This Article examines the conceptual frameworks often used to understand and resolve controversies involving scarce and legally protected natural resources. It proposes that traditional frameworks, though ingrained in legal structures and conventional expectations, fail to adequately address tensions between resource consumption, environmental protection, and the reliability of resource allocation patterns, and thus can induce adoption of solutions that prove fragile in contexts of environmental uncertainty and change. It then proposes a different conceptual approach capable of facilitating more lasting solutions. The Article illustrates the importance of that conceptual shift by analyzing an important environmental controversy in California. Efforts to resolve that controversy, though widely praised in the legal academic literature, have not succeeded, and this Article proposes that those failings partly reflect conceptual frameworks ill-suited for dynamic and uncertain environmental conditions.
I. INTRODUCTION

Imagine a typical river somewhere in the American west. Farms rely on its waters and divert much of its flow to irrigated fields. Cities depend upon it for domestic and industrial water supply. Despite diversions, dams, and exotic invaders, native species survive, albeit tenuously. Many of those species are legally protected, and some are quite economically valuable, or at least could be if their populations recovered. A variety of agencies, both federal and state, manage the river in accordance with complex politics and laws. While the agencies' agendas differ in some ways, they share the common goal of achieving a stable balance among its competing uses, and they possess, at least in theory, the money and expertise to achieve that goal. If they fail, the consequences will be troubling: species may go extinct; non-compliance with environmental laws could lead to citizen suits or agency enforcement actions, which could leave irrigators or cities without badly-needed water; and litigation, political conflict, and economic and social dislocation are all but inevitable. Yet, if this river is like many real rivers throughout the west, or like many forests, fisheries, air basins, or other natural systems presenting similar challenges to environmental managers, the chances of such failure are high. This Article explores why those problems so often recur.

The reasons are invariably complex, and this Article does not explore them all. Political process quirks, skewed economic incentives, ideological

1 See, e.g., Holly Doremus & A. Dan Tarlock, Fish, Farms, and the Clash of Cultures in the Klamath Basin, 30 ECOLOGY L.Q. 279, 283–84 (2003) (describing the costs of water use conflicts); see also Jay Lundy et al., Envisioning Futures for the Sacramento-San Joaquin Delta 105 (2007) [hereinafter Envisioning Futures] (estimating the costs of a sudden cutoff of Bay-Delta water at $10 billion per year). For a discussion of similar problems arising from forest management, see Stephen Yaffee, The Wisdom of the Spotted Owl (1994).

2 I use the term environmental managers to refer to government agencies and the staff they employ, acting in both regulatory and proprietary capacities. "Environmental laws" here is an umbrella term referring both to laws traditionally understood as controlling pollution, like the Clean Air Act, and to laws understood as resource management statutes, like the Wild and Scenic Rivers Act. Law school curricula sometimes distinguish the two groups, but in practice the distinctions are muddy. The Clean Water Act, for example, is an environmental quality law with significant resource-allocation implications.
hostility to environmental protection, and a variety of other causes—all heavily analyzed by legal scholars—often contribute to failures. But the core thesis of this Article is that an additional factor deserves attention, and that the road to ruin is often smoothed by legal concepts. Flaws in our basic framework for understanding resource crises—a conceptual framework that both flows from and influences the legal schemes that govern resource management—play an important role in undermining efforts to achieve stability.

Environmental managers often think they should balance environmental protection and resource consumption in a particular way: they think they should allow resource consumption right up to perceived brinks of illegality and should provide just enough protection to avoid legal violations, but no more. That understanding follows logically from our legal systems, which often encourage resource consumption and environmental protection but do little to promote preservation of margins for error. A variety of legal and policy responses flow from that conceptual approach, including selection of management systems designed to allow, facilitate, or subsidize increased consumption even of scarce resources, but also designed to penalize any activity that pushes environmental degradation beyond the perceived brink. But because environmental conditions often change, frequently in unexpected and dramatic ways, brinks of illegality can be shifting and difficult to discern, and resource management schemes deriving from that basic approach often require rapid adjustment. And if, as is often the case, adjusting is institutionally or politically difficult,\(^3\) that traditional approach can lead to fragile solutions prone to costly collapses. This Article therefore articulates a different conceptual framework designed to preserve the durability and reliability\(^4\) of resource allocations even in a changing, unpredictable world.

This Article illustrates the importance of that conceptual shift by analyzing one of the nation’s highest-profile environmental controversies. Approximately forty miles northeast of San Francisco, in California’s Central Valley, the Sacramento and San Joaquin rivers flow through a maze of channels and sloughs before discharging into San Francisco Bay. The Bay-Delta, as that estuary is called, is one of California’s most valuable natural resources. Its watershed supplies most Californians with drinking water, irrigates millions of acres of agricultural land, supports recreational uses ranging from birdwatching to wakeboarding, and provides crucial habitat for diverse fish and wildlife species, many of which are threatened or

\(^3\) Adjustment, of which “adaptive management” is a particular form, is very much in vogue as an environmental management technique, but it has limitations. See generally Holly Doremus, *Adaptive Management, the Endangered Species Act, and the Institutional Challenges of “New Age” Environmental Protection*, 41 WASHBURN L.J. 50, 55 (2001) (describing tensions between adaptive management’s premise of uncertainty and institutional preferences for finality).

\(^4\) By “reliable,” I mean stable and predictable, but not necessarily abundant. See *The Oxford English Dictionary* 562 (2d ed. 2000) (defining reliable: “[t]hat may be relied upon; in which reliance or confidence may be put; trustworthy, safe, sure”).
endangered.5 Balancing these often-competing needs is challenging, and the watershed has generated some of the longest-lasting battles in California's water wars.6

Those battles have created a legal laboratory, in which the state and federal governments have tested many approaches to environmental management. Dozens of published cases, many groundbreaking, have emerged from the Bay-Delta's conflicts.7 Congress and the California Legislature have repeatedly intervened, first authorizing exploitation of the Bay-Delta and then drafting laws designed to protect it.8 In the shadow of those legal constraints, agencies and interest groups employed novel institutional arrangements and innovative regulatory techniques, many in

5 See \textsc{Little Hoover Comm'n, Still Imperiled, Still Important: The Little Hoover Commission's Review of the CALFED Bay-Delta Program 3–4 (2005); CALFED Bay-Delta Program, Programmatic Record of Decision 1–2 (2000) [hereinafter CALFED ROD].

6 See \textsc{Little Hoover Comm'n, supra note 5, at 3 (describing the Delta as the "battleground for the state's perennial water war").

support of the recent “Calfed” program, which modestly described itself as “the largest, most comprehensive water management program in the world.”

On a grand and expensive scale, Calfed devised a set of complex strategies for allowing increasing water consumption from an estuary where scarcity is common and variability endemic. Those strategies generated academic attention, with legal authors gravitating to Bay-Delta controversies like evolutionary biologists to the Galapagos. Almost without exception, their scholarship has described Calfed’s innovations as models of creative pragmatism.

But those innovations have not succeeded. Despite many advantages—regulatory creativity and cooperation, sometimes substantial funding, attention from high-level officials, and an impressive confluence of government and private expertise—the federal-state programs designed to redress the Bay-Delta’s resource conflicts have so far produced a fiasco.

9 Calfed Rod, supra note 5, at 1. The Rod adds that Calfed is an unprecedented effort to build a framework for managing California’s most precious natural resource: water . . . the most complex and extensive ecosystem restoration project ever proposed . . . one of the most intensive water conservation efforts ever attempted . . . the most far-reaching effort to improve the drinking water quality of millions of Californians as well as an unprecedented commitment to watershed restoration . . . and . . . the most significant investment in storage and conveyance in decades.

11 E.g., Freeman & Farber, supra note 9; Thompson, Markets for Nature, supra note 9, at 308–9, 312–15; Brandt, supra note 10; Rieke, supra note 10.

12 See ENVISIONING FUTURES, supra note 1, at 14 (“The current Delta is unsustainable for almost all stakeholders.”).
Some efforts show preliminary signs of progress, but within just a few years of implementation, key environmental parameters took significant turns for the worse. Already-suffering fisheries suffered “dramatic declines,” new species were listed under the federal Endangered Species Act; the Bay-Delta’s levees remained dangerously prone to collapse; and by 2005, just five years after the CALFED agencies approved their long-term program, the Bay-Delta’s ecological health by some measurements appeared worse than ever—withstanding benign weather. As one Environmental Protection Agency (EPA) scientist then stated, “[s]omething is really, really wrong. It is not just the sensitive fish. The cockroaches are dying off.” By 2007, the situation was even worse. Annual fish counts revealed steep declines from even the 2005 record lows, and biologists described conditions as “very bad . . . quite a step down from what was alarmingly bad from previous’ surveys.” To avoid total extermination, California’s State Water Project, which supplies most of the state’s people with at least some of their water, briefly shut down its pumps, and then resumed only at levels far below normal. Then, in late summer, a federal judge ordered another major cutback, which water suppliers estimated

would reduce deliveries by a million acre-feet per year or more. One lobbyist for water supply agencies described it as “the single largest court-ordered redirection of water in state history.”

Those ecological declines coincided with an institutional collapse. The CALFED bureaucratic structure, though praised by legal scholars, was selectively ignored by key participants in the Bay-Delta controversies; received withering critique from independent reviewers and legislators; and struggled to obtain anticipated levels of funding. The Bay-Delta Authority, the joint federal-state agency created to coordinate CALFED’s implementation, fairly quickly saw its relevance evaporate. The judiciary began filling the void. Along with the record low smelt counts, the immediate triggers for the first 2007 pump shutdown were two court orders that undermined the California Department of Water Resources’ (DWR) pretensions of compliance with the California Endangered Species Act; the second set of limits came directly from a court order. By 2007, CALFED was a widely-acknowledged failure, and stakeholders on all sides seemed to agree only that the present management approach must be replaced by something dramatically different.

Yet many of the key conflicts that originally necessitated CALFED persist. California’s water wants continue to grow; even as the crisis escalated, the federal and state agencies responsible for delivering Bay-Delta water proposed to increase pumping levels. Such export pumping contributed to both historic and recent ecological declines, and if those

22 Id. (quoting Tim Quinn of the Association of California Water Agencies).
23 See ENVISIONING FUTURES, supra note 1, at 1.
24 See, e.g., LITTLE HOOVER COMM’N, supra note 5, at 80.
25 See Freeman & Farber, supra note 9, at 872–73; Letter from the Little Hoover Comm’n to Governor Schwarzenegger and members of the Legislature (Nov. 17, 2005), in LITTLE HOOVER COMM’N, supra note 5 (“To a new generation of officials, CALFED is costly, underperforming, unfocused and unaccountable.”). See generally KPMG LLP, CALFED INTERVIEW AND SURVEY FINDINGS REPORT (2005) (finding widespread dissatisfaction).
26 See Freeman & Farber, supra note 9, at 873–75 (“It was extremely fortunate that the CalFed ROD was adopted at a time when both the state and federal budget surpluses were at an all-time high.”); LITTLE HOOVER COMM’N, supra note 5, at 41 (describing the California Bay-Delta Authority funding plan as a “failure”).
27 Mike Taugher, CALFED Reorganization Includes New Delta Plan, CONTRA COSTA TIMES, July 3, 2006 [hereinafter Taugher, CALFED Reorganization]; see LITTLE HOOVER COMM’N, supra note 5, at 41 (describing “the ambiguity of [CALFED’s] mission, the lack of legislative and executive leadership and waning stakeholder support”).
29 See KPMG LLP, supra note 25, at 14; LITTLE HOOVER COMM’N, supra note 5, at v–xi.
31 See ENVISIONING FUTURES, supra note 1, at 124 (“Recent work on [the] pelagic organism decline indicates that Delta pumping may play a significant role in the decline of delta smelt.”).
declines are not reversed soon, the CALFED agencies could lose species or leave the hub of California’s water supply system an injunction away from another major shutdown, this one perhaps of more lasting duration—exactly the outcomes the CALFED process attempted to prevent. In 2005, California’s Little Hoover Commission summarized the situation bluntly: “CALFED was forged from a crisis, and to a crisis CALFED has returned.”32 In 2007, commenting on the pump shutdown, DWR’s director was similarly pessimistic: “If we don’t fix the delta, this is going to start happening every year.”33

These setbacks raise important questions about the ways we attempt to understand and resolve environmental crises, for CALFED initially seemed a model response to a classic environmental challenge. From the Columbia River to the Okavango Delta, water managers wrestle with similar dilemmas as they attempt to sustain ecosystems while allocating scarce water to meet growing human needs.34 Other natural resources present analogous challenges; whether they are managing energy supplies,35 ocean fisheries,36 or forests,37 to provide just a few examples, environmental decision-makers often must balance protection and consumption of scarce and variable resources. These challenges are likely to become increasingly common, as growing populations and developing economies place increased demand upon many resources, and as climate change exacerbates the instability of natural systems.38 If the CALFED agencies, though blessed with access to

32 Letter from the Little Hoover Comm’n to Governor Schwarzenegger and members of the Legislature (Nov. 17, 2005), in LITTLE HOOVER COMM’N, supra note 5. The CALFED ROD has been challenged and is currently being reviewed by the California Supreme Court. Cites to the “CALFED Administrative Record” refer to the record from that litigation.
33 Barbassa, supra note 20 (quoting Lester Snow).
37 See generally, YAFFEE, supra note 1 (describing logging controversies in the Pacific Northwest); Dave Owen, Prescriptive Laws, Uncertain Science, and Political Stories: Forest Management in the Sierra Nevada, 29 ECOLOGY L.Q. 747 (2003) (describing Forest Service efforts to balance environmental protection, the amount of timber harvests, and the reliability of those harvests).
“enormous intellectual talent,” a political consensus demanding solutions, and the creativity to develop new management techniques, struggled to resolve their high-profile problem, the obvious and important questions are what went wrong, and how could decision makers lacking such advantages hope to do better? As in any environmental crisis, the answers to those questions are complex and multifaceted, and several recent studies have explored aspects of CALFED’s troubles. The reports have identified flaws in CALFED’s institutional structure, which left communication and accountability lines unclear; weak funding mechanisms that failed to produce anticipated money; leadership voids at the state and particularly federal levels; and failures of adaptive management as key sources of trouble. The Public Policy Institute of California (PPIC) analyzed the Bay-Delta’s full array of problems from the perspective of scientists, economists, and engineers; its authors attribute the Bay-Delta’s ecological declines largely to attempts to impose stability upon a naturally fluctuating ecosystem.

All of those critiques are cogent and important, but this Article argues that they leave out something crucial. CALFED’s institutional arrangements, though flawed in many ways, still were better than those often utilized in environmental management, and even when stakeholders thought CALFED’s institutional arrangements were working well,}

39 Glennon & Thorson, supra note 10, at 520.
40 To critique the CALFED process is not to condemn it, for that process tackled problems no one previously had been able to solve, and that many entities had shown little interest in solving. See LITTLE HOOVER COMM’N, supra note 5, at ii.
41 See Freeman & Farber, supra note 9, at 857 (attributing CALFED’s successes partly to “a favorable stakeholder environment in which parties not only wanted agreement, but had the expertise, resources, and relationships necessary to contribute to it”).
43 See ENVISIONING FUTURES, supra note 1, at 40–41.
44 Id. at 157–58. Historically, the Bay-Delta system was spatially and temporally heterogeneous, with salinity conditions varying with seasons and tides. Most of its native species co-evolved with that regime. But because of the need of both in-Delta and export water users for freshwater, the Delta now is managed to provide a stable freshwater system, and this stability favors invasive species that have altered food chains upon which native species depend. See id. at 71–73.
45 Despite agreeing with those critiques, I concur with Freeman and Farber’s core argument that the CALFED process generated exemplary innovations and improved upon prior modes of Bay-Delta management. See Freeman & Farber, supra note 9.
46 This Article also supplements those analyses by providing a detailed legal discussion.
47 See Freeman & Farber, supra note 9, at 839–40 (explaining the fragmented, piecemeal decision-making and federal-state tensions that CALFED partially succeeded in overcoming); William W. Buzbee, Recognizing the Regulatory Commons: A Theory of Regulatory Gaps, 80 IOWA L. REV. 1, 8–14 (2005) (describing several ”confused regulatory terrains”).
48 Those foundations also were laid while Democrats controlled the federal and state executive branches. While hardly anything positive can be said about implementation under Republican administrations, a simple blame-the-Republicans diagnosis leaves out an important part of the story.
management decisions were laying the foundations for future troubles.49 The PPIC report identifies weaknesses in the physical arrangement and management of Bay-Delta infrastructure and takes huge steps toward envisioning fixes, but the key solution it proposes—allowing more hydrologic variability—could take years, complex engineering, lots of money, and intense political wrangling to implement,50 and is less likely to ever succeed if implemented without regard to the tensions discussed in this Article.51 While funding may have been short of CALFED's managers' expectations, the program still has received far more government money than typically is available for resolving environmental problems.52 Attributing CALFED's struggles to institutional shortcomings, leadership failures, paltry legislative allocations, and attempts to impose stability upon a naturally-variable ecosystem therefore suggests a vain search for levels of institutional achievement far beyond what normally is attainable, and those analyses provide only partial answers.

This Article adds to those reports, and to prior legal analyses of the CALFED process, by explaining that the Bay-Delta's resource allocation crises are also partially rooted in a basic conceptual model for understanding environmental crises—a model that, while often employed, is ill-suited for a world of environmental variability and institutional fallibility. That conceptual model posits that environmental laws and policies exist to promote and balance two things: consumption and protection. We debate, for example, how much water each user should be allowed to pump from our rivers and how much must remain to satisfy the needs of fish,53 and we seek a permanent and stable allocation among those ends. Moreover, in accordance with common political and judicial concerns about over-regulation,54 environmental managers routinely assume that all resources not necessary for legally-required environmental protection should or even must be available for consumption, and legal schemes often both incorporate and encourage that assumption.55 Those managers frequently

49 See infra Part IV.

50 See ENVISIONING FUTURES, supra note 1, at 179 ("politically, our analysis is purposefully naïve").

51 One of the two promising solutions identified by the PPIC—reducing both the amount and reliability of pumping—is facially irreconcilable with such trends. The other—developing infrastructure to move water around, rather than through, the Delta—might somewhat reconcile tensions among pumping, protection, and reliability, though it will take years to build and is still likely to create environmental strains and the commensurate threat of unexpected outcomes, particularly if pumping volumes grow.

52 See ENVISIONING FUTURES, supra note 1, at 88–89, 187.

53 See, e.g., CONGRESSIONAL BUDGET OFFICE, Preface to Water Use Conflict in the West: Implications of Reforming the Bureau of Reclamation's Water Supply Policies (1997), available at http://www.cbo.gov/ftpdocs/87xx/doc46/wateruse.pdf ("Environmentalists, who want water to be left in the rivers to preserve threatened species, are now competing with urban and agricultural users for the West's limited water resources.").

54 See Buzbee, supra note 47, at 42–43 (describing theories of overregulation and jurisprudence designed to combat the perceived pervasiveness of regulatory excess).

55 E.g., Bennett v. Spear, 520 U.S. 154, 176–77 (1997) (describing the Endangered Species Act as a statute that attempts to protect species yet prevent "needless economic dislocation.")
believe their job is to determine exactly where the brink of legal non-compliance lies, and to allow, or even encourage, consumption right up to the perceived edge. Hence, for example, the CALFED agencies determined, in the record of decision that defined their program, that even though they were legally obligated to improve environmental conditions, they also would attempt to provide more water for consumption and would leave less surplus water in the system. Encouraged by a legal system prioritizing consumption yet demanding baseline levels of protection, and by conventional expectations that they should constrain consumption as little as possible, they perceived no other choice.

The flaw in that conceptual framework is its misapprehension of the implications of environmental uncertainty, and its consequent tendency to encourage fragile, unreliable resource allocation patterns. Environmental conditions often vary chaotically, with changes, surprises, and occasional catastrophic events the norm. The rules apportioning scarce resources therefore rarely can set just one permanent balance between consumptive uses and protection requirements, and we cannot assume we may safely consume right up to some fixed and discernable brink of illegality. Instead, resource management rules should anticipate the burdens of uncertainty, managerial fallibility, and change. When dry weather leaves rivers low, for example, rules determine who gets the remaining water and whether the river is pumped dry, and when conditions are wet, managers must determine whether we leave a buffer for drought, or whether we instead allow habitual consumption beyond dry-year limits. Likewise, if we misunderstand a natural system, and protected species’ survival requires more water than we had anticipated, either our consumptive patterns or our protective goals

Environmental management provides numerous examples of attempts to walk tightropes between over- and under-regulation. Air quality managers, for example, often attempt to regulate only to the minimum extent necessary to ensure compliance with the federal Clean Air Act’s National Ambient Air Quality Standards (and believe they have no choice to go further), without preserving some margin for error. See, e.g., James D. Fine & Dave Owen, Technocracy v. Democracy: Conflicts Between Modeling and Participation and Environmental Law and Planning, 56 Hastings L.J. 901, 959 & n.302 (2005). Environmental managers commonly attempt to determine the minimum amount of habitat necessary to allow endangered species to recover, with the assumption that development up to those limits will be allowed. See, e.g., Tony Davis, San Diego’s Habitat Triage, High Country News, Nov. 10, 2003, available at http://www.hcn.org/servlets/hcn.PrintableArticle?article_id=14355 (last visited Nov. 18, 2007). Water managers are commonly torn between policies promoting environmental protection and others understood as maximizing consumptive use. See CAL. CONST. art. X, § 2 (promoting both goals).

