analysis to explicitly value reliability.

The economic literature has emphasized explicit consideration
of benefits and costs of water resource development [e.g.,
Eckstein (1958), Howe (1971)]. More recent work adopts an
optimization approach to identify first best solutions to water re-
source management. Applied to reservoir storage, Burness and
Quirk (1980) seek an analytic solution to optimal storage for the
case of a perfectly elastic but capacity-constrained demand. Much
additional work, both analytic and numerical, has addressed water
resource management with storage; most typically, however, the
focus is groundwater, where losses over time are generally ne-
glected. However, Krulce et al. (1997) examine a coastal aquifer
where increased groundwater stock increases leakage to the
ocean,

Method

Our approach is to find the greatest economic value from a given
hydrologic system. Either a probability distribution or actual river
flows can be used, with economic vatue defined by the utility of a
composite- water use consuming deliveries from a single pre-
existing reservoir; we assume fixed costs are zero and nonbinding
reservoir size. Marginal costs are initially assumed zero. Utility in
each time period is assumed to increase with water use at a de-

520/ JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT © ASCE / NOVEMBER/DECEMBER 2006



clining rate (i.e., convex, with a downward sloping economic de-
mand for water). An annual time step is assumed, with over-year
(carryover) storage being the critical decision variable. Extension
to monthly or shorter time steps would require use of autocorre-
lated streamflows and a time-varying utility function.

With this approach, a fundamental trade-off exists between the
benefits of maintaining carryover storage for future use and the
water cost of storage due to evaporation (and other) losses. If
evaporation is proportional to exposed surface area, any reservoir
with nonvertical walls will suffer losses that increase with storage
volume. For example, an inverted pyramid with sides R, § and
depth H has a familiar relationship between storage volume and
area exposed at the surface. The geometry of similar triangles and
elementary algebra shows that A=VORS/H*2*® where A is the
exposed area and z is the storage volume, so that surface area is
roughly proportional to its volume raised to the two-thirds power.

While evaporation losses thus increase as storage increases
{though at a decreasing rate), average annual deliveries from stor-
age are bounded by the mean annual streamflow. Thus, after some
point the marginal evaporation losses from increasing storage
exceed the marginal potential gain in deliveries. For a given reli-
ability, further increases in storage could decrease annual reser-
voir deliveries due to the increasing evaporation losses. Therefore
we conjecture that for a given set of inflows, a unique set of
storage levels (which in some years may equal zero) maximize
the total utility gained from reservoir releases.

Numerical Model

The decision maker’s objective is to maximize the (discounted)
sum of convex utilities U(x,)

T
U= BU,) (1)

=1

of a renewable inflow @, over the planning period [1, 7] through
choice of release x,. The mass balance equation is

Slisr—l'er“x;_l(S!—]) (2)

where at any time f:s, is the storage of the resource; ¢J, is the
inflow of the resource into the system; x, is the water delivery
from the reservoir; and {(s,_,} is the (evaporative and seepage)
loss resultant from storage. The discount factor, B,, is the discount
factor in year t commonly given by B,=(1+7)", where r is the
real discount rate. The model is completed with specification of
beginning and ending storage quantities, s, =¢§; and s;=s7. The
first-order condition for an interior optimal solution is then

MU(XHI)_ (1+I’)
YT _(1 ﬂzl) (3)
- os,

where the marginal wtility M U(x,)=aU/dx,. Eq. (3) provides the
basic result that current water storage must earn a royalty equal to
the discount rate r multiplied by a contribution compensating for
system losses. In the case of lossless storage, dl(s,)/ s,=0 and Eq.
(3) reduces to the well-known Hotelling (1931} result.

Model Eqgs. (1} and (2) are solved numerically, For simplicity
of discussion, we assume constant price elasticity of demand m
leading to
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Fig. 1. Trade-off between reliability (determined by price elasticity
of demand w) and mean deliveries for 200 period lognormally
distributed inflow sequence with mean=1 and standard
deviation=0.3. Evaporative losses are 10% per period at storage level
equal to mean annual flow.
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GAMS (Brooke et al. 1998} and the MINOS nonlinear opti-
mization algorithm (Murtagh and Saunders 1980) numerically
solved the nonlinear problem. Default MINOS solution param-
eters are used, though careful selection of variable upper and
lower bounds and attention to starting values are needed for the
most nontinear cases (e.g., price elasticity of demand=-0.1).