56 See CALFED ROD, supra note 5, at 41.

must adjust. But the traditional consumption vs. protection, consume-to-the-brink conceptual framework says little about preparing for such variability. Moreover, adaptive policies, though often emphasized in academic and policy literature as a means to address variability and uncertainty, can prove dauntingly difficult to implement, largely because common preferences for stability can undermine the institutional dexterity upon which adaptive management approaches depend. The common consequence is fragile solutions ill-suited for a variable world.

Rather than focusing only on traditionally understood conflicts between consumption and protection, this Article proposes an improved conceptual framework that integrates environmental variability and uncertainty, and that directly addresses the relationship between that variability and the reliability—that is, the consistency and predictability—of resource allocations. It acknowledges that in contexts of scarcity and environmental dynamism, protection, consumption, and reliability are often in tension, with reliability increased only at the expense of protection or consumption. It also acknowledges that ignoring those tensions, and trying to maximize all competing goals simultaneously, can leave resource management schemes dangerously prone to costly and damaging legal collapses. Consequently, solutions like those devised by the CALFED agencies, which are designed to increase consumption and protection of already-scarce resources, all in political environments where reliability is of paramount importance, will depend upon luck, managerial dexterity, brilliant engineering, and ample funding. Absent such good fortune, and even sometimes with it, such solutions will prove fragile, even if, like CALFED, they are implemented by talented and dedicated people, and thus all of the latest and best governmental innovations will be for naught, for reliability requires margins for error.

59 See, e.g., infra Part III.C (describing the structure of California water law). The Endangered Species Act, for example, imposes stringent protections when species are listed and no protections at all until listing occurs. See J.B. Ruhl, Who Needs Congress? An Agenda for Administrative Reform of the Endangered Species Act, 6 N.Y.U. ENVTL. L.J. 368, 384–85 (1998). Similarly, the Clean Air Act’s air quality planning provisions contain little guidance on addressing uncertainty and variability; they seem to assume that modeling for a plan will either demonstrate compliance, in which case the plan is acceptable, or will not, in which case the plan must be rejected, with little acknowledgment that modeling can only offer probabilistic predictions. See Fine & Owen, supra note 55, at 933–34, 972 n.373.

60 See Doremus, supra note 3, at 55; cf Freeman & Farber, supra note 9, at 837 (“conditions of radical uncertainty . . . call for a spirit of provisionalism”).

61 See supra note 4 (explaining this Article’s definition of reliability).

62 This is not always true, of course. See infra notes 106–112 and accompanying text. My more limited thesis is that this conceptual framework is applicable often enough to be more useful than conventional conceptualizations.

63 By legal collapse, I mean a management scheme that must be scrapped because it proves incapable of achieving the substantive mandates of applicable laws. The failure of forest management in the Pacific Northwest provides an example; though timber harvesting continued for years despite environmental degradation, the judicial injunctions eventually began to slam close the gap between legal mandates and actual practice.
This Article’s analysis proceeds as follows. Part II discusses traditional theories—the “capture” paradigm and the “tragedy of the commons”—that underlie our resource management laws and often provide our conceptual foundations for understanding environmental problems, and that, in combination with traditional misconceptions of environmental stability, encourage us to understate or ignore the unreliability inherent in many resource allocation systems. It then develops an improved conceptual framework incorporating the role of environmental dynamism and change. Parts III and IV turn from general theory to the Bay-Delta’s story, using those conflicts to illustrate the importance of the conceptual shift described in Part II. Part III discusses how environmental conditions, engineered infrastructure, and legal systems have created deep tensions among consumption, protection, and reliability, and have encouraged the adoption of solutions ill-suited to survive environmental change. Part IV discusses how those tensions came to a head during the Bay-Delta crisis, and how resource managers attempted to resolve them.

This discussion does not provide a comprehensive analysis of the CALFED process. It focuses on aspects, albeit key ones, of CALFED’s troubles. This Article also does not claim that poor results resulted solely from conceptual mis-framings, or that those results can be attributed to any single cause. But this Article does explain how conceptual frameworks helped increase CALFED’s vulnerability to failure, and Part V therefore closes the article by returning to the alternative conceptual framework proposed in Part II, and describing how it can inform improved resolutions of resource conflicts in the Bay-Delta and elsewhere.

II. CONCEPTUAL FRAMEWORKS AND DYNAMIC ENVIRONMENTS

A. Traditional Paradigms

A good starting point for understanding the challenges facing managers of many shared natural resources, and for explaining some of the legal roots of the Bay-Delta’s crises, is the traditional set of conceptual frameworks often used to understand resource allocation.

One traditional framework derives from what some scholars label the “capture” or “dominion” paradigm. This framework defines resource consumption as a good to be rewarded and a measure of economic health; if it acknowledges limits at all, it generally assumes that economic signals and rational self-interest will facilitate responses to shortage without regulatory

64 See ENVISIONING FUTURES, supra note 1, at 137–38 (arguing that no single solution has yet been identified for the Bay-Delta’s ills).
intervention. Though now often criticized as an anachronism from an era when human populations were low and natural bounty seemed unlimited, influential vestiges of that paradigm remain throughout our legal systems for environmental management, and those vestiges tend to be bolstered by a political and academic climate overtly hostile to any “over-regulation” that might interfere with consumptive patterns. Some resources remain purposefully unregulated, many rules subsidize or otherwise encourage consumption even of scarce resources, and many resource users, even while acknowledging in theory that limits might exist, are loathe to admit they might be approached. Despite the critiques of environmental economists, we still often determine the strength of our economy partially by measuring resources consumed. Similarly, resource users routinely resist consumptive limits, and that resistance often succeeds, at least temporarily.

Almost forty years ago, biologist Garret Hardin wrote the classic critique of the capture paradigm. He observed that exploitation of an open-access resource—a resource open to many but controlled by none—creates a tendency toward tragedy. Each user’s most “rational” strategy is to take as much as possible, even if the collective effect of many individuals pursuing that strategy is exhaustion of the resource. Individual restraint

68 E.g., Blumm & Ritchie, supra note 65, at 686–92; Kysar, supra note 67; Wiener, supra note 66, at 10 (“it represents an ethic of hubris, disdain, and despotism”).

69 See Kysar, supra note 67, at 678 (arguing that the continued vitality of this paradigm helps explain the lack of urgency with which we approach many environmental problems).

70 See Buzzee, supra note 47, at 8–14 (describing the political and academic climate); Richard W. Parker, Grading the Government, 70 U. CHI. L. REV. 1335, 1345–55 (2003) (questioning the basis for this culture).

72 See, e.g., supra Part III.C (describing state and federal laws allocating California’s waters). Such reluctance to acknowledge limits forms a recurring theme throughout environmental management, and seems particularly pronounced when the resource at stake is water. See, e.g., Barton H. Thompson, Tragically Difficult: The Obstacles to Governing the Commons, 30 ENVTL. L. 241, 255 (2000) [hereinafter Thompson, Tragically Difficult]; Wallace Stegner, Where the Bluebird Sings to the Lemonade Springs, at xv–xix (1992) (castigating the water booster culture of the American west).

73 See Kysar, supra note 67, at 680–81.

74 See, e.g., Thompson, Tragically Difficult, supra note 72, at 243 (analyzing why such resistance occurs).

75 Garret Hardin, The Tragedy of the Commons, 162 SCL. 1243, 1244–45 (1968).

76 Id.; see Kysar, supra note 67, at 682–83 (describing the significance of Hardin’s insight).

77 Hardin, supra note 75, at 1244; see Elinor Ostrom, Governing the Commons 2–3 (James
would be pointless, for resources saved through conservation would only be consumed by someone else. The implications of Hardin’s insight were profound—it undermined paradigms that treat resource consumption as an inherent good, and posited that only the intervention of regulatory schemes can prevent tragic outcomes.

The power of Hardin’s metaphor derives not only from its simplicity, but also from its relevance to the modern world. Many natural resource dilemmas involve some variation of the tragedy of the commons. Water bodies, for example, are easy to exploit and difficult to control. Fisheries, timber harvesting, and even air pollution pose similar challenges. Hardin pointed out several of these examples, other scholars have discussed many more (and have refined his search for solutions), and the commons has become a classic conceptual model for understanding and evaluating legal and policy regimes for resource management.

E. Alt & Douglass C. North eds., 1990). People do not always behave this way. As numerous commentators have pointed out, people recycle, vote, avoid littering, contribute to charities, and even volunteer for dangerous military duties despite seemingly reaping only a tiny share of the benefits of their efforts. See Ann E. Carlson, Recycling Norms, 80 CAL. L. REV. 1231, 1232, 1247 (2001); Russell B. Korobkin & Thomas S. Ulen, Law and Behavioral Science: Removing the Rationality Assumption from Law and Economics, 88 CAL. L. REV. 1051, 1138–42 (2000).

78 Hardin, supra note 75, at 1246 (discussing the “pathogenic effects of conscience”). This problem is closely related to collective action problems identified by Mancur Olson, Jr. and others; because each commons user would gain disproportionately little benefit from his own restraint, his incentive is to act as a free rider. See MANCUR OLSON, JR., THE LOGIC OF COLLECTIVE ACTION 2 (1965); Carlson, supra note 77, at 1243–44.

79 Hardin did not create the idea of the tragedy of the commons. Instead, he presented it in a compelling fashion, gave it a pithy name, and cogently explained such tragedies’ frequency. See H. Scott Gordon, The Economic Theory of a Common-Property Resource: the Fishery, 62 J. Pol. Econ. 124, 135 (1954); OSTROM, supra note 77 (tracing the historic evolution of the idea, and quoting Aristotle and Hobbes).

80 See Hardin, supra note 75, at 1245 (discussing rangeland grazing, fisheries management, urban parking, and population growth).

81 Id.

83 MCNEILL, supra note 82, at 229–37 (describing worldwide disappearance of forests).

84 See Hardin, supra note 75, at 1245; e.g., Thompson, Tragically Difficult, supra note 72, at 253–55 (discussing CO2 emissions and global climate change); Daniel H. Cole, Clearing the Air: Four Propositions About Property Rights and Environmental Protection, 10 DUKE ENVTL. L. & POL’Y F. 103, 107 (1999) (discussing government regulation of air pollution).

85 See, e.g., OSTROM, supra note 77, at 58–178 (1990) (discussing community forests and farmlands, inshore fisheries, surface-water allocation systems, and groundwater allocation systems); Carlson, supra note 77, at 1234 (discussing recycling); Cole, supra note 84, at 112–17 (discussing acid rain); Thompson, Tragically Difficult, supra note 72, at 246 (discussing fisheries, groundwater extraction, and climate change). For a summary discussion of later refinements of the commons concept, see Buzbee, supra note 47, at 7–22.

86 See Brady v. Fed. Energy Regulatory Comm’n, 416 F.3d 1, 11 (D.C. Cir. 2005) (Williams, J.,
Commons-management problems often are even more difficult than Hardin’s essay might suggest, for many natural resources serve multiple and competing purposes. Hardin’s primary example—a pasture where herdsman graze their cattle—implies single-purpose management; he did not discuss whether some grass might need to be reserved for the pleasure of picnickers. Yet many resources are not amenable to such single purpose management. Rivers, for example, often support irrigation, hydropower, cities, fisheries, and recreation. National forests cannot be managed solely for timber production; they also provide wildlife habitat, sustain water quality, and allow people to enjoy the woods. Consequently, the challenges of managing common-access resources typically are multifaceted, with environmental values, consumptive uses, and non-consumptive uses all threatened with tragic outcomes.

In practice, the conceptual foundations for many natural resource regulatory systems derive from an uneasy and shifting balance between the multifaceted tragedy-of-the-commons theory and the traditional capture/anti-overregulation paradigm. Regulators typically rely upon legal environmental quality standards to mark the points at which tragedies of the commons are occurring, and are charged with taking sufficient action to avoid compromising backstop environmental protection requirements, even if those actions limit consumptive use. But, based on the belief that resource exploitation should not be limited unnecessarily—in other words, that government should regulate just enough to prevent illegal degradation, but no more—we often discourage anything that might be termed overregulation, subsidize consumption, and ask environmental managers to find exactly the balance point at which environmental protection requirements are met and human use is limited no more than necessary, assuming that such balance points can be readily discerned and that our consumption patterns will be stable so long as we stop just shy of the

87 Many of the resources described in Ostrom’s studies—waters used exclusively for agriculture, in-shore fisheries, and southern California aquifers—were also managed for single purposes. See OSTROM, supra note 77, at 58–178.

88 See, e.g., infra Part III (discussing multiple purposes served by California’s rivers).

89 See Multiple-Use Sustained-Yield Act of 1960, 16 U.S.C. § 528 (2000) (“It is the policy of the Congress that the national forests are established and shall be administered for outdoor recreation, range, timber, watershed, and wildlife and fish purposes.”).

90 E.g., Bennett v. Spear, 520 U.S. 154, 176–77 (1997) (describing the ESA as partly designed to prevent overregulation). The California Constitution exemplifies this approach, mandating that water be used as much as possible—a mandate some users interpret as requiring diversion and consumption—but no more than is reasonable. CAL CONST. art X, § 2.

91 See, e.g., infra Part III.C.2 (describing subsidies for water consumption); see sources cited in supra note 71.
brink. These balance points are often contested, with environmental advocates and resource consumers vigorously disputing where the brink lies, but far less often do we debate the wisdom or legality of consuming to that perceived brink. We seek, in short, to avoid tragedies of the commons but are often willing to fully allocate resources, and often strive to consume right up to the limits of the law.

B. Environmental Dynamism, Shared Resources, and a New Conceptual Approach

That standard conceptual framework predicts that resource managers face a daunting task, for they must resolve multifaceted tensions among consumers, and between consumption and protection. In practice, however, another dimension adds additional difficulty: resource managers also must address environmental dynamism and change.

Though notions of natural harmony, equilibrium, and, as naturalist George Perkins Marsh once stated, “almost unchanging permanence of form” once were standard among ecologists and still remain widespread among non-scientists—and although those views were still widely accepted when most of our major environmental laws were drafted—environmental scientists have long since discovered that many natural systems are neither stable nor predictable. The available amounts of many resources fluctuate chaotically. Weather varies and climates change, even without anthropogenic influences, and Katrina-like catastrophes, though infrequent, are not anomalous. Throughout much of the world, droughts and floods are the norm rather than the exception. Species migrate, often with human assistance, and invade new territories, sometimes with major consequences. Even absent human influence, wildlife populations can vary wildly, and slight alterations to an ecosystem can trigger major changes in abundance. Many ecosystems, including the Bay-Delta, depend upon change, and struggle to survive without some natural variability.

92 E.g., Fine & Owen, supra note 55, at 959 n.302.
94 BOTKIN, supra note 93, at 56–68 (discussing the historic dynamism of climate and corresponding ecosystem changes); DIAMOND, supra note 86, at 12–13 (identifying climate change as a major factor affecting the resilience of human societies).
96 See BOTKIN, supra note 93, at 27–71.
97 See, e.g., ENVISIONING FUTURES, supra note 1, at 156–57 (discussing the desirability of variation in Bay-Delta flows); Robert Glennon, Water Scarcity, Marketing, and Privatization, 83 TEX. L. REV. 1873, 1877 (2005) (“intermittent floods . . . scour sediment, nourish habitat, and impede the encroachment of invasive species”); Owen, supra note 37, at 753–54 (discussing negative impacts of forest fire suppression).
Incomplete knowledge exacerbates the effects of natural unpredictability. To provide one notorious example, Colorado River allocations for years were premised upon overestimates of flows, and water supply forecasts for much of the southwest thus were compromised not only by natural dynamism but also by human mistakes. Wildlife species often are misunderstood, and biologists sometimes have limited knowledge about how many individuals there are or where they live. Similar examples abound throughout environmental science; with many natural systems, we do not know what conditions might be normal, or whether or why changes are occurring. Limited knowledge increases the difficulty of predicting how much of a resource will reliably be available for human use, how stringent environmental protections must be, and where exactly the brink of unsustainability lies.

Because of that variability and uncertainty, most schemes for managing common-access resources cannot just define one permanent balance between resource consumption and environmental protection. Though our conventional approaches may demand such balance points, they can be difficult to find, and are likely to change with time. Our management schemes instead must select—whether intentionally or inadvertently—the adjustments to be made when conditions change, and the extent to which we are prepared for variability. If drought strikes or unexpected environmental needs occur, for example, rules help decide whether water will remain in our rivers or lakes, or whether pumping will continue at environmental expense. Similarly, during periods of abundance, or where environmental limits are not understood, rules help decide whether the resource will be consumed to the maximum extent possible, creating the potential for sudden and drastic cutbacks when times change, or whether consumption limits will reserve a margin of safety. The rigidity of our rules also influences preparedness; if our rules create de jure or de facto inflexibility, adjustment to change can be significantly more difficult. And when catastrophes strike—when natural disasters damage our supply infrastructure, for example, drought sets in, or protected species' populations plummet—our schemes for managing consumption and protection will likely have played important roles in determining whether we are prepared, or whether we must attempt costly changes in course.

98 See, e.g., Freeman & Farber, supra note 9, at 889 (“[T]he dearth of knowledge about virtually every aspect of the Bay-Delta system is striking.”).
100 See, e.g., Owen, supra note 37, at 778–79 (describing limited understanding of the California spotted owl).
101 See, e.g., Mike Taughner, Delta Fish Crash Remains a Mystery, CONTRA COSTA TIMES (Dec. 28, 2005), http://www.contracostatimes.com/specialreports/ci_543763 (last visted Nov. 18, 2007).
102 See generally Rieke, supra note 10 (describing competition over water supplies during California’s 1987–92 drought, and the role environmental laws played in determining allocation of dry year flows).
Rather than merely balancing consumption and preservation, resource managers therefore must often address tri-polar tensions between resource consumption, environmental protection, and the reliability of resource allocations. The conceptual diagram below graphically depicts this tension. The bottom left corner represents the amount of a resource devoted to environmental protection. The top corner represents reliability. The bottom right corner represents the amount of consumption. A management scheme for allocating a scarce resource may be plotted by placing it closer to the values it favors and further from those it disfavors. Moving a management scheme closer to any one corner, however, necessarily means moving it further from at least one, if not both, of the others. Maximizing reliability, for example, can require reducing commitments to both protection and consumption, and leaving an increased amount of a resource unallocated. The figure thus reflects the common reality that protection, consumption, and reliability can be mutually exclusive.

This diagram obviously is highly schematic. Protection and consumption are broad terms describing things not always amenable to

103 In contrast, a traditional conceptual model could be represented by a two-dimensional continuum between consumption and protection, and the task of resource managers would be simply to find an optimum point along that line.

104 Consumption is not necessarily the same as economic benefit; while resource consumption is usually beneficial to someone, it often causes negative collateral effects, and sometimes the aggregate negative consequences of those collateral effects far outweigh the aggregate benefits. See generally PEARCE, supra note 34, at 111 (describing the negative side-effects of many water use schemes).

105 Management schemes for wilderness areas, for example, plot close to the endpoint of pure environmental protection; preservation is paramount, resource consumption is limited, and the reliability of consumption is basically irrelevant. See Wilderness Act, 16 U.S.C. § 1133(b) (2000) (prohibiting all but a limited set of uses of wilderness areas). Once a species approaches extinction, the Endangered Species Act plots similarly. See Tenn. Valley Auth. v. Hill, 437 U.S. 153, 173–74 (1978) (“Congress intended endangered species to be afforded the highest of priorities.”). A prior appropriation water-allocation system unfettered by environmental constraints would plot closer to the lower right corner. Such a legal system prioritizes consumption, but reliability is of secondary importance for all but the most senior users, and environmental protection is irrelevant. See discussion infra Part III.C.1 (describing prior appropriation).
clear definition, let alone measurement or quantification. Reliability, as defined in this Article, is a clearer concept, but still is difficult to measure or predict. Additionally, though the diagram might suggest unity among environmental protections or consumptive uses, tensions commonly exist within each of the endpoints. Conditions favoring one wildlife species can harm another, and consumptive uses can also conflict. Water users lower in a river system may share more interests with environmentalists devoted to preserving in-stream flows, for example, than with upstream appropriators, and fishermen and irrigators are often at odds.

This conceptual framework also is by no means universally applicable or fully descriptive of resource management controversies. Its premise—that reliability, allocations to environmental protection, and resource consumption are inexorably in tension—is rarely entirely true, and its applicability can vary over time. Some resources are not that scarce. Others are, but only some of the time or in some locations, leaving opportunities to increase consumption without any significant threat of degradation or unreliability. Even where such scarcity is persistent, many actions—for example, introducing technologies that augment resource availability, or altering the place or method of resource extraction—can simultaneously improve consumption, protection, and reliability. Environmental protection occurs in multiple ways, many of which do not conflict with resource consumption, and much of the work of environmental managers focuses on finding such win-win solutions. Environmental protection also often creates reliability benefits and can support consumption; without protection, resources can entirely disappear.

For all of these reasons, this conceptual approach provides neither a universal explanation for environmental dilemmas nor an algorithmic tool capable of spitting out fully-formed solutions. But so long as we respect these caveats, it can be useful. The tensions it describes are common, at least where resources are scarce; taking more water from a depleted river or

106 See supra note 4.
107 See ENVISIONING FUTURES, supra note 1, at 83 (“[I]n the present Delta, the delta smelt and Chinook salmon have different, and at times opposing, needs.”).
109 The CALFED ROD, for example, was partly premised on the hopeful assumption that such conditions existed. See infra notes 357–58 and accompanying text.
110 For example, desalination might someday allow increased consumption, improved reliability, and increased environmental protection of California’s freshwater resources. See 2 CALIFORNIA DEPT OF WATER RES., CALIFORNIA WATER PLAN UPDATE 2005, at 6-3 (2005) [hereinafter 2005 WATER PLAN] (discussing desalination’s benefits and potential problems).
111 See, e.g., ENVISIONING FUTURES, supra note 1, at 171–72 (describing infrastructure changes that might facilitate consumption and improve environmental performance).
112 See, e.g., Blumm & Ritchie, supra note 65, at 691–92 (describing the demise of the passenger pigeon); Brax, supra note 36, at 100–02 (observing that marine sanctuaries can boost fishing by providing refuges from which fish can repopulate surrounding areas).
more board-feet from a heavily-logged forest, for example, almost necessarily creates environmental strains, and those strains, by increasing threats of non-compliance with environmental laws, can threaten the reliability of consumptive use.114 Even a generalized conceptual framework can help environmental decision makers understand and resolve those tensions. We routinely use simplified paradigms or rely on "pre-analytic worldviews"—traditional economics' treatment of consumption as an inherent good, a desire to avoid overregulation, the classic tragedy-of-the-commons theory, for example—to understand environmental controversies, evaluate the urgency of problems, and develop solutions, just as in other legal areas we rely upon simple concepts to organize our understanding of problems and inform or exclude possible remedies.115 Those conceptual frameworks ought to address tensions between consumption, protection, and reliability, for the stability of resource allocation patterns tends to be ecologically, economically, and politically important.116 But many traditional environmental paradigms address those tensions obliquely, if at all,117 and thus encourage fixes that prove insufficiently robust or demand rapid adaptation when environmental conditions change. This conceptual approach, by contrast, provides an improved basis for evaluating and explaining whether solutions will be durable or are built only for best-case scenarios.

And those explanations can be politically and legally important. Although existing legal frameworks and economic incentives often encourage policymakers to allow or even promote consumption right up to perceived brinks of legal non-compliance, rarely do laws mandate such an approach.118 Instead, agencies generally possess the legal discretion, though they may not realize it,119 to plan for margins of error—so long as they are able to offer rational explanations for imposing such restraint. Similarly, while political pressure for consumption may be intense, it is not always

114 See generally DAVID QUAMMEN, THE SONG OF THE DODO (1996) (describing ecological research connecting habitat reductions to extinction).

115 See Kysar, supra note 67, at 678 (arguing that flawed conceptual worldviews encourage us to understate the urgency of environmental problems). A classic example of a simplified organizing principle is the legal concept of "separation of powers." The concept is general, but we routinely use it to understand constitutional dilemmas and narrow the range of permissible resolutions. Such general concepts are particularly important to non-expert decision makers struggling to understand complex problems—a description often applicable to the judges and political leaders or appointees who oversee environmental management, yet may know little of environmental science. Without such simplified heuristics, they may not be able to organize the data, claims, and narratives before them into any sort of coherent understanding.

116 While variability may promote the vitality of healthy ecosystems, it can be devastating to already-degraded systems. See, e.g., QUAMMEN, supra note 114, at 293–96 (describing how natural variability and scarcity can combine to cause extinctions).

117 A traditional capture approach, which does not acknowledge limits, obviously also does not acknowledge the unreliability that follows from exceeding those limits, and an approach that perceives consumption/protection balance points as determinable and stable also provides little reason to consider unreliability.

118 See, e.g., infra Part III.C (describing the legal systems for managing California water).

119 See Fine & Owen, supra note 55, at 959 & n.302 (describing California air quality regulators' perception that they could not legally impose a margin of safety in their regulations).
immutable. The importance of long-term reliability is something resource-consuming businesses can appreciate, and agencies generally have institutional incentives toward developing lasting solutions, for failure can be professionally embarrassing and personally disappointing. Legal frameworks also are subject to change, and legislators often can decide whether to enact or perpetuate laws encouraging scarce resource consumption. A traditional conceptual model for resource management provides no argument against such policies or laws; to a judge or resource consumer believing that environmental limits are fixed and determinable and that consumption up to those limits poses no threat, or that adaptive policies can address any unexpected developments that arise, any regulatory reluctance to allow consumption right up to those limits might seem capricious. A reliability-based approach, however, provides the theoretical foundations for environmental managers to develop and justify solutions that reserve margins of error.

To ground this discussion in practical experience, the next sections turn from theory to exposition, and discuss ongoing efforts to resolve one of the nation’s most important and intractable resource allocation crises. That discussion, though by no means comprehensive, is detailed; the CALFED controversy involves a complex and dynamic ecosystem, rich history, convoluted politics, and an intricate and somewhat conflicting web of laws, and although this discussion focuses on just some aspects—albeit important ones—of CALFED’s troubles, those aspects are grounded in a complex context. Yet underlying all that detail lies the story of a typical environmental dilemma, and its faltering resolution illustrates the importance of developing better conceptual approaches to environmental management and law.

III. CREATING THE TENSIONS: CONVENTIONAL FRAMEWORKS AND CALIFORNIA’S WATERS

For decades, allocating California’s waters has caused controversy. The state’s waters support diverse, economically and ecologically important, and legally protected ecosystems, but agricultural and municipal water needs are

120 Of course, while resource users may embrace this principle in the abstract, they may be reluctant to acknowledge the need for such margins for error in particular instances, or even to agree that non-compliance with environmental mandates is a problem worth avoiding. See generally Thompson, Tragically Difficult, supra note 72 (analyzing resource users’ common resistance to protection of resources upon which they depend).

121 The premise of this statement, based largely on my own interactions with agency staff, is that many agency personnel are motivated not by (or not just by) desires to serve powerful stakeholders, aggrandize power, or minimize workload, as various legal theories of agency behavior might suggest, but instead by a personal commitment to doing their jobs well. Different employees may disagree about what that means—a Bureau of Reclamation staffer might aspire to deliver water despite environmental complications, while a Fish and Wildlife Service staffer might take pride in stopping environmentally destructive deliveries—but I think most agency staff are at least partly motivated by a desire to serve what they perceive to be the public good.
enormous, and total demands often exceed supply.122 Those competing demands create tensions, and litigious water wars, often involving the Bay-Delta, as distinctively Californian as Hollywood or the Golden Gate Bridge.123

Though the conflicts are complex, the conceptual model described above summarizes the competing goals Californians hold for their water and the challenges they face in achieving those goals. Water in California is a regulated commons, with widespread access and limited overall quantities. Californians generally wish to consume lots of water, want reliable access to that water, and expect protection of the state’s water-dependent natural systems, even as their consumption places those systems under strain. Further complicating matters, the amount of available water varies with changing precipitation patterns and evolving human and environmental needs. Consequently, managers allocating California’s waters must determine not only how much protection to provide and how much consumption to allow, but also how reliable that consumption will be when the weather turns dry. As discussed in detail in the following sections, California’s water management schemes have often addressed those challenges in dysfunctional ways.

\textit{A. The Physical Environment}

To someone spending a winter in Eureka, in the northwest corner of California, Wallace Stegner’s description of California as a “semi-desert with a desert heart” might seem odd.124 Much of northern California receives extraordinary amounts of rain and snow. Areas of northwestern California’s mountains are doused by 140 inches of precipitation in an average year.125 Those storms then migrate eastward, piling up Sierra Nevada snowpacks that fill rivers through spring and summer.126 Even some of California’s urban areas would not appear, from a brief glance at an annual precipitation map, to be dry. San Francisco, for example, receives an annual average of twenty to twenty-five inches of precipitation.127

\begin{footnotesize}
\begin{enumerate}
\setcounter{enumi}{122}
\item See generally 1 2005 \textit{WATER PLAN}, supra note 110, at 3-8 to 3-9, (describing the allocation of California’s water); \textsc{David Carle}, \textsc{Introduction to Water in California} 3–4 (Phyllis M. Faber & Bruce M. Pavlik eds., 2004); \textsc{Hundley}, \textit{supra} note 10.
\item See cases cited supra note 7.
\item \textsc{Stegner}, supra note 72, at 60 (quoting Walter Webb’s description of the American west); \textsc{Carle, supra} note 122 (explaining that Eureka’s winter rainfall typically exceeds 50 inches); \textit{see also} Cal. Dept’\textsc{t Water Res., Rivers and Water Projects Maps}, http://www.water.ca.gov/maps/ (last visited Nov. 17, 2007) (containing maps of California’s natural and manmade water systems); U.S. Geological Survey, \textit{Average Annual Precipitation in California}, http://education.usgs.gov/california/maps/california_precipitation1.htm (last visited Nov. 17, 2007) (providing a map of California’s average annual precipitation).
\item U.S. Dept’\textsc{t of Agric., Natural Res. Conservation Serv., supra} note 125; \textsc{Carle, supra} note 122, at 3–11 (describing California rainfall patterns); 2 2005 \textit{WATER PLAN}, \textit{supra} note 110, at 3-1.
\item See U.S. Dept’\textsc{t of Agric., National Res. Conservation Serv., supra} note 125.
\end{enumerate}
\end{footnotesize}
Rich ecosystems evolved in dependence upon that precipitation. Prior to the dams of the twentieth century, rivers swollen with Sierra Nevada snowmelt flooded much of the Central Valley each spring, creating habitat for millions of waterfowl.128 Hundreds of thousands of salmon spawned in those same rivers.129 The rivers met saltwater in the Bay-Delta, which then was an enormous and wildlife-filled maze of channels and marshlands.130 In the southern San Joaquin Valley, Tulare Lake, formed by the discharge of the Tule, Kaweah, and Kings rivers, lay at the heart of another vast and explosively fecund wetland system.131 Even in the deserts of southern California, runoff pooled in playas, creating oases amid the dry heat.132

Precipitation maps, however, and the historic extent of California's wetlands are deceptive.133 In summer, when temperatures are hottest, California gets little rain. Though much of the Central Valley floods each spring, by May unwatered areas turn “dead and dry and crisp, as if every plant had been roasted in an oven.”134 Only isolated thunderstorms water the Sierra Nevada. Even the rain forests of the northwest coast rely on fog and stored groundwater for summer sustenance.135 Further south, the aridity isn’t just seasonal. Many of California’s most populated areas—the Los Angeles Basin, San Diego, and their suburbs—are near-deserts, with only limited and episodic winter rainfall.136

California’s natural environment is dynamic. In average years, California produces 71 million acre-feet137 of runoff, but the variations are immense.138 In 1983, for example, heavy rains fed 135 million acre-feet of runoff, while in 1977 the statewide total was 15 million acre-feet.139

128 CARLE, supra note 122, at 38–39 (showing the extent of California’s historic wetlands); LITTLE HOOVER COMM’N, supra note 5, at 4 (“overhead skies blackened with migrating birds”); Harrison P. Dunning, Confronting the Legacy of Irrigated Agriculture in the West: The Case of the Central Valley Project, 23 ENVTL. L. 943, 945 (1993) (describing historic seasonal wetlands in the Central Valley).
129 See Natural Res. Def. Council v. Patterson, 333 F. Supp. 2d 906, 909 (E.D. Cal. 2004) (describing the historic abundance of San Joaquin River salmon); LITTLE HOOVER COMM’N, supra note 5, at 4 (describing “reports of salmon runs so dense that rivers looked like pavement”) (internal quotations omitted).
130 See ENVISIONING FUTURES, supra note 1, at 17–18.
131 Mark Arax & Rick Wartzman, The King of California 48–49 (2003); see CARLE, supra note 122, at 71 (quoting James Carson’s 1852 description of Tulare Lake).
132 See HUNDLEY, supra note 10, at 6 (showing historic wetland locations).
134 John Muir, My First Summer in the Sierra 3 (1911).
135 CARLE, supra note 122, at 52–53.
136 See U.S. Dep’t of Agric., Natural Res. Conservation Serv., supra note 125 (describing average annual precipitation in California); CARLE, supra note 122, at 78 (“[T]he west coast’s most populated, most urbanized region...receives less than two percent of the state’s precipitation.”).
137 An acre-foot of water is an amount sufficient to flood one acre of land one foot deep. WEBSTER’S THIRD NEW INT’L DICTIONARY UNABRIDGED 19 (16th ed. 1986).
138 See CARLE, supra note 122, at 23–31.
139 Id. at 23.
Catastrophic floods have occurred throughout California's history. The floods of 1997 washed away campgrounds in Yosemite National Park and temporarily resurrected Tulare Lake. More recently, Governor Schwarzenegger warned of the potential for New Orleans-style disasters in the Bay-Delta region and sought federal assistance to repair two dozen levees. Dry years also are extreme, and often occur in succession; California's 1987–1992 drought was the latest episode in a longstanding pattern. Tree ring studies indicate that California, like much of the southwest, has experienced dry periods far longer than those of the past century, and sooner or later such extended droughts will recur.

California’s natural reservoir systems somewhat mitigate this climatic variability. Mountain snowpacks usually last well into summer, ensuring that in most years runoff continues long after precipitation ceases. Some precipitation also infiltrates the subsurface, remaining in aquifers that replenish streams and supply wells as surface runoff diminishes. But each of these reservoir systems has its limitations. California’s snowpacks are variable and have been declining, and because almost all of California's snow melts each year, snowpack reserves primarily mitigate intra-annual variability. Groundwater reserves do last from year to year, but many of the state’s aquifers are already depleted, and mining overdrawn aquifers can cause subsidence of the ground surface, raise pumping costs, and deplete streams by depriving them of recharge. Consequently, irregular surface flows remain a fact of life in California.

Other sources of natural variability similarly affect California's hydrologic systems. Because many aquatic species are legally protected, fluctuations in fish and wildlife populations can have direct consequences for water supplies. Earthquakes have an enormous potential to disrupt California's water system, potentially limiting water deliveries to southern California or the San Francisco Bay area. Human activities create

140 Id. at 29–30; HUNDLEY, supra note 10, at 79–84, 236–37; Rapanos v. United States, 126 U.S. 2208, 2242 (2006) (Kennedy, J., concurring) (describing the wildly variable hydrology of the Los Angeles River).

141 Andy Furillo, Bush Facing Levee Pressure, SACRAMENTO BEE, Apr. 20, 2006, at A1; see also CARLE, supra note 122, at 29–30.

142 CARLE, supra note 122, at 23–25; Hydrologic Classification Indices, supra note 17 (showing historic variability); 1 2005 WATER PLAN, supra note 110, at 4-27.

144 See 1 2005 WATER PLAN, supra note 110, at 3-9 (illustrating California's water cycle).

145 See id., at 3-1, 4-640; Sax, supra note 71, at 270 ("[groundwater] functions as one form of insulation against both drought and increasing regulation").

147 See 1 2005 WATER PLAN, supra note 110, at 3-14 (estimating statewide overdraft at between one and two million acre-feet annually).

148 See Mike Lee, Weak Levees Threaten the State’s Economy and S.D. Water Supply, The SAN DIEGO UNION-TRIB., Feb. 5, 2006; 1 2005 WATER PLAN, supra note 110, at 4-29 to 4-30; see also
additional dynamism. New land use developments, upstream forestry practices, pesticide applications, and species introductions all can further alter the state’s aquatic ecosystems, affecting both the amount of water in rivers and environmental needs for those flows.

Perhaps the most significant source of variability is anthropogenic climate change.149 Simulation models predict global warming will drastically reduce Sierra snowpacks, decimating the capacity of California’s primary freshwater storage system.150 Even if overall runoff remains steady, that runoff is likely to occur in larger pulses earlier in the year; floods will be larger and when California needs water the most, less will be available.151 Rising sea levels will further complicate water management. Bay-Delta water users already struggle with saltwater approaching drinking-water intakes and below-sea-level lands present huge flooding threats, and those problems will grow as polar icecaps melt.152 Additionally, climate change may increase the vulnerability of many water-dependant species by raising water temperatures and relocating climate zones uphill or further north.

Because of all this dynamism, California’s waters do not conform to George Perkins Marsh’s idealized description of nature’s “almost unchanging permanence of form.”153 Even without human influence, aquatic environments fluctuated chaotically, and human activity, though sometimes intended to impose stability, has also introduced new sources of dynamism.

B. Engineering Systems and Environmental Impacts

As California grew from a sparsely settled frontier into the nation’s most populous state, its precipitation patterns created demands for infrastructure that could store and move water, and Californians repeatedly turned to water supply engineers to keep floods at bay, make deserts bloom, and help cities grow.154 The result was one of the most extraordinary plumbing systems in the world.155

150 See, e.g., Hayhoe et al., supra note 146, at 12425–26; 1 2005 Water Plan, supra note 110, at 4-33 to 4-34.

151 Id. at 3-15 to 3-16, 4-35; see Maurice Roos, Accounting for Climate Change, in 4 2005 Water Plan, supra note 110, at 4-622 (noting that rising air temperatures could increase agricultural water requirements and warm rivers, with detrimental impacts on salmon and other cold-water fish).

152 Botkin, supra note 93, at 54 (quoting George Perkins Marsh, Man and Nature (1864)).

153 The engineers were almost always employed by some level of government. Because of capital-intensive requirements and low returns, major private irrigation projects rarely succeeded. See W. M. Hanemann, The Economic Conception of Water, in Water Crisis: Myth or Reality 61, 74–76 (Peter P. Rogers et al. eds., 2006); see generally Reisner, supra note 10 (criticizing the history of government-sponsored water development throughout the American west).

Cities and local irrigation districts initially developed their own infrastructure, but by the middle of the twentieth century, perceived engineering needs had outgrown the capacity of local governments to respond. The state and federal governments then took the lead, and turned to the Bay-Delta watershed as their primary source of water. In the 1930s, the United States Bureau of Reclamation began developing the Central Valley Project (CVP), a massive project that would ultimately tap the Trinity, Sacramento, and San Joaquin watersheds and provide millions of acre-feet of agricultural water supply, much of it pumped from the southern edge of the Bay-Delta. In the 1960s, DWR built a parallel project, the State Water Project (SWP), which relies primarily on dams on the northern Sierra Nevada’s Feather River and pumps in the southern Bay-Delta. The SWP now delivers millions of acre-feet of water to southern California, with municipal suppliers in the Los Angeles and San Diego areas and Kern County agribusinesses taking the lion’s share. By the 1980s, water projects had dammed all but one of the Central Valley’s rivers, and only a few major watersheds, mostly in the coast ranges of northwestern California, remained largely untapped.

These water projects shaped modern California, partly by providing enormous benefits. California’s reservoirs offer both flood and drought protection, mitigating some of the effects of dynamic precipitation patterns. Their waters irrigate some of the most productive agricultural areas in the world. The Los Angeles, San Francisco, and San Diego areas have grown into bustling urban regions and economic powerhouses. From California’s reservoirs; CVP and State Water Project (SWP)).

Referred to hereinafter as Reclamation.

A diversion on the Trinity River sends water into the Sacramento River. See Westlands Water Dist. v. Dep’t of Interior, 376 F.3d 853, 860–63 (9th Cir. 2004).

See CARLE, supra note 122, at 127–28 (showing SWP allocations).

See HUNDLEY, supra note 10, at 312–13.

See 4 2005 WATER PLAN, supra note 110, at 4-646 to 4-650 (showing capacity and uses of California’s reservoirs); CONGRESSIONAL BUDGET OFFICE, supra note 53, at 49 (“Large water projects provide some degree of protection against those fluctuations.”).

See 1 2005 WATER PLAN, supra note 110, at 3-4.