Sensitivity of Economically Optimal Reservoir
Storage

Reservoir storage increases reliability in water-use deliveries, but
at the cost of a reduced mean delivery due to evaporation losses
{D. Luecke, personai communication, Boulder, Colo. 2000).
Fig. 1 shows the trade-off by contrasting the probability density
of optimal deliveries estimated by solving Eqs. (1) and (2) with
the mean delivery. A 200-year planning period is used, with log-
normally distributed inflows for which mean=1 and standard
deviation=0.3, Evaporative losses are I,:O.IOS?‘”, and price elas-
ticities of demand of -0.1 and —1.0 are used. The two density
functions in Fig. 1 are lognormal regressions of the 200 optimal
deliveries for each elasticity and illustrate the trade-off between
optimal reliability and mean deliveries for a given reservoir loss
function.

In this 200-year planning period, an optimal level of reservoir
storage for each year exists based on the economically optimal
delivery schedule. Fig. 2 shows the increase in the maximum of
these storage levels as the standard deviation of inflows increases,
and the decrease in optimal maximum storage as the flexibility of
demand increases [defined by an increasing (in magnitude) price
elasticity of demand].- The extreme of m=-0.1 approaches the
case of a fixed level of use, while n=-2.0 indicates a great deal
of flexibility in levels of water use, While elasticity estimates are
both difficult and have meanings open to interpretation, Dalhuisen
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Fig. 2. Optimal reservoir storage as function of variability of inflows:
(a) losses are 5% per period when storage equals mean annual flow;
at storage levels equal to 2 and 5 times annual flow, evaporation rates
are 4%, and 3%, respectively; (b) losses are 10% per period when
storage levels equal mean annual flow; at storage levels equal to 2
and 5 times annual flow, evaporation rates are 8 and 6%, respectively

et al. (2001} identify typical elasticities in municipal uses of —0.1
(short run, indoor use) to —0.5 (long run, outdoor use), while
Scheierling et al. (2006) estimate elasticities for agricultural uses
ranging from inelastic to elastic.

Figs. 2(a and b) contrast maximum storage levels for distingt
evaporation rates, Levels of 5 and 109 per period at a level of
storage equal to annual flow are used. At storage levels equal to
two and five times annual flow, evaporation rates are 20 and 40%
lower, respectively. (These are modest evaporation rates; for
example, the major Rio Grande reserveir in New Mexico has
substantially higher rates.} For our 200-year inflow sequence,
relatively elastic demand leads to maximum storage levels of up
to about three times annual flow as the standard deviation of
inflows increases to 0.5. Very inelastic demands (v =—0.1) lead to
much higher estimated maximum storage levels, while storage
in the intermediate and most economically relevant cases
{n=-0.2 to —0.5) is highly sensitive to evaporation rates and
variability of inflows.

The exclusion of operating costs may in many cases be unre-
alistic. High storage levels may for example reduce flood control
benefits and inundate recreational areas. Starting from the
m=-0.5 curve in Fig. 2(a), consider the addition of linearly in-
creasing marginal costs of storage equal to 1 and 10% of benefits
when storage s=1 and water use x=1. With costs=19%, maximum
storage levels are 49% (inflow standard deviation=0.5) to 89%
(inflow standard deviation=0.3) of the levels in the figure, while

the respective maximum storage levels with costs=10% are only
17 to 39% of those in the figure,

Additional Considerations

While it is tempting to suggest that reservoir capacity greater than
estimated maximum storage levels is unlikely to be used, addi-
tional considerations such as intrayear storage, flood control,
hydropower, and recreation demands are typically present. Other
modeling simplicities urge caution: for example, insight into the
timing and spatial impacts of incremental changes in river basin
reservoir capacity are limited with our approach. Finally, the
model assumes perfect foresight; in reality, strategies such
as hedging would be necessary to cope with limited future
knowledge.

Conclusions

We demonstrate that optimal reservoir storage is sensitive to res-
ervoir evaporation and seepage losses, especially when the price
elasticity of demand is high and the variability of inflows is low.
Under these conditions it is economically beneficial to substitute
some reliability in water delivery for larger mean deliveries; the
additional deliveries are derived from reductions in reservoir
losses made possible by maintaining lower storage levels. We
show numerically that as price elasticity of demand increases and
variability of inflows decreases, the optimal maximum use of res-
ervoir storage also decreases.
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