CARLE, supra note 122, at 88 (“enormous population growth of Southern California and the San Francisco Bay Area was made possible by damming distant rivers”); HANEMANN, supra
San Joaquin Valley farmers to San Francisco restaurateurs to Silicon Valley high-tech manufacturers, almost all Californians now depend, on a daily basis, upon water procured from someplace far away.\footnote{154, at 84–87 (concluding that water supply probably is a necessary though not sufficient condition for economic growth).}

The costs also were immense.\footnote{167 See REISSNER, supra note 10, at 333 (“The whole state thrives, even survives, by moving water from where it is, and presumably isn’t needed, to where it isn’t, and presumably is needed.”).} The projects were expensive both to construct and to operate, and the general public bore much of the financial burden and continues to provide multimillion dollar annual subsidies to some project operations.\footnote{168 See, e.g., CONGRESSIONAL BUDGET OFFICE, supra note 53, at summary (observing that Reclamation’s “allocation often comes at the expense of urban, environmental, and Native American water users, and at a large cost to taxpayers”).} The environmental consequences were drastic.\footnote{169 See id. at 13 (describing CVP subsidies); REISSNER, supra note 10, at 334 (describing the SWP as “one of the country’s foremost examples of socialism for the rich”), 347–55 (describing the funding for the SWP); Envt’l Working Group, California Water Subsidies, http://archive.ewg.org/reports/watersubsidies/part2.php (last visited Nov. 18, 2007) (“[D]epend on how the market value of the water is defined, CVP farmers are receiving between $60 million and $416 million in water subsidies each year.” The CVP’s water recipients argue that the subsidies are much smaller.); U.S. GEN. ACCOUNTING OFFICE, WATER SUBSIDIES: BASIC CHANGES NEEDED TO AVOID ABUSE OF THE 960-ACRE LIMIT 17–18 (1989), available at http://archive.gao.gov/t2pbat12/139927.pdf (claiming that evasion of acreage limitations was increasing federal subsidies); Peterson v. U.S. Dep’t of Interior, 899 F.2d 799, 805–06 (9th Cir. 1990) (describing average subsidies of $1,850 (in 1990 dollars) per acre).} Tulare Lake—once larger than Lake Tahoe—no longer exists.\footnote{170 See Hunley, supra note 10, at 951–54.} Many stretches of California’s rivers, including areas famous for both scenic beauty and recreational value, now lie submerged beneath reservoirs.\footnote{171 See, e.g., CONGRESSIONAL BUDGET OFFICE, supra note 53, at summary (observing that Reclamation’s “allocation often comes at the expense of urban, environmental, and Native American water users, and at a large cost to taxpayers”).} Others—most notably the San Joaquin River below Friant Dam—for long periods received none of their historic flows.\footnote{172 See CARLE, supra note 122, at 71–72 (describing the loss of Tulare and Buena Vista Lakes).} Those environmental impacts in turn have had major economic impacts, including, despite expensive hatcheries, the near extirpation of many commercial, recreational, and tribal fisheries.\footnote{173 See, e.g., CARLE, supra note 122, at 71 (“All of those rivers [in the Tulare Lake basin] have stretches below the foothills that are now completely dewatered.”).}

Because of increasing public awareness of those costs, the era of grand infrastructure construction eventually came to a halt.\footnote{174 See, e.g., Hoopa Valley Indian Tribe v. Ryan, 415 F.3d 986, 987–88 (9th Cir. 2005) (describing harm to the Trinity River’s salmon fishery); CARLE, supra note 122, at 138–46.} The State Water Project never was completed. Before dams could be constructed on several of California’s northwestern rivers, first the state government and then Congress designated them as wild and scenic.\footnote{175 See HUNLEY, supra note 10, at 302–64; 1 2005 WATER PLAN, supra note 110, at 3–7 (“Rising costs and the enactment of state and federal environmental legislation have resulted in few major development projects being built since 1980.”).} Plans to construct a
“peripheral canal,” which would have connected the Sacramento River directly to southern California’s aqueducts, were rejected by the state’s voters, many of whom perceived the canal as a southern California water grab.\cite{177} In the past twenty-five years, new dam construction has been limited and water supply development has occurred primarily through increased conservation, changed management of existing supplies, and increased extraction from the existing infrastructural system.\cite{178}

Partly because development ceased, California’s major water projects deliver less water than their proponents had hoped. The State Water Project, originally intended to deliver approximately 4.2 million acre-feet per year, has averaged only approximately 2.3 million acre-feet.\cite{179} The Central Valley Project has come closer to its proponents’ expectations, but in drought years some CVP users also have faced major cutbacks.\cite{180} Nevertheless, water deliveries continued to grow even after dam construction largely stopped, increasing even through the first years of California’s 1987–92 drought.\cite{181} Though deliveries then dropped, following agreements and legislation designed to reallocate some water to in-stream flows, Bay-Delta exports then climbed again, reaching all-time highs in the years preceding the 2007 pump shutdown.\cite{182}

The growth in consumption has extended the enormous environmental impacts of water project operations past the development era.\cite{183} Water quality and quantity problems are chronic in many of California’s rivers; in summer, significant stretches of many rivers have no water at all.\cite{184}
Replacement of the San Joaquin River’s freshwater by agricultural return flows has changed water quality so drastically that the river, though arising in Sierra Nevada wilderness areas, is known as the “lower colon” of California.185 The Bay-Delta also has been severely changed, and now is managed largely to convey freshwater to in-Delta water users and the south Delta pumps. Partly because of that pumping and the altered flow regime, many of the fish species that live in or migrate through the Bay-Delta face extinction, and water quality violations are chronic.186

Despite this scarcity and degradation, California’s recent water management history also contains many positive stories. In most years, most Californians do have enough water.187 Californians are becoming more creative in managing, conserving, and reusing water supplies, and both urban and agricultural conservation could feasibly achieve great reductions in water use.188 In some reports, DWR has predicted that overall water use could decrease, even as population grows, through aggressive conservation and demand management.189 Some non-governmental studies conclude the conservation potential is much greater than DWR’s estimates.190 Agricultural land retirement, though politically controversial, also holds enormous potential to reduce water demand, and desalination may become more realistic.191 Altering economic incentives by removing subsidies, requiring

185 See ARLE Leick et al., supra note 122, at 108.

186 See generally HANAK, supra note 178 (explaining how conservation, management, and reuse may be able to meet California’s future water demand); 1 2005 WATER PLAN, supra note 110, at 3-4 (noting that urban water use has remained steady since the mid-1990s even as urban populations have grown), at 4-25 (noting trends of increased agricultural efficiency and decreased land use), at 3-3 (noting that California meets most of its agricultural, municipal, and industrial water management objectives in most years). But see 2 id., at 3-8 (“In dry years, California’s water supply is inadequate to meet its current level of use . . . “).

187 See supra note 10, at 8 (“today the single greatest threat to the estuary is direct alteration and diminution of natural stream flows”); Hundley, supra note 10, at 398-99 (describing the Bay-Delta’s ills); 1 2005 WATER PLAN, supra note 110, at 3-25.

188 See supra note 110, at 3-3 (describing increased use of, and interest in, desalination). For a detailed discussion of desalination, see HEATHER COOLEY ET AL., DESALINATION, WITH A GRAIN OF SALT: A CALIFORNIA
beneficiaries to fully pay for storage and delivery infrastructure and for environmental mitigation, and charging user fees that bring water costs somewhat closer to market values all could similarly reduce demand. Environmental restoration also is an increasing theme of California water management, albeit outside the Bay-Delta; in recent years, Californians have taken significant steps toward restoring Mono Lake and the Trinity, Owens, and San Joaquin Rivers.

Nevertheless, in many ways California water management remains a near zero-sum challenge of managing a variable and often scarce commons. Millions of people want to use California's water, and thousands of competing institutions attempt to supply not only those needs but also anticipated future demand increases. Though in most years people get the water they need, aggregate demands speak for most water available even in good years, and in dry years shortages are likely to be endemic. With environmental systems degraded and ecological needs partly unmet, intermittent shortage is now a fact of life. Consequently, California's water managers face the constant challenge of balancing consumption and protection of a scarce, valuable, and variably-available resource.

C. The Legal Regime and Its Inherent Tensions

The legal system for managing California's water is as complex as the plumbing systems it governs and the dynamic ecological systems it protects. Both the federal and state governments have extensive and intertwined systems of constitutional, statutory, and common law applicable to water resources management. Those laws complement an intricate contractual regime, and the statutes are implemented and contracts administered by a

192 See 2005 WATER PLAN, supra note 110, at 8-2 to 8-3 (describing benefits from economic incentives), 3-4 (recommending economic incentive measures); Terry L. Anderson & Pamela S. Snyder, Priming the Invisible Pump, PERC POLY SERIES (1997), available at http://www.perc.org/perc.php?id=746 (describing how economic incentives could induce farmers to switch to higher-value crops and use less water).

195 See 1 2005 WATER PLAN, supra note 110, at 3-18 to 3-26 (summarizing challenges faced by California's hydrologic regions).

diverse set of governmental institutions—many of which act at cross-purposes.197 The entire system contains uneasy juxtapositions borne of diverging political agendas and varied historical roots. The frontier impulse to conquer the wilderness, the New Deal-era’s infatuation with massive government sponsored infrastructure, conservative predilections to use government for the benefit of large business interests, and modern preferences for environmental protection all have left lasting imprints on California water law, and those competing influences have helped create a system plagued by internal tensions.198 Many elements of that legal system encourage aggressive consumption; yet mandates for baseline levels of environmental protection are stringent and inflexible, at least in theory, and reliability, though valuable to both human consumers and environmental systems, enjoys little protection. The system thus epitomizes the traditional management approach described in Part II; to the extent its conflicting requirements and incentives can be resolved into a coherent whole, it mandates backstop protections yet promotes consumption right up to those legal limits.

\textit{1. The Appropriate Rights System}

The legal system’s incentives toward consumption derive partly from the traditional doctrinal rules of western water law. Most199 surface200 water allocation in California is governed, at least in theory,201 by prior appropriation law.202 Under that system, a user establishes a surface water

\begin{footnotesize}
\begin{itemize}
\item 197 These institutions include regulatory agencies like EPA, the California State Water Resources Control Board, and the Fish and Wildlife Service, among others, and resource management agencies like Reclamation and DWR, which build and manage water projects without exercising regulatory authority.
\item 198 See \textsc{Hundley}, supra note 10 (describing the influences of various political movements upon California water development).
\item 199 Not all California surface water rights are appropriative. Many riparian rights remain, Native Americans hold sovereign rights, the federal government can reserve rights, and a few cities possess pueblo rights held over from California’s time as Mexican territory. See, e.g., Lux \textit{v.} Haggin, 69 Cal. 255 (1886) (recognizing riparian rights); City of L.A. \textit{v.} City of San Fernando, 14 Cal. 3d 199 (1975) (sustaining Los Angeles’ pueblo rights); \textit{In re Water of Hallett Creek Stream Sys.}, 44 Cal. 3d 448, 455 n.3 (1988) (describing federal reserved rights); Escondido Mut. Water Co. \textit{v.} Fed. Energy Regulatory Comm., 692 F.2d 1223, 1235–37 (9th Cir. 1982) (acknowledging reserved water rights held by several southern California tribes). However, because most California water allocation occurs, at least on paper, through the appropriative system, the primary focus of this Article is appropriative rights.
\item 200 Groundwater allocations in California are subject to a separate and far less comprehensive system of regulation, a circumstance which has received extensive criticism. See \textsc{Sax et al.}, supra note 71, at 98.
\item 201 Because of limited monitoring of withdrawals and enforcement of violations, some scholars have argued that in practice California’s system really is closer to riparianism, and that legal rules bear only loose correspondence to actual practice. See \textsc{Hanemann}, supra note 154, at 72 n.23; \textsc{see also} Benson, supra note 58, at 886–88 (arguing that other states prioritize protecting established uses over enforcing prior appropriation doctrine’s rules).
\item 202 For concise basic descriptions of prior appropriation law, see \textsc{Sax et al.}, supra note 10, at 98–99 or Benson, supra note 58, at 886–87.
\end{itemize}
\end{footnotesize}
right by obtaining a permit from the State Water Resources Control Board, removing water from a stream, and putting it to reasonable and beneficial use. The scope of a right depends upon the actual extent of that reasonable use, and an appropriator cannot, in theory, possess a right to more water than he actually needs and uses. The priority of the right—the extent to which it subordinates, or is subordinate to, the rights of other users of the same water source—is a function of timing; the first person to perfect a water right becomes senior to others. She then may use her entire right in dry years, even if no water will be left for other junior appropriators. So long as she continues to reasonably exercise that right, she will not lose it.

The appropriative rights system does not preclude full allocation of a river, and instead can encourage aggressive water use. The need to withdraw water from a stream to establish a right and the greater priority of earlier-established rights create incentives to pump water out of rivers as soon as possible. Once a right is established, the threat of forfeiture discourages conservation; water saved, under traditional prior appropriation doctrine, is water lost. No payment for the actual water is required; instead, it essentially is free for the taking so long as a permit exists. Consequently, many rivers are so fully appropriated that paper allocations exceed actual flow, and a fair number of California’s rivers unnaturally run dry. These incentives have led to widespread criticism that prior appropriation doctrine

205 See United States v. State Water Res. Control Bd., 182 Cal. App. 3d at 105 (“This ‘rule of reasonable use’ is now the cardinal principle of California’s water law.”) (emphasis in original).

206 Id. (“[A]ppropriators are limited by priorities in time; their rights are subordinate to the rights of preexisting holders.”).

207 Thomas, supra note 10, at 13–14. (“[T]he rights holder is subject to forfeiture for not using water, a practice generally thought to be socially responsible and usually called ‘conservation.’”) (emphasis in original).

210 See HANEMANN, supra note 154, at 76–78 (“[T]he prices which most users pay for water reflect, at best, its physically supply cost and not its scarcity value . . . there is no charge for the water per se.”). Thomas, supra note 10, at 13 (“The appropriator is not required to compensate the public, as predecessor in title, in any way.”).

211 This circumstance is not as absurd as it may seem. Because most water users return some water to the river (unless they export the water to a different basin), the same molecule of water can be diverted multiple times as it passes through a watershed. See HANEMANN, supra note 154, at 72.

213 See CARLE, supra note 122, at 71; CONGRESSIONAL BUDGET OFFICE, supra note 53, at 7.
is an inefficient historic relic, a legal system indifferent to ecological needs and prone to accelerating resource overexploitation.214

Partly in response to such critiques, California has reformed its appropriative system in ways designed to encourage efficiency and environmental sensitivity. In recent decades, for example, water-marketing advocates have succeeded in creating statutory provisions allowing transfers of water rights.215 The rationales for marketing are straightforward: if conserved water can be transferred rather than lost, inefficient users should have an incentive to curb excesses and sell savings, and other needy users may obtain conserved water rather than developing new supplies.217 Environmental water needs also could be met, in theory, by purchasing water from willing sellers who presumably can provide that water with reduced opportunity costs.218 Additionally, agricultural and urban users could minimize treatment costs by transferring higher quality water used by agricultural users, who do not need treatment, for lower quality water previously allocated to municipal use.219 Transfers are limited by multiple factors, however, including fears of third party effects, limited access to water-conveyance infrastructure, and principles of California law and aquatic ecology that are somewhat incompatible with marketers’ attempts to treat water as a fungible commodity.220 Consequently, while many water-

215 See, e.g., Cent. Valley Project Improvement Act, Pub. L. No. 102-575, § 3405(a), 106 Stat. 4600, 4709–12 (1992); CA\textsc{L}. \textsc{WATER CODE} § 1011 (West 2007). For a sampling of arguments in favor of water marketing, see Anderson & Snyder, supra note 192; MARC REISNER & SARAH BATES, \textsc{OVERTAPPED OASIS} 58–59 (1990); CONG. BUDGET OFFICE, \textit{supra} note 53, at 32.

217 See Thomas, supra note 10, at 45–57 (recommending a market-based strategy for providing environmental flows); 2 2005 WATER PLAN, \textit{supra} note 110, ch. 23, at 23-6 (describing potential economic benefits of water transfers). \textit{But see id.}, at 23-6 to 23-7 (describing some of the potential costs of transfers).

218 See JENKINS ET AL., supra note 196, at xvii (noting that while some environmental flow requirements produce substantial opportunity costs for would-be users, others do not); 1 2005 Water Plan, \textit{supra} note 110, at 4-43 to 4-44 (predicting that a statewide market could reduce some of the opportunity costs created by environmental protection requirements).

219 1 2005 Water Plan, \textit{supra} note 110, at 25.

marketing advocates believe water trading, though growing, remains overregulated and underutilized, other commentators question whether real water markets ever can or should exist.222 The appropriative rights system also has increasingly tolerated instream flow rights. Historically, while the state could limit rights in order to protect environmental values, an appropriator could establish and sustain a water right only by taking water out of a river.223 Recognizing the anti-environmental incentives of this rule, the California Legislature has repeatedly amended the state’s Water Code to allow appropriators to dedicate portions of their rights to instream use, and to allow the state to claim rights in instream flows.224 Nevertheless, the prohibition on directly appropriating instream rights remains, and, like water marketing, appropriative protection for instream flows remains limited.

Two older doctrines, one deriving directly from the state constitution and the other from ancient common-law principles, also create potential for flexibility and environmental protection within California’s water rights system. First, the California Constitution allows water rights only to the extent that a use is “reasonable.”225 That amorphous word grants state regulators and courts discretion to modify rights based on evolving conceptions of reasonability, for “no one can acquire a vested right to the unreasonable use of water.”226 That rule can mandate reductions in the place, purpose, or amount of use, and on occasion actual or threatened invocations of reasonable use doctrine have significantly changed water use.227 The public trust doctrine also creates potential for conservation within the traditional water law system. Under California law, water rights users

221 For data on the amount of water marketing actually occurring, see ELLEN HANEK, CALIFORNIA’S WATER MARKET, BY THE NUMBERS (2002), available at http://www.ppic.org/content/ubs/eq/OP_1002EHOP.pdf.
222 See, e.g., Scott S. Slater, A Prescription for Fulfilling the Promise of a Robust Water Market, 36 MCGEORGE L. REV. 253, 293–94 (2005) (discussing continuing impediments to water marketing). But see Freyfogle, supra note 214, at 28–29 (criticizing water marketing on both utilitarian and normative grounds); Dellapenna, supra note 216, at 320.
224 Thomas, supra note 10, at 15; CAL. WATER CODE § 1707(c)(1) (West 2007).
225 CAL. CONST. art 10, § 2.
may own usufructuary rights,228 but the state owns the water and watercourses, and holds the latter as trustee for its people.229 That trust obligates the state and all its agencies to consider whether water allocations are consistent with values like wildlife protection,228 and no vested right can exist if a use threatens such public trust values.231 Similarly, the public trust doctrine empowers the state to reexamine permits already issued, and to adjust those permits in light of evolving public needs.232 The doctrine thus creates an inherent qualification upon property rights in water, essentially granting the state discretion to treat the natural environment as the most senior appropriator.

In combination, water marketing, instream flow rights, reasonable use doctrine, and the public trust add complexity to a legal system otherwise engineered simply to encourage widespread water use at the maximum possible rate. Those doctrines do not remove incentives for water consumption—even water marketing, which does create a conservation incentive, generally does so only if someone is willing to pay to use the conserved water—but the latter two allow a substantial amount of discretionary, government-imposed flexibility, and the former two theoretically allow water users ways to achieve greater efficiency and protection.233 But while some of those doctrines may undermine the basis for expectations of reliability, they otherwise leave intact a system slanted toward promoting water use.

2. Contracts

In practice, contractual arrangements are at least as important as appropriative rights in determining the allocation of California’s water, for

\begin{itemize}
\item 228 Eddy v. Simpson, 3 Cal. 249, 252 (1853) ("[T]he right of property in water is usufructuary, and consists not so much of the fluid itself as the advantage of its use.").
\item 229 CAL. WATER CODE § 102 (West 2007) ("All water within the State is the property of the people of the State, but the right to the use of water may be acquired by appropriation in the manner provided by law."); Nat’l Audubon Soc’y v. Superior Court, 33 Cal. 3d 419, 434–41 (1983); see Ivanhoe Irrigation Dist. v. All Parties, 47 Cal. 2d 597, 626 (1957), rev’d on other grounds, 357 U.S. 275 (1958) (holding that the state holds title to all waters as trustee for its people; the court did not consider the implications of this statement for the scope of applicability of the public trust doctrine). For consideration of what exactly this type of ownership entails, see California v. Superior Court, 78 Cal. App. 4th 1019 (2000).
\item 231 See Nat’l Audubon Soc’y, 33 Cal. 3d at 425–26 (holding that the public trust doctrine “bars . . . any other party from claiming a vested right to divert waters once it becomes clear that such diversions harm the interests protected by the public trust”). The Audubon court held that state agencies possessed discretion to accommodate the competing goals of the two legal schemes. Id. at 445–47.
\item 233 See United States v. State Water Res. Control Bd., 182 Cal. App. 3d at 104 ("Unlike real property rights, usufructuary water rights are limited and uncertain."); id. at 106 ("no water rights are inviolable; all water rights are subject to governmental regulation").
\end{itemize}
most Californians receive water in accordance with contractual terms. Those contracts, much like California’s traditional water rights system, generally are structured to promote consumption while providing few guarantees of reliability.

Most Californians do not actually hold appropriative water rights. Instead, they obtain water through municipal water agencies, water districts, irrigation districts, mutual water companies, and a few other types of governmental, quasi-governmental, or private water distributors.234 Many obtain their water through a series of such entities.235 Some of those distributors hold their own appropriative rights, but many—particularly those reliant on Bay-Delta water—depend in whole or in part on water from the Central Valley Project and the State Water Project.236 Reclamation and DWR, respectively, hold the appropriative rights for those projects, and deliver water in accordance with the terms of long-term contracts.237

Those CVP and SWP contracts share some important common principles. Rather than creating fixed entitlements to certain amounts of water, both define maximum allocations while reserving state and federal discretion to deliver less than the full amounts.238 The CVP contracts thus allocate more water than the Bureau typically delivers, and allow the federal government to withhold deliveries in times of drought or environmental need.239 The SWP contracts similarly allocate more water—almost twice as much water, in fact—than the project delivers in average years, but specify mechanisms for allocating water in the event of temporary and permanent shortages or unexpected surpluses.240 Both sets of contracts thus create a

234 See HUNDLEY, supra note 10, at 99–107 (describing irrigation districts and mutual water companies); HANAK, supra note 178, at 2–3; 1 2005 WATER PLAN, supra note 110, at 3-7 (“It is estimated that there are more than 3,700 public and private agencies in California dealing with some aspect of water supply, use, or treatment.”).

235 The Metropolitan Water District (MWD) of Southern California, for example, wholesales but does not retail water, and users in its service areas thus receive some of their water via sequential deliveries from the State Water Project to Metropolitan to Metropolitan’s member agencies. See HANAK, supra note 178, at 2 (describing MWD); METROPOLITAN WATER DISTRICT, THE DISTRICT AT A GLANCE (2007), available at http://www.mwdh2o.com/mwdh2o/pdf/at%20a%20glance/mwd.pdf.

238 While these provisions partly reflect the reality that water availability varies, there also is a bureaucratic explanation for these contractual amounts: the CVP’s and SWP’s proponents needed to promise large amounts of water to justify their projects. See generally REISNER, supra note 10 (describing the booster culture of water development).

239 United States v. State Water Res. Control Bd., 182 Cal. App. 3d at 147–48 (“the contracts expressly provide for governmental immunity from any liability to the contractors due to the failure to furnish the specified quantities of water in times of water shortages.”); O’Neill v. United States, 50 F.3d 677, 677–78 (9th Cir. 1995) (holding that the federal government was entitled to reduce deliveries in order to comply with environmental laws).

240 See Planning and Conservation League, 83 Cal. App. 4th at 908 n.5 (“there is a huge gap between what is promised [by the SWP contracts] and what can be delivered”).
somewhat curious allocation system, in which paper rights can diverge substantially from typical water availability or use.

In another important respect, the projects’ contracts are quite different. While the SWP contracts charge rates sufficient to cover the project’s operating and capital costs, the federal government subsidizes deliveries.\(^{241}\) The CVP, like most Bureau of Reclamation projects, was predicated on the somewhat Jeffersonian belief that small-farm agriculture brought widespread public benefits and thus merited public financial support.\(^{242}\) Though the Bureau never has succeeded in delivering CVP water solely to small farms,\(^{243}\) it does deliver water at substantially below-market rates.\(^{244}\) The CVP’s contractors’ payments do not cover project operating costs and have barely begun to reimburse the public for the millions invested in constructing the project.\(^{245}\) Even after attempted pricing reforms in the 1980s and early 1990s, CVP contractors remained heavily subsidized,\(^{246}\) and recently renewed contracts will continue those subsidies well into the future.\(^{247}\) The consequences are predictable; as the Congressional Budget Office has warned, “pricing structures . . . often provide no incentive to farmers to use water efficiently and may even encourage them to increase their water use.”\(^{248}\)

California’s primary water contract systems therefore utilize an odd allocation methodology. Large paper allocations and cheap prices encourage heavy consumption.\(^{249}\) But contractual terms create little legal justification

\(^{241}\) Advocacy groups argue, however, that some recipients—particularly agricultural users in Kern County—are heavily subsidized. See Public Citizen, Mismanaging the State Water Project 2-4 (2005), available at www.citizen.org/documents/SWPreport06.pdf.

\(^{242}\) See 1 2005 Water Plan, supra note 110, at 8-1 (“This is an example of a subsidy that was designed to achieve a social goal that affects water use and agricultural development in the West.”); Cong. Budget Office, supra note 53, at 29.

\(^{243}\) When the CVP was built, reclamation law forbade Reclamation from delivering water to farms exceeding 100 acres in size, yet many farms in the CVP’s proposed service areas were much larger. The story of the federal government’s failures to enforce those limits, or the later, higher limits set by Congress in a series of concessions to Central Valley growers, is a fascinating case study in the ability of political clout to trump law. See Worster, supra note 10, at 243–56; Peterson v. U.S. Dep’t of Interior, 899 F.2d 799, 802–06 (9th Cir. 1990).

\(^{244}\) See Envtl. Working Group, supra note 169; Reisner, supra note 10, at 484. See also U.S. Gen. Accounting Office, supra note 169, at 9–10 (providing examples of water districts where the subsidized cost is well below the “full cost” rate).

\(^{245}\) See Hanemann, supra note 154, at 77.

\(^{246}\) Compare 4 2005 Water Plan, supra note 110, at 4-34 to 4-35 (showing rates paid by CVP contractors and other California water users), with Cent. Delta Water Agency v. State Water Res. Control Bd., 124 Cal. App. 4th 245, 258 (2004) (discussing the rates, which ranged from $260 an acre-foot to $700 an acre-foot, that a private water seller anticipated charging on the open market). There are also structural reasons why agricultural water is cheaper than municipal water: it does not require treatment, is not available at the tap on demand, and isn’t pumped over mountain ranges. See Hanemann, supra note 154, at 77. But there is little credible dispute that agricultural users have been, and continue to be, heavily subsidized. See Peterson v. U.S. Dep’t of Interior, 899 F.2d at 805–06.

\(^{247}\) See Envtl. Working Group, supra note 169.

\(^{249}\) See Letter from United States Environmental Protection Agency, Region IX, to Alan Candlish, United States Bureau of Reclamation (Jan. 8, 1999), available at http://www.epa.gov/
for contractors to expect certain deliveries. That contractual uncertainty compounds the variability of the underlying rights, for the Bureau and DWR have no power to contract around the inherent contingency of their appropriations. Though encouraged to consume, water users therefore have few legal guarantees of reliability.

3. Environmental Statutes

The third major component of the California water law regime is the set of substantive and procedural obligations created by federal and state environmental laws, whose protective mandates create no small tension with the appropriative and contractual systems' incentives toward consumption. Broadly speaking, these laws define some outcomes—species extinctions, or violations of water quality standards, for example—that agencies must avoid, and establish mechanisms for public and private enforcement, but they provide few requirements for protection beyond those backstop prohibitions. They thus create potentially strict penalties for consumption that goes too far but do little to compel reservation of margins for error.

A comprehensive survey of these laws would require an entire book; what follows is a cursory summary.

a. Substantive Constraints

Perhaps the simplest law applicable to California waters is the federal Wild and Scenic Rivers Act (WSRA). While most water laws require some sort of balancing or compromise; the WSRA's mandate is simple: once a river is designated, no use may impair the values for which that river was designated. Additionally, unless written into the authorizing legislation, no obstructions of the river are allowed, and appropriations are extremely limited. Environmental protection thus is prioritized above all else, and a WSRA-protected stretch of river essentially is removed from the water commons. But these protections, although stringent, apply primarily to rivers on California's northwest coast or to stretches in terrain so rugged that the possibilities for competing appropriative uses are limited.

region9/nepa/letters/cvprenew.pdf ("We fear that retaining contract quantities that exceed available supplies gives the impression of unreliable commitments and may imply a 'need' to develop new supplies.").

250 See United States v. State Water Res. Control Bd., 182 Cal. App. 3d 82, 147 (1986) ("Logically, neither the project nor the contractors could have any reasonable expectation of certainty that the agreed quantity of water will be delivered.") (emphasis in original).

251 See State Water Res. Control Bd. Cases, 136 Cal. App. 4th 674, 806 n.54 (2006) ("An appropriator cannot give away more rights than he or she has.").

253 Id. §§ 1271, 1281(a) (2000); see Or. Natural Desert Ass’n v. Green, 953 F. Supp. 1133, 1144 (D. Or. 1997).

255 See HUNDLEY, supra note 10, at 374; Nat’l Park Serv., Wild and Scenic Rivers by State,
Several federal and state environmental statutes establish more widely-applicable requirements. The federal and California Endangered Species Acts, for example, limit “take” of listed species, and compel water managers to leave enough water in California’s rivers to sustain and recover threatened or endangered species’ populations. The Central Valley Project Improvement Act (CVPIA) likewise allocates water to environmental purposes, requires restoration projects, and establishes numeric goals for recovering fish populations. California Fish and Game Code section 5937 requires dam operators to maintain fisheries in good condition. In combination, and with the help of numerous cases filed by environmental groups, these statutes have become important constraints on water management throughout California.

Both federal and state laws also protect water quality. The federal Clean Water Act (CWA) limits point source discharge of pollutants and requires identification of and remediation plans for waters with deficient water quality. California law establishes parallel and intertwined requirements. The federal CWA allows states to implement and enforce federal water quality programs, and the state’s Porter-Cologne Water Quality Control Act delegates that authority to state and regional water boards. These boards must set statewide water quality standards and must promulgate and implement plans to achieve those standards. The federal Clean Water Act’s citizen suit provision also facilitates public enforcement of water quality laws, and numerous non-profit groups often prosecute permit violations and other water quality transgressions.

Other statutes grant the State Water Resources Control Board (SWRCB) additional discretion to set environmental limitations on water use. The

http://www.rivers.gov/wildriverslist.html#ca (last visited Nov. 18, 2007) (listing California’s federally designated wild and scenic rivers).

259 See Federal Water Pollution Control Act, 33 U.S.C. §§ 1251–1387 (2000). Section 301 creates a blanket prohibition on point source pollutant discharges, subject only to the specific exceptions set forth elsewhere in the act. Id. § 1311. Section 303 requires identification of water bodies with substandard water quality and development of plans to restore those waters. Id. § 1313. Because water quality and quantity are commonly intertwined, the Clean Water Act also can limit water diversions. See Thomas, supra note 10, at 17–18.

264 See EDF v. EBMUD II, 26 Cal. 3d 183, 195–98 (1980) (summarizing the statutes conferring discretion upon the SWRCB); EDF v. EBMUD I, 20 Cal. 3d 327, 342 (1977) (the SWRCB’s
SWRCB may establish minimum instream flow levels. It may declare a river or stream “fully appropriated,” meaning that no further appropriative rights can be obtained, and it need not wait for the stream to be pumped dry before making such a declaration. It also may impose environmental mitigation conditions on the exercise of water rights. Under the California Environmental Quality Act (CEQA), which requires identification of the environmental impacts of government projects, the SWRCB and other state and local agencies also must mitigate, if feasible, the adverse environmental impacts of any water project they approve or build.

In combination, these laws mandate levels of environmental quality that do not presently exist in many California waterways. If fully and successfully enforced, federal and state water quality laws would compel cleanup of dozens of water bodies currently listed as water quality impaired, including all of the Sacramento/San Joaquin Delta and portions of many of its tributary streams. California currently has dozens of species listed under the state or federal Endangered Species Acts, including many Bay-Delta-dependant species, and both acts require those species’ recovery. Similarly, the CVPIA demands recovery of several degraded fisheries, and California Fish and Game Code section 5937 may go even further, requiring restoration of below-dam fisheries—in California, hundreds of river miles are below dams—to historic levels. Finally, CEQA’s mitigation requirement ought to minimize additional environmental impacts even as project changes or

“authority includes protection of the environment”); United States v. State Water Res. Control Bd., 182 Cal. App. 3d at 103-04 (“when determining appropriative water rights, the Board is expressly empowered to protect water quality”) (citing CAL. WATER CODE § 1258 (West 2007); the Porter-Cologne Water Quality Control Act, CAL. WATER CODE §§ 13000-14968 (West 2007); and the California Environmental Quality Act, CAL. PUB. RES. CODE §§ 21000-21001 (West 2007)).

265 CAL. WATER CODE § 1257.5 (West 2007). In making these decisions, the SWRCB must consider instream flow proposals developed by the California Department of Fish and Game. Id.; see CAL. PUB. RES. CODE §§ 10001-03 (West 2007) (requiring CDFG to propose such flows). But CDFG has proposed flows for very few streams. Thomas, supra note 10, at 40-41.

268 See CAL. PUB. RES. CODE §§ 21000-177 (West 2007); Mountain Lion Found. v. Fish & Game Comm’n, 16 Cal. 4th 105, 112 (1997) (“CEQA is a comprehensive scheme designed to provide long-term protection to the environment.”).

269 See CAL. STATE WATER RES. CONTROL Bd., supra note 184, at 43-45 (listing quality impaired California water bodies); HANAK, supra note 178, at 7 (“The latest update of the California Water Plan, which uses estimates provided by the environmental community, reports that another one million acre-feet would be needed for some unmet environmental objectives.”).

developments occur. Those laws severely limit the reliability of water use patterns that impede environmental recovery, through citizen suit provisions and strict substantive mandates, such uses face the ongoing possibility that a successful plaintiff may succeed in imposing drastic changes.

b. Procedural and Planning Laws

Complementing the substantive component of these environmental laws is a set of federal and state laws, many recent, requiring proactive water supply planning and seeking to avoid mismatches between supply and demand. In theory, these laws can play a significant role in mitigating conflicts between the protection and consumption goals of California law, and can soften the harshness of substantive statutes, for they could alert government decision makers and public participants to potential conflicts before they occur. However, because these laws apply primarily to new projects and new development, they are better suited to minimizing new conflicts than to mitigating old ones. They thus do little—though not nothing—to resolve the consume-to-the-brink incentives inherent in other laws governing California’s waters.

The foundational planning laws applicable to California water are NEPA and CEQA. Both require environmental reports documenting the effects of, and alternatives to, government sponsored or approved projects. Since the 1970s, California’s courts, in applying CEQA, have consistently held that an environmental evaluation of a water-consuming project must disclose where the water will come from, and at what environmental cost. Because CEQA, unlike its federal counterpart,
requires mitigation of adverse environmental effects, its disclosure requirement has teeth, and in theory assures that the impacts of tapping new water supplies should be considered and, if possible, mitigated prior to implementation of any new project.277

The California Legislature recently supplemented CEQA with several laws designed to prevent new development without identified and reliable water supplies.278 In 1983, the Legislature enacted the Urban Water Management Planning Act (UWMPA), which requires urban water suppliers to adopt conservation plans.279 In 1995, the Legislature supplemented the UWMPA by passing AB 901, which required water supply evaluations prior to approval of new large development projects.280 A follow-up study suggested that the new law was largely ignored, and in 2001 the Legislature enacted two more stringent laws linking water supply and planning.281 SB 221, the first of the two statutes, requires that detailed water supply assessments precede approvals of major residential development projects, and precludes approvals without adequate water supplies.282 SB 610, the second statute, requires water supply assessments as a component of CEQA review, and also establishes more stringent requirements for urban water management plans that anticipate reliance on groundwater.283 Preliminary research suggests compliance with these new laws has been significantly better than compliance with their predecessor.284

In combination, these laws link growth and water supply planning and appear to prohibit large-scale growth without water.285 They also create some potential for reconciling the consumptive and protective goals of state and federal law, for they could focus attention where under-watered growth threatens to create excess demand.286 Nevertheless, because planning laws are triggered largely by changes in the status quo, they do not compel or create incentives for reductions in existing use.287 Moreover, California law also embodies competing goals; though water districts cannot ignore environmental constraints, they are similarly prohibited, at least in theory,

\begin{itemize}
\item 277 See CAL. PUB. RES. CODE § 21002 (West 2007).
\item 278 I 2005 WATER PLAN, supra note 110, 3-30 to 3-32 (describing new laws and planning initiatives).
\item 279 CAL. WATER CODE §§ 10610–56 (West 2007); see Waterman, supra note 194, at 162.
\item 280 See Waterman, supra note 194, at 129.
\item 281 Id. at 129, 152–58 (describing SB 221 and SB 610).
\item 282 Id. at 152–58; see generally CAL. DEPT OF WATER RES., GUIDEBOOK FOR IMPLEMENTATION OF SB 610 AND SB 221 OF 2001 (2003), available at http://www.owue.water.ca.gov/Guidebook.pdf.
\item 283 CAL. WATER CODE § 10910 (West 2007); see also id. § 10540 (West 2007) (providing for “Integrated Regional Water Management Plans”).
\item 284 HANAK, supra note 178, at viii.
\item 285 Waterman, supra note 194, at 152–54. The statutes only apply to larger projects, and unless CEQA applies, smaller scale developments still may occur without identified supplies.
\item 286 See Planning & Conservation League v. Dep’t of Water Res., 83 Cal. App. 4th 892, 914–15 (2000) (noting the adverse consequences that can follow if “local decision makers are seduced by contractual entitlements and approve projects dependent on water worth little more than a wish and a prayer.”).
\item 287 See HANAK, supra note 178, at xi (“there are no automatic levers to induce conservation in communities that choose not to conserve”).
\end{itemize}
from using planning laws to implement no-growth policies if additional water supplies can be procured.288 Consequently, while these laws may slow the rate at which demand grows, they are unlikely to create any reduction in overall water use or to resolve the tensions such use creates.

4. Water Conservation Laws

The final important, though to date relatively minor, component of the legal scheme governing California water is a set of laws seeking to facilitate conservation. Beyond its reasonable use requirement,289 neither California nor the federal government has an across-the-board rule requiring water conservation. Several statutes, however, do provide incentives or, at least on paper, limited mandates. Water Code section 375, for example, empowers water suppliers to impose conservation requirements, though it does not require them to do so.290 Other provisions empower local governments to mandate reclaimed water use for landscaping, create limited requirements for recycled water use in toilets and cooling facilities, and attempt to encourage (and allay fears about) water recycling.291 Water Code sections 13577 and 13578 set the goal of recycling a million acre-feet per year by 2020 and charge DWR with recommending ways to achieve that goal. Finally, California law now imposes almost across the board metering requirements on residential (but not agricultural) use, which is a substantial improvement in a state where water use in some dry areas has historically gone unmetered.292

In addition, the California Legislature has repeatedly issued bonds, generally accompanied with hortatory legislative findings promoting water conservation, to provide funding for conservation projects.293 The state’s Water Pollution Control Revolving Fund also provides money for conservation and water recycling.294 Additionally, state law requires DWR to “offer assistance to agricultural water suppliers to implement efficient water

288 See Swanson v. Marin Mun. Water Dist., 56 Cal. App. 3d 512, 524 (1976) (upholding a moratorium on new connections, but cautioning that a district must “exert every reasonable effort to augment its available water supply in order to meet increasing demands”).

289 See Neuman, supra note 227, at 941–42 (describing courts’ application of beneficial or reasonable use requirements).

290 See also CAL. GOV’T CODE §§ 65591–99 (West 2007) (requiring adoption of local ordinances regulating landscape water use.).

291 See CAL. WATER CODE §§ 13500–56 (West 2007); id. § 461 (West 2007) (“the primary interest of the people of the state in the conservation of all available water resources requires the maximum reuse of reclaimed water”).

292 Id. §§ 500–30 (West 2007); see HANAK, supra note 178, at 13 (“many communities in the Sacramento and San Joaquin Valleys have traditionally charged flat fees for water, regardless of the volume of use”). Assessing whether water use is reasonable is nearly impossible when one cannot measure water actually used. See CAL. WATER CODE § 521 (West 2007).

293 CAL. WATER CODE §§ 13055–69, 13099–09.19, 13450–69, 14050–76 (West 2007); PUB. POLICY INST. OF CAL., CALIFORNIA 2025: TAKING ON THE FUTURE 102–03 (2005), available at http://www.ppic.org/content/pubs/report/R_065MB2R.pdf [hereinafter CALIFORNIA 2025] (describing bonds). The CALFED program, for example, relied upon bonds to support its water conservation efforts. Id at 103.

294 CAL. WATER CODE §§ 13480, 13481.5 (West 2007).
management practices to improve the efficiency of water use,"295 and requires agricultural districts to develop conservation plans—if they “determine that a significant opportunity exists to conserve water.”296 These provisions generally offer financial carrots, however; they include neither sticks compelling conservation nor mandates to limit the amount of water extracted from the state’s natural environment.297

Federal law contains some similar provisions. The 1982 Reclamation Reform Act, for example, required Bureau contractors to develop water conservation plans, which the Bureau then would approve; though “implementation of those plans typically has not been enforced,” the requirement remains.298 The CVPIA established similar requirements, mandating tiered pricing and allowing greater use of water transfers, which theoretically create conservation incentives.299 But federal law, much like that of California, creates few mandates for conservation and caps water allocation only by setting maximum contract amounts, which typically are far in excess of actual availability.

The federal and state water conservation laws therefore are, at best, in their nascent stages, and appear more consistent with Vice President Cheney’s famous characterization of conservation as a personal virtue300 than with the reality of a state faced with endemic water scarcities. Those laws create no overall limits on use, and they endorse and empower but rarely require conservation.

D. The False Promise of Flexibility

This legal system might superficially seem a reasonable response to California’s environmental realities. Though some parts of the legal scheme encourage more water consumption and other parts demand protection of the resources that consumption endangers, the system as a whole, by preserving governmental discretion to impose cutbacks in times of shortage, ideally might allow California to wring the maximum consumptive benefit from wet periods while adaptively adjusting to dry years’ environmental constraints.301 The system thus might appear to resolve the basic tensions between consumption, protection, and reliability by encouraging consumption right up to protective limits and sacrificing reliability, instead invoking flexibility and adaptation to resolve any problems that result. In

295 Id. § 10904 (West 2007).
296 See also id. § 11952 (West 2007) (“encourag[ing]” conservation).
297 See HANAK, supra note 178, at xi, xiii ("[T]here is more room in California’s future for regulatory actions backed by sticks rather than financial carrots.").
practice, however, reliance upon theoretical flexibility and adaptability seems misplaced, for the system also encourages optimistic expectations and a sense of entitlement. That encouragement, in combination with the often significant costs of adjustment, can make flexibility practically and politically difficult to invoke.

People generally fear a loss more intensely than they covet an equivalent gain—it is more threatening to lose fifty dollars you assumed was yours than to miss out on a fifty-dollar windfall, particularly if you already have made plans in reliance upon those fifty dollars—but the legal systems for allocating California’s water seem calibrated to inflame that tendency.302 By giving water consumers paper contracts stating fixed quantities, they encourage investment in water-dependent infrastructure and foster a sense that full deliveries are a right; the users have the paper to prove it, even if those amounts exceed what nature and existing infrastructure can consistently and legally provide.303 Consequently, regardless of what judges and scholars say about the inherent contingency of water rights, users may believe that reductions are deeply unfair, if not outright confiscations of property. Environmental statutes, the public trust doctrine, and reasonable use requirements create countervailing expectations. The underlying premise of the public trust doctrine is that water first and foremost belongs to the public, meaning that users who infringe on trust values or unreasonably use ecologically-needed water are essentially taking public property.304 Regardless of what paper permits or contracts say, environmental advocates therefore can reasonably perceive ecologically beneficial flows as a public entitlement. Consequently, no matter how water is allocated, at least someone will feel, except in the wettest of years, that their water has been taken away, and will vigorously resist that perceived loss.305

302 See, e.g., Korobkin & Ulen, supra note 77, at 1107–09; Amos Tversky & Daniel Kahneman, Loss Aversion in Riskless Choice: A Reference-Dependant Model, 106 Q. J. ECON. 1039, 1039 (1991); Thompson, Tragically Difficult, supra note 72, at 263–65 (“[W]here the loss is risky and uncertain, people often act as if there’s virtually no future risk to them at all”). Those tendencies help explain water management challenges, for they predict that users will prefer irregular but drastic cutoffs—and will underestimate the likelihood of those cutoffs—to predictable, smaller reductions, even though the latter may ultimately be less harmful.

303 See Congressional Budget Office, supra note 53, at 17 (noting that Reclamation’s contracts and practices create the expectation of permanence); Thompson, Tragically Difficult, supra note 72, at 257 (explaining the sometimes-counterproductive effects of property rights).

304 See Nat’l Audubon Soc’y v. Super. Ct., 33 Cal. 3d 419, 433–34 (1983) (describing the historic origins of the public trust doctrine); Thomas, supra note 10, at 33 (“It is based on an ancient recognition that some natural assets are of such fundamental and universal value that they transcend the principles of sovereign dominion and exercise of exclusive rights.”).

305 See Freeman & Parber, supra note 9, at 867 (describing competing senses of entitlement); Korobkin & Ulen, supra note 77, at 1108–09 (describing experimental evidence that a sense of possession heightens the value people place on things); Russel Korobkin, Policymaking and the Offer/Asking Price Gap: Toward a Theory of Efficient Entitlement Allocation, 46 STAN. L. REV. 663, 698–703 (1994) (applying this theory to a hypothetical resolution of the spotted owl controversy); HANAK, supra note 178, at xi (“[G]etting existing residents to share [water] is more difficult because of the sense of entitlement that comes with existing water-rights law.”).
The regionalism and “tribalism” of water politics exacerbate these senses of entitlement. The members of many of the interest groups involved in California’s water struggles live in somewhat insular communities, which form fertile incubators for each group’s sense of right. Similar polarization can divide the agencies responsible for managing water, with wildlife agencies and EPA often in tension with the Bureau of Reclamation and DWR, both of which were founded to build dams and pump water. See generally Glennon & Thorson, supra note 10, at 492 (questioning whether Reclamation can adjust its “traditional paradigm”).

For San Francisco Bay Area residents, who tend to be more favorably inclined toward environmental protection, the Central Valley often seems a place with a totally different economy and political culture. Similarly, north-of-Delta water users, though generally agricultural and more skeptical of environmentalists’ goals, also tend to be united in fear of Southern California’s reaching grasp. Urban users in southern California, meanwhile, tend to live far away from, and may never see or even be aware of, the areas impacted by their own water consumption. Some

307 Similar polarization can divide the agencies responsible for managing water, with wildlife agencies and EPA often in tension with the Bureau of Reclamation and DWR, both of which were founded to build dams and pump water. See generally Glennon & Thorson, supra note 10, at 492 (questioning whether Reclamation can adjust its “traditional paradigm”).

308 See, e.g., Stuart T. Pyle, Kern County View of a California Water Consensus, in ACHIEVING CONSENSUS ON WATER POLICY IN CALIFORNIA 87, 100 (1992) (describing environmental advocates as “becoming more strident”). ACHIEVING CONSENSUS ON WATER POLICY IN CALIFORNIA contains several essays written from an agricultural perspective, and all evince skepticism of the urban/environmental consensus view that agricultural interests have substantial amounts of water to spare. See also Neuman, supra note 227, at 971 (“The agricultural community fears that Los Angeles (either the city itself, or Los Angeles as a symbol for all urban areas in the West) will somehow acquire all of the water from the farmers.”) (parentheses in original).

309 “That support turns lukewarm, however, when water comes from Hetch Hetchy. Though Bay Area environmentalists have called for removing O’Shaughnessy Dam and restoring the valley, San Francisco relies on Hetch Hetchy for both power and water, and city leaders have opposed dam removal. Compare ENVIRONMENTAL DEFENSE, PARADISE Regained: SOLUTIONS FOR RESTORING YOSEMITE’S HETCH HETCHY VALLEY 1–3 (2004), available at http://www.environmentaldefense.org/documents/4044_hetchhetchyrestored_frontmatter.pdf, with Tom Philp, Water: Bring Back Hetch Hetchy?, SACRAMENTO BEE, Apr. 21, 2002 (quoting Diane Feinstein’s assertions, while she was San Francisco’s mayor, that Hetch Hetchy was San Francisco’s “birthright,” and that removing it would be “dumb, dumb, dumb”).

311 See, e.g., LITTLE HOOVER COMM’N, supra note 5, at 77 (“[M]ost Californians, particularly those living south of the Delta, are not aware of the significance of maintaining the Bay-Delta estuary.”). Such ignorance is not unique to southern California. I once ate at a San Francisco restaurant whose menu offered “filtered Hetch Hetchy water.” The owners assumed, apparently, that few customers would realize the exotic-sounding beverage actually flowed from the municipal tap.
integration exists, of course, but to a striking degree perceived interests are uniform within, yet distinct among, California's various regions. 312

This regional differentiation facilitates misunderstanding and distrust, and each region has stories discounting the legitimacy of others' claims to water. Southern California, in the eyes of many, is the phreatophytic land of sprawl and hosed driveways, all supplied through a combination of institutional arrogance and duplicity. 313 The Central Valley is perceived as the black hole for water over-consumption, a place capable of supplying all unmet urban and ecological needs were it not so disdainful of environmental protection and wedded to profligate use. 314 Environmentalists, meanwhile, are sometimes perceived as the foolish elitists who would stunt southern California's growth and deprive agriculture of its lifeblood to sustain a few precious fish. 315 These stories validate and harden competing communities' perceptions of entitlement, 316 leaving these communities reluctant to

312 See id. at 60 ("Geography, more than party affiliation, defines water politics in California."). These regional differences have translated into striking results when Californians vote on water-related referendums. See e.g., HUNDELEY, supra note 10, at 332 (describing 1982 voting over the peripheral canal), 369 (describing the 1974 vote on New Melones Dam). Nevertheless, PPIC polling recently found a remarkable degree of consistency in statewide views on water conservation; whether in the Central Valley or San Francisco, most voters favored conserving existing supplies over developing new facilities. CALIFORNIA 2025, supra note 293, at 249.

313 The specter of Los Angeles' appropriation of the Eastern Sierra Nevada's waters looms over almost all western water debates, with both agricultural and environmental interests perpetually invoking the Owens Valley and Chinatown (the 1974 Jack Nicholson movie). E.g., Killian, supra note 310; Gary D. Libecap, Chinatown: Owens Valley and Western Water Reallocation—Getting the Record Straight and What it Means for Water Markets, 83 TEX. L. REV. 2055, 2057 (2005) (criticizing the conventional understanding of the Owens Valley history).

314 Marc Reisner was perhaps the leading articulator of this critique. Cadillac Desert meticulously indicts the pork-barrel culture that produced most western water projects. In a typical passage, which describes the San Joaquin Valley's Westlands Water District, he wrote

[...], in a nutshell, is how one of the nation's preeminent examples of reform legislation [the Reclamation Act] is turned completely on its head: illegal subsidies enrich big farmers, whose excess production depresses crop production nationwide and whose waste of cheap water creates an environmental calamity that could cost billions to solve.

REISNER, supra note 10, at 484. Reisner was far from alone; Wallace Stegner spoke for many when he castigated water users' "snarling states'-rights and antifederal feelings whose burden Bernard DeVoto once characterized in a sentence—'Get out and give us more money.'" STEGNER, supra note 72, at 61.

315 E.g., Press Release, California Farm Water Coalition, Shifting of Farm Water Criticized (Sept. 16, 2004), available at http://www.cfwc.com/should_know/Sept04/9-20energy studyresponse.pdf (criticizing an NRDC report as reflecting "an environmental agenda that benefits only those radical groups seeking to take water away from farmers").

316 To a striking extent, these battles are among communities, and all sides tend to view water as a "heritage resource," to use Joseph Sax's phrase. Whether environmentalists seeking to protect the "common wealth," see Freyfogle, supra note 214, or urban users protecting their communities' "birthright," or rural communities complaining of Chinatown-style water heists, Californians seem consistently to "feel an attachment to their water that is strikingly similar to the strong interest that nations and cultures assert over their antiquities and other cultural properties." Barton H. Thompson, Jr., Water Law as a Pragmatic Exercise: Joseph Sax's Water Law Scholarship, 25 ECOLOGY L.Q. 363, 368 (1998) [hereinafter Thompson, Joseph Sax's
acknowledge the contingency of their allocations, and further limiting the flexibility theoretically inherent in California’s water rights system.

History also complicates these problems. California’s major water projects were built and numerous contracts first signed before increasing environmental awareness led many people to question the dogma that water flowing to the ocean is, as Justice Jackson once colorfully put it, a “wasting treasure[.]” that rivers “thriftlessly dissipate . . . in the Pacific tides.”

Similarly, prior appropriation doctrine evolved when the West’s population was small, cities were few, and making the desert bloom was not merely a device to strengthen the nation’s economy but also an expression of manifest destiny. Many of California’s water allocation habits were predicated on the assumption that exploiting rivers was inherently desirable, and entire regions of California have come to accept the consequences of that assumption as the expected status quo. Bureaucratic cultures reflect these views; the agencies that deliver California’s water justified their existence by promising large and consistent deliveries, and still often treat delivering as much water as possible as a matter of institutional identity, obligation, and pride.

These expectations fuel indignation when environmentalists assert that the status quo is not, and never was, acceptable, and that environmental laws legitimately limit the amount and consistency of consumptive use.

Finally, these problems are compounded by the extent to which water managers, like many environmental managers, must rely on science when adjusting allocations. A common reason for major delivery adjustments is not total physical unavailability of water but rather a judgment that ecological systems cannot sustain further strain. These judgments must be made by often underfunded government scientists, who must predict future conditions of complicated systems based upon limited data and partially unknown chains of cause and effect, and who may be speaking to audiences not cognizant of the prevalence of variability in ecological systems and ambiguity in environmental science. Their determinations are likely to be

Scholarship:

17 United States v. Gerlach Live Stock Co., 339 U.S. 725, 728 (1950); see CONG. BUDGET OFFICE, supra note 53, at 5 (“Other benefits that rivers provide—such as habitat for fish and wildlife, recreation, and cultural values for Native Americans—were historically ignored”).

18 See David Getches, Water Wrongs: Why Can’t We Get it Right the First Time?, 34 ENVTL. L. 1, 8–9 (2004). Many western boosters also argued, and many settlers believed, disastrously, that irrigation actually would change the climate, and that “rain follows the plow.” Id.

19 See, e.g., Letter from Mike Wade, Executive Director, California Farm Water Coalition, to the Bakersfield Californian (July 1, 2004), available at http://www.cfwc.com/should_know/2004/July04/7-1%20Bak%20CA.pdf (applauding an editorial that decried the loss of water that flowed to sea).

22 See Doremus & Tarlock, supra note 10, at 18 (“[N]atural resource regulation and management decisions are typically not closely constrained by the available data, because those
couched in uncertainties, and even if based on good judgment and careful research may sometimes be wrong. Almost any recommendation for an adjustment will therefore appear highly contestable, and resource users may believe, or at least plausibly argue, that science was manipulated or misused to deprive them of water.

Consequently, rather than viewing their allocations as fundamentally contingent upon, and variable in response to, environmental needs, consumptive water users tend to expect consistency. While cognizant that precipitation varies, they may perceive environmentally required reductions as misguided at best and at worst as bureaucratic confiscations of property. The reasonable use and public trust doctrines, though theoretically providing the state with flexibility to adjust water allocations based on evolving human and environmental needs, are rarely invoked for these purposes, and in practice environmentally based water allocation reductions infrequently occur other than in response to fairly inescapable statutory mandates or payment of public money. That flexibility is not moribund; deliveries do vary substantially from year to year as both availability and demand vary in response to changing weather, and environmental enforcement has compelled major changes in California water allocations. Nevertheless, major environmentally-based adjustments almost invariably induce protracted litigation, and the malleable, adaptive data are so incomplete and ambiguous.

323 See, e.g., id. at 10–11 (discussing scientific judgments in the Klamath controversy), 18 (“ecology and the related biological sciences will never reach the precision and elegance of physics and mathematics”); LITTLE HOOVER COMM’N, supra note 5, at 31 (“Scientists rarely have been able to link specific causes to specific changes in the Delta because of the complexity and interconnectedness of numerous factors.”), 66 (“uncertainties make it difficult to act decisively and confidently”).

324 See Doremus & Tarlock, supra note 10, at 5–6 (observing that increases in scientific information “if decoupled from increased understanding, can exacerbate controversy by making it easier for people . . . to selectively reinforce their beliefs”); see generally Owen, supra note 37, at 773–76.

325 The view of environmental protection as confiscation was perhaps most prominently articulated in Tulare Lake Water Basin Storage Dist. v. United States, 49 Fed. Cl. 313, 324 (2001) (“The federal government is certainly free to preserve the fish; it must simply pay for the water it takes to do so.”).

327 Recent Bay-Delta history is instructive. While water has been re-allocated, at least on paper, to environmental uses, those reallocations occurred primarily in response to litigation-forced regulatory actions (EPA’s proposed new water quality standards and the federal wildlife agencies’ ESA listings), the CVPIA, and payment through the Environmental Water Account. Common law doctrines creating flexibility in water allocations may have helped facilitate these changes but were hardly their cause. See infra Part IV.

328 For example, the temporary cutbacks of the early 1990s generated a long succession of cases. See, e.g., Orff v. United States, 545 U.S. 596, 599–600 (2005); Tulare Lake Water Basin Storage Dist., 49 Fed. Cl. at 315–16; Westlands Water Dist. v. United States, 100 F.3d 94, 95 (9th Cir. 1996) (describing several other lawsuits); O’Neill v. United States, 50 F.3d 677, 681 (9th Cir. 1995); Westlands Water Dist. v. Natural Res. Def. Council, 43 F.3d 457, 459 (9th Cir. 1994).
allocation system created, at least on paper, by California and federal water laws does not match actual practice.

These limitations on flexibility mean that the systems governing California's water try to have it all. Though water is scarce, federal and state rules simultaneously attempt to maximize consumption and increase protection. The system thus encourages environmental managers to do what the basic conceptual framework posited by this Article predicts will be quite difficult, that is, to promote consumption right up to the perceived limits of environmental law, leaving no slack to facilitate adjustment should conditions change. Yet users also demand reliability, and the flexibility that might resolve these conflicts is severely limited by practical and political realities. In the face of environmental uncertainty and dynamism, that approach creates a recipe for conflict.

IV. The Confluence of Tensions—The Bay-Delta Controversy

Hardly a river in California has been immune from the tensions created by scarcity, environmental variability, and an internally inconsistent legal system, but these tensions have been most visible and salient, and perhaps also most important, in the Bay-Delta.330 The Bay-Delta is literally and figuratively the place where California's water problems flow together.331 All of the waters draining the Central Valley flow through it, large fish and wildlife populations live within it, and each salmon born in the valley must swim downstream through the Bay-Delta to reach the ocean and back upstream to reach its natal stream and spawn.332 The Delta itself provides much of California agriculture's irrigation water and is the source of at least some of the drinking water used by approximately two thirds of Californians; management to meet these needs dominates the Bay-Delta's hydrology.333 Its tributary rivers supply millions more, and because the Bay-Delta's watershed supplies almost everyone in California with some of their water, its fate is inextricably connected with statewide urban water demand.334 The state's agricultural economy also relies heavily on the Bay-

330 For other descriptions of the Bay-Delta history, see Little Hoover Comm'n, supra note 5, at 14–34; Freeman & Farber, supra note 9, at 837–76; Rieke, supra note 10.

331 See Little Hoover Comm'n, supra note 5, at 4 (“Everything is connected in the Delta.”).

334 See Little Hoover Comm'n, supra note 5, at i (“The Delta is so critical to California's
Delta watershed as a sump for return flows, and the Bay-Delta's water quality bears the signature of land use practices throughout much of California. California's water problems, in short, are the Bay-Delta's problems, and the Bay-Delta's fate both depends upon and helps determine water management statewide.

By the late 1970s, the Bay-Delta was showing the strains of these conflicting demands. Federal and state environmental regulators both realized that increasing Delta exports, along with several other important factors, were drastically degrading the Bay-Delta's ecology. For years, however, that realization translated into little protection. The State Water Resource Control Board first set water quality standards that failed to survive judicial review, then set standards that EPA rejected as insufficient to meet basic water quality goals, and then, in the early 1990s, withdrew—on Governor Pete Wilson's orders—standards that initially appeared stronger. EPA, while rejecting the state's efforts as inadequate, set no standards of its own until it was sued, and Reclamation argued it was immune from even the weak standards the state did create. Meanwhile, exports grew, exotic species multiplied, and un-screened diversions and a variety of other human activities throughout the watershed contributed to what EPA described as a "severe and continuing decline of the Bay-Delta's fish and wildlife resources."
California’s 1987–92 drought brought conflicts to a head. In the first years of the drought, DWR and the Bureau responded to heightened demand by exporting more water than ever before. But the Fish and Wildlife Service and the National Marine Fisheries Service then listed the Delta smelt and winter-run Chinook salmon, once two of the Bay-Delta’s most abundant fishes, as threatened species. EPA accelerated pressure for new state water quality standards and then began drafting standards of its own; and Congress passed the CVPIA, which, among other provisions, mandated reallocation of 800,000 acre-feet per year to environmental uses. These actions caused a sharp reduction in water contractors’ deliveries and an intense political reaction. By the mid-1990s, an all out water war was a real possibility. It seemed perfectly plausible that EPA and the wildlife agencies would attempt, largely in response to environmental groups’ advocacy, to further limit water exports and that water users would unite, with tacit support from the state and federal water delivery agencies, to take on the very structure of environmental law, and that urban and agricultural users would simultaneously fight side-battles with each other.

Though much litigation did occur, that all-out water war did not. Several of the major agencies and environmental groups instead signed the Bay-Delta Accord, an agreement that traded temporary reductions in water deliveries for temporary and limited immunity from further regulatory actions. The agencies also began the CALFED process, a collaborative, multi-agency, multi-stakeholder effort to create a new program for sustainable management of the Bay-Delta. Over the next several years, they developed several alternative proposals, and the agencies ultimately issued a joint federal-state record of decision (ROD) in 2000. Following issuance of the ROD, the California Legislature authorized creation of the Bay-Delta

343 See Mike Tauber, A Struggle to Quench State’s Thirst for Water, CONTRA COSTA TIMES, Dec. 29, 2005 [hereinafter Tauber, Struggle] (showing pumping levels).
344 See O’Neill v. United States, 50 F.3d 677, 681 (9th Cir. 1995).
347 See HUNDLEY, supra note 10, at 406. See also Reclamation Projects Authorization and Adjustment Act, 106 Stat. at 4714.
348 See Rieke, supra note 10, at 345; see also Notice of 1-Year Finding on a Petition to List the Longfin Smelt, 59 Fed. Reg. 810, 814 (Jan. 6, 1994) (quoting then-Governor Wilson’s observation that “any program must begin by recognizing a disturbing truth: The Delta is broken”).
349 See HUNDLEY, supra note 10, at 398–407 (describing events preceding the CALFED process); see Planning and Conservation League v. Dept’ of Water Res., 83 Cal. App. 4th 892, 900–01 (2000) (describing the potential conflict between agricultural and urban users over SWP supplies). All of this conflict was occurring while the 104th Congress was re-examining environmental laws, and the Endangered Species Act “seemed in danger of snapping.” Doremus, supra note 3, at 51.
350 See supra note 320.
352 CALFED ROD, supra note 5; LITTLE HOOVER COMM’N, supra note 5, at 16.
Authority, an agency designed to coordinate the CALFED effort, and Congress provided federal agencies with similar—though more limited—legislative authorization to participate in the CALFED process.

CALFED's innovations were many. Most importantly, rather than attempting to reconcile the separately made decisions of agencies with diverging, parochial interests, it attempted to create what Freeman and Farber describe as a “modular” regulatory structure allowing agencies to collaborate and make collective policy choices. CALFED also sought to prioritize information development and stakeholder inclusion; agencies utilized the expertise of water users and environmental groups, while CALFED sponsored scientific research and attempted to rely upon adaptive management. Finally, CALFED tried to please everyone; the program’s mantra was that stakeholders should all “get better together.”

To achieve these ambitious goals, CALFED developed novel regulatory devices. Attempting to minimize the zero-sum nature of water conflicts, CALFED created an “environmental water account,” a system designed to use willing-seller water exchanges to minimize the burdens created by environmental restrictions and to allow flexibility for short-term adjustments in pumping levels. More broadly, the CALFED agencies attempted to design infrastructure and management programs that would allow more pumping in winter, when—in theory—water would be more abundant and less environmentally important. Using substantial funding

353 See LITTLE HOOVER COMM’N, supra note 5, at 28 (describing the federal and state acts, and criticizing the limited involvement allowed by the federal act).

354 Freeman & Farber, supra note 9, at 853–57. While I hold a less sanguine view of the CALFED process, Freeman and Farber’s arguments about the importance of such “modular” regulation are sound. Alternatively, agencies with conflicting agendas would separately develop diverging programs for managing the same resources, and then attempt, perhaps partly through proxy litigation (with water contractors battling environmental groups), to resolve policy. See id. at 839–40 (describing “regulatory fracture” and the problems it causes). For that reason, Freeman and Farber’s modest conclusion about modular regulation—it “may not be perfect, but it has the potential to be better than the traditional approach”—seems eminently correct. Id. at 805.

355 Id. at 846–53 (describing CALFED’s willingness to draw upon stakeholder ideas and expertise); id. at 865, 889 (praising CALFED’s science program); LITTLE HOOVER COMM’N, supra note 5, at 37 (“The ROD envisioned a CALFED that was guided by an assertive adaptive management system.”), 70.

356 ENVISIONING FUTURES, supra note 1, at 87. See also CALFED ROD, supra note 5, at 9–10 (describing CALFED’s interrelated objectives).

357 Brandt, supra note 10, at 427–28 (describing how the Environmental Water Account (EWA) should function). See also Freeman & Farber, supra note 9, at 847–51 (describing the EWA’s creation).

from stakeholders and several voter-approved bonds, the CALFED agencies embarked on a major ecosystem restoration program, hoping, as one farmer put it, that when "[y]ou redesign the river, you restore it to a more natural functioning, and hopefully you need less water to make the system work the way it's supposed to—everybody wins."359 CALFED also made large amounts of grant money available to agencies pursuing conservation projects.360 The rhetoric and writing of the CALFED agencies emphasized adaptive management; rather than irrevocably fixing their future course of action, the agencies defined a broad program, with many desired items but no strict commitment to implementing any particular project, and created a science program designed to facilitate learning and adjustment.361 These innovations are largely responsible for CALFED's initial reputation, at least in the legal academic literature, as an exemplary process.362

Nevertheless, one of the CALFED agencies' core choices created major risks.363 Managing a dynamic, oversubscribed resource to provide increased consumption, increased protection, and increased reliability is extraordinarily difficult, yet that is exactly what the CALFED agencies attempted.364 Rather than mandating cuts in consumption, the agencies

359 CARLE, supra note 122, at 180 (quoting Merced County rancher Chris Robinson) (emphasis omitted).

361 See CALFED ROD, supra note 5, at 6 ("The preferred program alternative is not intended to define the site specific actions that will ultimately be implemented."). Many participants in KPMG's survey agreed that one of CALFED's greatest accomplishments was "its success in exposing all stakeholders to the vast complexities of issues, science, policy and politics that encompass the Bay Delta." KPMG LLP, supra note 25, at 10.

362 E.g. Freeman & Farber, supra note 9, at 860–66 (favorably evaluating CALFED); Thompson, Markets for Nature, supra note 9, at 309–11 (describing the potential advantages of the Environmental Water Account); Rieke, supra note 10, at 366 (concluding that CALFED's Bay-Delta Program's "open, inclusive, and collaborative processes are critical to making decisions that will have a reasonable shelf life."); Brandt, supra note 10, at 427–28 (describing how the flexibility of the Environmental Water Account draws together conflicting stakeholders).

363 In addition to the problems described below, the CALFED agencies premised their program on fragile funding and faith in weak governance structures. Compare CALFED ROD, supra note 5, at 4 ("California taxpayers, stakeholders, and the federal government will be called upon to invest billions of dollars over the next decade on CALFED programs."), with ENVIRONMENTAL DEFENSE, supra note 181, at 16 (describing uncertain future funding for the EWA and other similar programs). Also compare Freeman & Farber, supra note 9, at 855–57, 906 (describing the governance structure, and arguing that it also created "obvious benefits" and that "by all accounts, [CBDA] has been quite effective at promoting coordination"), with Letter from the Little Hoover Comm'n to Governor Schwarzenegger and members of the Legislature (Nov. 17, 2005), in LITTLE HOOVER COMM'N, supra note 5 ("Because of a faulty design, the CBDA cannot effectively coordinate activities, push agencies to perform, or provide rigorous oversight. It is unable to control or cajole."); and LITTLE HOOVER COMM’N, supra note 5, at 27–28 (observing that state authorizing legislation "stripped any meaningful authority from the Bay-Delta Authority," and that federal authorizing legislation limited federal involvement in the CBDA), and id. at 80 ("Key Meetings and Decisions Exclude Public Involvement")

364 See Mike Taughter, CALFED: Bay-Delta Authority Head Exits, CONTRA COSTA TIMES, May 26, 2005 (quoting The Bay Institute's Gary Bobker: "You can have your cake and eat it too—that's the unspoken motto of CalFed.").
assessed only programs designed, on the whole, to facilitate export increases, and did so while assuming they would continue pumping water through the Delta. Even in their penultimate environmental study, a policy of reducing overall consumption of Bay-Delta water earned only a terse dismissal in an appendix; the CALFED agencies appear to have believed that so long as some water not legally committed to environmental protection remained in the system, they had no choice but to increase water deliveries. Yet the CALFED agencies also promised environmental recovery—legally, they had no choice—which they proposed to achieve partly through augmentation of environmental flows. They thus proposed to increase consumption and improve environmental conditions, while leaving less unallocated water—less slack—in the system, yet they simultaneously defined increased water supply reliability as one of their core goals, and rhetorically endorsed the importance of achieving a lasting program. These ambitions should be no surprise; the CALFED program merely reflected the underlying policy goals inherent in the state and federal

365 See CALFED EIR, supra note 57, at 3-8, 5-3 to 5-20 (considering, as possible programs for future management of the Bay-Delta, only options that could increase overall pumping levels); 1 RESPONSE TO COMMENTS: IMPACT ANALYSIS, in CALFED EIR, supra note 57, at CR-30 [hereinafter CALFED EIR RESPONSE TO COMMENTS] (rejecting consideration of export caps or reductions). The agencies also attempted to temper these increases by implementing a conservation program, but that program was deliberately toothless. "The conservation estimates in the Water Use Efficiency Program Plan," the agencies wrote, "are not targets, objectives, or goals. CALFED is not mandating that these or any other levels of water savings be achieved." Id. at CR-47.

366 See ENVISIONING FUTURES, supra note 1, at 42 ("CALFED worked under the premise that the Delta's basic configuration should remain unchanged and that environmental goals could be satisfied simultaneously with those of exporters and in-Delta interests.").

367 See, e.g., CALFED EIR RESPONSE TO COMMENTS, supra note 365, at CR-30 (describing how a program that emphasized water efficiency would not achieve CALFED's primary objective for water supply reliability). In subsequent litigation, the California Resources Agency has argued that any reduction in deliveries would have jettisoned CALFED's basic goals, and southern California water users have argued that such reductions were simply impossible. See Opening Brief for Petitioner-Appellant California Resources Agency at 13–14, Laub v. Davis, No. S138974 & No. S138975 (Cal. Supreme Ct., Mar. 24, 2006); e.g., Petition for Review of Metropolitan Water District of Southern California at 1, Laub v. Davis, No. S138974 & No. S138975 (Cal. Supreme Ct., Nov. 17, 2005) ("no evidence suggested the 'reduced exports' alternative was feasible").

368 To make sense of this seeming paradox, one must understand that paper allocations and actual wet-water flows often diverge. Prior to the CALFED program, some Bay-Delta outflow was theoretically surplus, meaning it remained instream but was not formally allocated to environmental use. Meanwhile, contractual allocations greatly exceeded actual deliveries, meaning there were substantial gaps between what contractors were allocated on paper and what they actually received. By allocating more water to the environment, the CALFED program created what on paper appears to be an environmentally-beneficial change. See Rieke, supra note 10, at 349 (describing the Bay-Delta Accord as increasing environmental water availability). But even as more paper water was committed to instream flows, those flows could contain less wet water, partly because paper allocations are not always met, see ENVTL. DEF., supra note 181, and partly because surplus unallocated flows that formerly remained instream now could go to the contractors.

369 CALFED ROD, supra note 5, at 9 (stating that solutions must "be durable"); see also ENVISIONING FUTURES, supra note 1, at 196 ("the language of the CALFED era has been steeped in assurances").
legal regimes for managing California water. But by attempting to increase consumption, protection, and reliability, the CALFED agencies predicated their program upon a dangerous choice.

Even as the CALFED agencies moved forward with that plan, warning signs abounded. The historic degradation of the Bay-Delta correlated with increased water consumption, and almost every agency report on the Bay-Delta's environmental problems pointed to accelerating water use as a major contributing cause. Some agency biologists were skeptical of an approach founded on increased exports, even if these increases were coupled with ecosystem restoration efforts and selective wet-season pumping. As one biologist put it, “[t]he real problem is too many straws in the water and not enough left in the Delta for habitat.” Funding also was tenuous; the environmental restoration projects that the CALFED agencies hoped would compensate for pumping increases would not be cheap, yet the agencies created no funding mechanisms to compensate if state and federal budget allocations ran short. Finally, the inherent dynamism and unpredictability of California's watersheds was no secret. California's water managers were well aware of the state's history of droughts and floods, its susceptibility to earthquakes, and its vulnerability to climate change, and all of these threats, as well as the widely-acknowledged lack of understanding of the Bay-Delta's ecology, ought to have suggested the danger inherent in a program designed to recover the environment and increase the amount and reliability of Bay-Delta water use. Such a program might succeed if brilliantly implemented by resourceful and well-funded managers, and under relatively benign and stable environmental conditions, but its chances of failure seem uncomfortably large.

370 See supra notes 337 & 342; CALFED ROD, supra note 5, at 2 (“diversions, along with [several other factors], have had a serious effect on the fish and wildlife resources in the Bay-Delta estuary”).

371 E.g., 1 CALFED BAY-DELTA PROGRAM, ECOSYSTEM RESTORATION PROGRAM PLAN, at C-024714 (2000) (noting that Bay-Delta species “evolved under a flow regime with pronounced seasonal and year-to-year variability”), C-024475, C-024477, C-024490 (describing the importance of winter outflows to Delta smelt, longfin smelt, and splittail), H-000013 (FWS comments expressing doubt about this approach); CALFED DIVERION EFFECTS ON FISH TEAM, DIVERSION EFFECTS ON FISH, at D-014884 (2000) (“High export rates in winter and spring appear to reduce survival of important fish.”); Determination of Threatened Status for the Sacramento Splittail, 64 Fed. Reg. 5963, 5968 (Feb. 8, 1999) (to be codified at 50 C.F.R. pt. 17) (“Dampening of peak spring flows by springtime diversions to storage facilities to replenish depleted reservoirs has deleterious effects on estuarine species such as the splittail, which have evolved in a system with periodic spring flooding.”).

373 See LITTLE HOOVER COMM’N, supra note 5, at 41.

374 See Freeman & Farber, supra note 9, at 866 (summarizing, though not adopting, this critique of the CALFED process).
Despite some successes, inherent fragility quickly began contributing to major problems. In the years following the CALFED decision, pumping increased, though not as much as the agencies had planned. Populations of several pelagic species, several already protected under the federal and state endangered species acts, also plummeted, and the correlation was suspicious at best. As one government scientist observed, “we have this coincidence where entrainments are up, fish populations are down, and water exports are up.” The decline was not limited to just a few species; while salmon populations seemed to be doing relatively well, most of the pelagic species that permanently live in the Bay-Delta were in decline, and new species were added to the Bay-Delta’s already-long list of threatened or endangered residents. By the spring of 2005, at least some of the agencies responsible for managing the Bay-Delta seemed to recognize that they faced a burgeoning crisis, and state government began a “Delta Vision” process designed to come up with a new plan. Meanwhile, environmental groups, whose confidence in the CALFED process, DWR, and particularly the federal government was almost completely gone, began returning to the courts.

Over the next two years, the pelagic species crisis only worsened. In 2006, surveys of fish populations revealed no improvement, despite another year of fairly benign weather. In 2007, after a dry winter, populations took another nosedive. Annual counts revealed hardly any delta smelt—once the Bay-Delta’s most abundant fish—and the largest numbers seen anywhere

375 See Mike Taugher, Despite Spending Billions, CalFed Can’t Fix Delta, CONTRA COSTA TIMES, May 1, 2005, at A10 (“Before you draw the conclusion that CalFed hasn’t done anything, you have to realize CalFed has done a hell of a job on half the problem,’ said Greg Gartrell, an assistant general manager at the Contra Costa Water District, referring to the salmon gains.”); Freeman & Farber, supra note 9, at 860–62 (describing other successes, including the (initial) lack of pump shutdowns and successful implementation of new groundwater storage projects). Fears persist, however, that the absence of pump shutdowns contributed to ecological declines, and that increases in salmon populations may be undone by planned future actions. See Matt Weiser, Reservoir Changes Stir Fears for Fish; State Officials, Anglers Worry About the Effect of a Federal Proposal on Delta Salmon Runs, SACRAMENTO BEE, July 24, 2005; Editorial, Determine the Cause of Delta Degradation, CONTRA COSTA TIMES, Aug. 7, 2005, at F4 (noting that in early 2005, water agency officials denied biologists’ requests to slow pumping rates).

376 See Taugher, Struggle, supra note 343 (showing pumping levels).

378 See sources cited supra note 17.

381 Mike Taugher, Delta Still Ailing Despite Wetter Year, CONTRA COSTA TIMES, Aug. 30, 2006, at F4.
were the dead fish caught at the DWR’s pumps. Almost concurrently, a state court judge ruled that DWR was violating the California Endangered Species Act and threatened to shut down the pumps, and a federal judge ruled that state and federal efforts to comply with section 7 of the federal Endangered Species Act were legally deficient. With few options left, DWR shut down its pumps for one ten-day period, and then resumed pumping at relatively low levels. “Drastic times,” DWR’s director explained, “call for drastic measures.” Those drastic measures now appear to be in place, and may become permanent; on August 31, 2007, a federal judge ordered a temporary pump cutback that state officials predicted would reduce water exports by a million acre-feet per year, and the officials anticipated that the limitations might well become permanent.

Though important, export pumping does not appear to be the exclusive cause of the crisis. Scientists are also evaluating other potential factors, such as pollutant loading and invasive species, and many think a confluence of stresses is the likeliest explanation. Reducing consumption also probably would not be a complete solution; though it could reduce environmental strains, such reductions alone probably cannot recover the Delta to a healthy state. But even if export increases are not the sole problem and reductions should not be the singular focus of long-term solutions, their probable contributing role confirms the danger inherent in attempting to achieve environmental recovery while also increasing an acknowledged source of environmental strain. At best, that approach substantially increased the risk of troubles much like the ecological declines CALFED now faces; at worst, it may have played a central role in causing them. Those declines also bode poorly for the future of any CALFED-like approach. Near-extinctions and major delivery cutbacks are exactly the outcomes the CALFED agencies intended to avoid, yet few disagree with DWR’s assessment that “[i]f we don’t fix the Delta”—which, of course, is what the CALFED agencies thought they were doing”—this is going to start happening every year.

382 See Taugher, Delta Smelt, supra note 19 (“the latest survey—which counts juvenile fish about ¾ of an inch long—surprised some biologists with yet another massive drop-off”); Matt Weiser, Fish Threatened with Extinction Shuts Delta Water Pumps, SACRAMENTO BEE, May 31, 2007.
383 See Barbassa, supra note 20 (describing state court litigation); Kempthorne, 2007 WL 1577896, at *31.
384 See Barbassa, supra note 20 (describing the pump shutdown); Weiser, supra note 19.
385 Pelletier, supra note 20.
386 See Taugher, supra note 21.
387 See ENVISIONING FUTURES, supra note 1, at 72–73 (discussing invasive species problems).
388 See, e.g., Mike Taugher, Delta Fish Populations: Agencies Mount Strategy Against Delta Fish Die-off, CONTRA COSTA TIMES, June 19, 2005 (discussing various suspected causes of fish die-offs in the Delta, including pesticide runoff, invasive species, and a change in salinity due to changes in the water pumping schedule).
389 See ENVISIONING FUTURES, supra note 1, at 149 (“the Delta will never again be as it once was”).
390 See id. (advocating evaluation of several potential solutions, some focused on infrastructure changes and other on pumping reductions).
391 Barbassa, supra note 20 (quoting Lester Snow).
Though one of the CALFED’s most salient failings, the pelagic species collapse is not its only problem. On both process and substance, CALFED fell short of its own goals. One of the most widely-praised of CALFED’s regulatory innovations—the EWA—became chronically short of funds. Water quality problems are ongoing, and those problems triggered new rounds of interagency litigation over responsibility for meeting in-Delta water quality standards. Though water exports did increase for a while, many of the infrastructure changes desired by water contractors have not occurred, and the fisheries collapses now create doubt about whether some of those changes ever will occur, or whether even pre-CALFED pumping levels can ever resume. Adaptive management, though theoretically central to the CALFED program, was largely absent. Finally, the political consensus supporting CALFED was short-lived. Legislators blasted CALFED’s accomplishments and funded it reluctantly, beneficiaries limited its funding by successfully opposing proposals to fund restoration through water user fees, the Bush and Schwarzenegger administrations provided little political support, independent audits and reviews called its decision making structure into question, water users and delivery agencies chose to make key decisions outside of the CALFED process, and many stakeholders quickly lost little faith that CALFED could achieve its intended results. The innovative institutional arrangements lauded by legal commentators soon appeared destined for an early sunset.

Meanwhile, many of the basic tensions underlying CALFED’s troubles are growing. According to some blueprints, consumption of Bay-Delta

392 See supra note 138 (describing vulnerable levees); see ENVISIONING FUTURES, supra note 1, at 55, 58 (describing urbanization problems).
393 See ENVTL DEF., supra note 181, at 16.
396 See, e.g., KPMG LLP, supra note 25, at 11 (quoting one interviewee: “[w]e have failed to adaptively manage the program”).
397 See ENVISIONING FUTURES, supra note 1, at 1.
398 See Freeman & Farber, supra note 9, at 873–75 (describing funding problems); ENVTL DEF., supra note 181, at 16.
399 CALIFORNIA 2025, supra note 293, at 114, 131 (noting CALFED was supposed to use a “beneficiary pays” approach).
400 See LITTLE HOOVER COMM’N, supra note 5, at 41, 56 (describing federal uninterest and limited funding); Jody Freeman, Editorial, Why is Arnold Afraid of the Water?, L.A. TIMES, Aug. 21, 2005, at M1.
401 See LITTLE HOOVER COMM’N, supra note 5, at 66; KPMG LLP, supra note 25, at 12.
402 See LITTLE HOOVER COMM’N, supra note 5, at 80 (describing the “Napa Agreement,” in which several water users and water supply agencies set a program for future Bay-Delta management without involving environmental stakeholders, the California Bay-Delta Authority, or wildlife agencies).
403 See KPMG LLP, supra note 25 (describing stakeholder views of the program, and noting that positive views mostly were based on achievements early in the program’s history).
404 See Taughers, CALFED Reorganization, supra note 27.
waters still is slated to increase. California's population continues to grow,405 with the heaviest growth likely to occur in hot, dry inland areas with high per-capita rates of water consumption.406 Rather than accommodating those population increases solely by increasing the efficiency of water use—a solution that NGO reports and even DWR's own California Water Plan suggest would be feasible—federal, state, and local water supply agencies all indicated, even as the Bay-Delta's most recent crisis worsened, their intentions to pump more water, much of it from the Bay-Delta.407 Though called into doubt by recent events, these predictions

405 Hanak, supra note 178, at v ("[T]he absolute increases predicted over the coming decades are indeed phenomenal. Between 2000 and 2030, the state is expected to add 14 million residents, to reach a total of 48 million."); 1 2005 Water Plan, supra note 110, ch. 3, at 3-4 (describing projected growth).

406 See Hanak, supra note 178, at v–vii, 8–11 (noting that half of all growth will occur in these areas).

407 Reclamation recently renewed almost all of its long-term water supply contracts. See Press Release, U.S. Bureau of Reclamation, Central Valley Project Water Contracts are Renewed for Farms and Cities (Feb. 25, 2005), available at http://www.usbr.gov/newsroom/newsrelease/detail.cfm?RecordID=4281; Martin, supra note 30 (describing controversies over contract renewals). Though some contractors rarely used their full allocations, the Bureau of Reclamation proposed renewing at the full amounts and at subsidized rates, and has stated its intent to deliver more water to some contractors. See Environmental Working Group, Virtual Flood, available at http://www.ewg.org/reports/virtualflood (describing projected increases in delivery amounts). Concurrently, the Bureau is proposing actions to alter the CVP's infrastructure to allow increased deliveries, including raising Shasta Dam and increasing the capacity of the south-Delta pumping system. See 2 2005 Water Plan, supra note 110, ch. 5, at 5-2 to 5-3 (describing projects designed to increase south delta pumping).

DWR has partnered in pursuing those infrastructure changes. Id.; see, e.g., Cal. Dept of Water Res., South Delta Improvements Program 1, available at http://baydeltaoffice.water.ca.gov/sdb/sdip/documents/draft_eis_eir/SDIP_brochure.pdf. Additionally, in published reliability reports, DWR predicts the State Water Project can reliably supply almost a million acre-feet more water than it has averaged in the past. Compare Delivery Reliability Report, supra note 333, at 17–18 (predicting SWP delivers close to three million acre-feet per year), with Planning and Conservation League v. Dep't of Water Res., 83 Cal. App. 4th 892, 908 n.5 (2000) ("Actual, reliable water supply from the SWP is more in the vicinity of 2 to 2.5 maf of water annually."). Because California law now requires demonstration of reliable water supplies as a condition precedent to major development, local governments are likely to rely on DWR's predictions, and optimistic projections could beget more houses and less conservation. See Delivery Reliability Report, supra note 333, at 2 (describing the report as a planning resource).

While many localities are conditioning new development on conservation and some areas have utilized water shortages to slow new growth, few local agencies have shown the inclination to reduce existing levels of use. See Hanak, supra note 178, at xi, 85–87; compare Craig Anthony Arnold & Leigh A. Jewell, Litigation's Bounded Effectiveness and the Real Public Trust Doctrine: The Aftermath of the Mono Lake Case, 8 Hastings W.-Nw. J. Envtl. L. & Pol'y 1, 10–20 (2001) (describing conservation efforts in Los Angeles). Instead, local agencies' urban water management plans generally predict unchanged per capita water consumption, and many of those plans also project increased overall use, some of it from the Bay-Delta. See Hanak, supra note 178, at vii (describing utilities' dubious projections of future surpluses), xi, 11 (noting that current trends suggest that per capita use will increase), 46–47 (describing MWD's plans to take more Bay-Delta water), 85–87 (noting that current Urban Water Management Plans as a whole do not project any reduction in per capita consumption).
and the infrastructure projects designed to fulfill them still remain on the table.\footnote{408}{As this Article goes to press, DWR’s reliability report still predicts increased deliveries. See Delivery Reliability Report, supra note 333, at 17. DWR and the Bureau have delayed but have not abandoned the South Delta Improvements Program, a project designed to increase pumping capacity, and the Bureau of Reclamation is still attempting to proceed with the Intertie project, which would have the same effect.}

Meanwhile, environmental protection requirements have not changed. Despite the recent period of Republican political dominance, environmental statutes remain largely intact, and political support for such changes has been largely absent.\footnote{409}{See, e.g., Pub. Policy Inst. of Cal., Special Survey on Californians and the Environment 9 (2004) (finding broad public support for environmental protection); Pub. Policy Inst. of Cal., Special Survey on Californians and the Environment 9 (2003) (also finding broad public support for environmental protection); Pub. Policy Inst. of Cal., Special Survey on Californians and the Environment 13 (2002) (finding most Californians believe strict environmental regulations are worth costs to the economy); Harris Interactive, Three-Quarters of U.S. Adults Agree Environmental Standards Cannot Be Too High and Continuing Improvements Must Be Made Regardless of Cost (Oct. 13, 2005), http://www.harrisinteractive.com/harris_poll/index.asp?PID=607 (last visited Nov. 18, 2007).} Consequently, so long as water quality problems remain chronic and species populations hover near extinction, citizen suits or agency enforcement actions could again compel major changes in water management. Yet political commitments to reliability also remain and may even be growing. Property rights advocates have spent recent years attempting, with partial—but diminishing—success, to use constitutional takings litigation to increase the certainty of water rights,\footnote{410}{See, e.g., Tulare Lake Water Basin Storage Dist. v. United States, 49 Fed. Cl. 313, 314 (2001); Roger J. Marzulla, Taking and Water Rights, The Water Report, Nov. 15, 2005, at 1–6 (describing several pending cases); but see Allegretti & Co. v. County of Imperial, 138 Cal. App. 4th 1261 (2006) (distinguishing and criticizing Tulare Lake); Casitas Mun. Water Dist. v. United States, 76 Fed. Cl. 100, 106 (2007) (declining to follow Tulare Lake, even though the two opinions were written by the same judge); Klamath Irrigation Dist., 67 Fed. Cl. 504, 538 (2005) (“Tulare appears to be wrong on some counts, incomplete in others and, distinguishable, at all events”) (emphasis in original).} and many water users have sought regulatory commitments to the same effect.\footnote{411}{E.g., Hundle, supra note 10, at 418, 423 (describing demands made by Metropolitan Water District and Westlands Water District during the CALFED process); see also Thompson, Joseph Sax’s Scholarship, supra note 316, at 378 (arguing that active enforcement of reasonable use rules could introduce uncertainty and compromise markets); Frederick Cannon & Ronald H. Schmidt, Why Water Markets are Good for California Agriculture, in Achieving Consensus 65–66 (arguing that clearer water rights and marketing can remove the need for an “arbitrary ‘public trust doctrine’”).}

Even as CALFED falters, California water management remains defined by incentives to consume up to, or past, the brinks of illegality defined by environmental laws, mandates for environmental protection, and a reluctance to relinquish reliability.

Nor have reform movements accomplished much to diminish these underlying tensions. Faced with competing wants for more consumption, protection, and reliability, many commentators have suggested the answers lie in fundamental legal and administrative reforms designed to allow greater institutional adaptability. Some environmentalists, for example,
argue that the flexibility promised by the public trust doctrine and reasonable use requirement ought to be more widely invoked, and that water rights ought to be as contingent and as subservient to evolving community needs in practice as they are in theory. Meanwhile, urban users, economists, and a mix of government bureaucrats and even environmentalists have criticized the system’s incompatibility with markets, and its inability to simply redirect water to places, like cities, where users would be willing to pay substantially more for it. Sometimes these critiques are as opposed to each other as to the status quo—water trading arouses widespread skepticism from some environmental advocates, and some scholars have suggested that pro-environmental regulatory actions could counterproductively stall markets—but they derive from related roots, as reformers view increased flexibility, if not simply top-down reallocation, as indispensable to rationalizing the status quo system.

But while reformers have achieved some successes, legal evolution has been incremental at best. Despite widespread attacks, the appropriative rights regime has not fundamentally changed. Federal and state contractual amounts are generally unaltered. Pricing schemes are different, but only slightly so, and federal subsidies remain. No wholesale re-examination of reasonable use requirements has taken place; instead, many of the uses Eric Freyfogle described as “an affront to attentive citizens who know stupidity when they see it” continue, with defenders arguing that one person’s stupidity is the foundation of another’s financial future. Efforts to trump the appropriative system through federally mandated agriculture-to-urban

412 E.g., Graf, supra note 10, at 264–65.
413 See, e.g., CONGRESSIONAL BUDGET OFFICE, supra note 53, at 1 (“relatively rigid allocations of water and the institutions that govern them have become increasingly inefficient and harder to justify”); Glennon, supra note 97, at 1900 (“Agricultural interests have a stranglehold on water in the West.”).
414 E.g., Thompson, Joseph Sax’s Scholarship, supra note 316, at 378.
415 See, e.g., CONGRESSIONAL BUDGET OFFICE, supra note 53, at Summary (“Properly done, reform could improve economic efficiency in allocating water among commercial uses, provide more water for public purposes such as the environment or Native American tribes, and could address equity concerns regarding the portion of project costs that the public must pay.”).
418 See Env’t Working Group, supra note 169.
419 Freyfogle, supra note 214, at 43.
420 See, e.g., supra notes 315 and 319 (quoting letters and press releases from the California Farm Water Coalition). While the public trust doctrine has sometimes provided crucial environmental protection, and while reasonable use challenges occasionally have succeeded, to date those are exceptional outcomes. See Thomas, supra note 10, at 28 (“in practice courts have hesitated to declare any use of water unreasonable”).
reallocations have met judicial rejection.421 Finally, water transfers, though increasing, remain restrained by the foundational legal principle that water rights are highly contextual and place-specific.422 Consequently, the modernized system postulated by reformers in which water rights are readily transferable and economic principles and environmental protection become foundational principles guiding appropriation, exists only sporadically.423 That absence of significant reform has important implications for programs, like CALFED, that theoretically depend upon adaptation; with flexibility as much an aspiration as a reality, approaches relying upon institutional dexterity to sidestep tensions among consumption, protection, and reliability will likely remain fragile.

CALFED’s water management struggles thus illustrate the difficulties caused by a conceptual framework that emphasizes both consumption and protection while not addressing the consequent costs to reliability. Despite their many innovations, the CALFED agencies endangered their success by premising their response to the Bay-Delta’s ills on the assumption that they could reliably increase both consumption and protection, and that through adaptation, ample funding, and managerial innovation they could finesse whatever conflicts arose. That assumption followed convention; the CALFED agencies were by no means unique in attempting to keep restraints on consumption as minimal as potentially possible, and in leaving little buffer or margin for error in their system. But they were managing a dynamic and poorly understood system, and when natural variability or unpredictability strikes, as it almost inevitably will, a management scheme premised on such an approach will prove fragile. Partly because of that fragility, an ambitious program that needed to succeed, and that had many tools to achieve success, now appears to have failed.

\section{V. Toward More Robust Solutions}

The CALFED process addressed a classic environmental dilemma: people often want more of a resource, aspire to use it more reliably, demand protection of ecological systems dependant upon that resource, and are reluctant to change the rules that exacerbate conflicts among these competing goals. Similar underlying tensions emerge from debates over energy consumption, fisheries management, and timber harvests, to provide just a few examples. Growing populations and economies often increase demand for natural resource consumption, which in turn increases adverse

421 In 2002, the Secretary of the Interior attempted to compel Imperial Irrigation District (IID), a major agricultural user, to reduce its Colorado River water use in favor of Metropolitan Water District, a major urban supplier. IID sued the federal government, and won. See Colorado River, Notice of Opportunity for Input, 68 Fed. Reg. 22,738 (Apr. 29, 2003).

423 Metropolitan Water District, the water supplier for much of southern California, has probably been more successful than any other agency at using marketing and innovations to increase the reliability of its water supply. See ENVISIONING FUTURES, supra note 1, at 97 (describing Metropolitan Water District’s efforts).
environmental consequences. Those environmental consequences create legal risk and major economic, social, and political problems can arise if consumption patterns must abruptly change.424 Just as with California’s waters, environmental dynamism and uncertainty cause resource availability to vary, and thus resource managers, like the CALFED agencies, must develop solutions likely to last in a changing world. Because of these underlying similarities, the CALFED process, despite its political and ecological intricacies, provides a useful example for understanding many environmental crises.

CALFED’s response to that challenge illustrates that when law and policy mandate environmental protection yet encourage more consumption, and users demand steady, predictable allocations—all against a backdrop of environmental variability and change—only brilliant management or engineering, plush funding, and good luck can stave off incessant conflict. To put it very simply, the consume-to-the-brink conceptual model does not work in an imperfect and changing world. CALFED’s troubles demonstrate the utility of a conceptual approach that reduces such conflict and responds to the tensions between protection, consumption, and reliability. Absent utilization of such an approach, managers will likely continue proposing solutions with little margin for error, not realizing that the resulting management failures are predictable outcomes rather than anomalies, and legislators or agencies may continue promoting consumption even where resources are scarce. CALFED’s troubles also illustrate why preserving margins of error is not excessive caution or overregulation. Instead, it is a reasonable, if not indispensable, technique to preserve the reliability upon which both resource users and environmental systems often depend, even as those environmental systems change and behave unpredictably.

Recognizing tensions, though important, is just a first step; sustainable management of scarce and dynamic resources also requires actual tradeoffs. A reliability-based conceptual model can inform those tradeoffs, just as it can explain tensions fostered by existing frameworks. It explains the dangers—both environmental and economic—posed by encouraging consumption of scarce resources, for it predicts that such encouragement undermines reliability. Similarly, it demonstrates the practical importance of restraining our expectations for both consumption and protection, when both options exist, and reserving some slack in our natural systems. And when environmental protection requirements are minimally flexible—as is frequently the hallmark of American environmental controversies, for controversy often starts with a protected species or ecological system in crisis—a reliability-focused conceptual framework acknowledges that consumption levels and reliability are inversely proportional. If protection cannot give, and neither institutional adaptability nor engineering solutions

can resolve these basic tensions, either consumption or reliability often must—and decreasing consumption can offer huge reliability benefits.

California’s water management crises provide case studies in such environmental inflexibility, and illustrate how such tradeoffs might be made. Because existing law demands more protection, efforts to increase consumption or reliability at environmental expense are likely to prove tenuous. Moreover, changing these laws is not a simple or popular proposition. The public health, recreational, and economic benefits they create weigh against reductions in protection, and provide a strong foundation for their electoral support. If less easily quantifiable values like the psychological importance of a healthy environment are added to the equation, environmental protection of water resources seems a very good investment.

The laws protecting California’s water also reflect widely shared normative judgments. The premises of the public trust and reasonable use doctrines—that water is a public resource in which individual users hold only contingent rights—are now ingrained in our legal system, and reflect the shared intuition that a river never can entirely lose its public

425 The history of timber harvesting in the Pacific Northwest provides a cautionary tale for any resource users counting on political muscle to trump legal mandates. Logging interests appear to have assumed that regardless of what federal environmental laws said, their industry was politically unstoppable. That assumption ultimately proved wrong and led to drastic changes in national forest management. See generally YAFFEE, supra note 1 (describing this history).

426 See 2005 WATER PLAN, supra note 110, at 7-2 ("[i]mproved water quality can directly improve the health of Californians, thereby improving the state’s standard of living and reducing the burden and costs on the state’s healthcare system").

427 See CAL. STATE PARKS PLANNING DIV., PUBLIC OPINIONS AND ATTITUDES ON OUTDOOR RECREATION IN CALIFORNIA 26–27, 46 (2003) (showing data on recreational activities: poll participants who fished placed a $25.90/day value on that activity); 2005 WATER PLAN, supra note 110, at ch. 24 at 24-1 to 24-4 (pointing to the extent of recreational water uses and the connections between water management and natural resource protection and recreational water uses: “In 2002, about 150 million adult participation-days were spent in recreation activities directly dependant on water...total economic output from freshwater fishing exceeded $4 billion” in 2001).

429 See 2005 WATER PLAN, supra note 110, at 3-4, 4-25 to 4-26 (describing the economic and public values of water resources); Thomas, supra note 10, at 10–12 (explaining the value of aquatic biodiversity).

430 See, e.g., 1 2005 WATER PLAN, supra note 110, at 3-4 (describing the tourism value of aquatic ecosystems); at 24-2 (“Water-dependent recreation prompts long-term investments while creating jobs in concessions, hotels, restaurants, and retail stores.”).

431 Some studies attempt to quantify those values, but their measurement technique—asking people what they would pay for preservation—is controversial and produces variable results. Nevertheless, in its 1997 review of Reclamation’s water policies, the Congressional Budget Office noted that estimated non-use values “are two orders of magnitude greater than the estimates for use values.” CONGRESSIONAL BUDGET OFFICE, supra note 53, at 54.
character.432 Environmental statutes stem from a similar philosophical fount; they reflect widely shared perceptions that while some environmental exploitation is allowable or even desirable, no exploiter has a right to exterminate species or pollute without constraint.433 To limit those principles, and render environmental protection conditional on non-interference with, or payment to, private users, would deprive the public of theoretically venerable rights it has recently shown little inclination to cede. Such a shift would represent a multi-billion-dollar relinquishment of property rights presently defined as public. Perhaps not surprisingly, popular support for environmental protection laws remains robust, and the laws that protect California's waters are unlikely to weaken.434 That support leaves baseline requirements for environmental protection somewhat inflexible and, absent solutions capable of removing zero-sum conflicts, provides water managers with stark choices between prioritizing reliability or consumption.

Though not equivalently legally protected, supply reliability has tremendous practical importance.435 Widely fluctuating water supplies can negate the ability of farmers to plan and sustain predictable crops. Urban use is similarly limited in its short-term flexibility; though urban residents do accept severe short-term cutbacks in times of drought, their suppliers have little ability to cut users off entirely and cannot sustain draconian rationing without severe discontent.436 Wide fluctuations also encourage costly miscalculations, as planners optimistically assume better-year water supplies will be the norm.437 Most users do have some ability to accommodate variability: some growers can fallow low-value crops, urban areas can ration use, and multiple users receive some insurance from reservoirs and aquifers.438 But as the range or suddenness of variability

\begin{footnotesize}
\begin{itemize}
\item 432 See New Jersey v. New York, 283 U.S. 336, 342 (1931) ("A river is more than an amenity, it is a treasure."); Thomas, supra note 10, at 12-15 (describing this theory of prior public ownership—and the ways in which existing law conflicts with it).
\item 433 See Thomas, supra note 10, at 11–12 (describing the ethical foundations for biodiversity protection requirements).
\item 434 See supra note 409 and accompanying text (summarizing polling results); see also California 2025, supra note 293, at 20 (stating that Californians "favor relying on conservation of the current water supply rather than building new dams and water storage systems").
\item 435 See Diamond, supra note 86, at 152–55 (attributing many difficulties faced by past societies in the southwest to unpreparedness for environmental change).
\item 436 See Coolen et al., supra note 191, at 45–46 (describing urban water suppliers’ efforts to maximize reliability). Even aquatic species, though adapted to some level of variability, also can be threatened by it, particularly if their populations already are depleted and therefore vulnerable. See also 1 2 0 0 5 WATER PLAN, supra note 110, at 9-2 (discussing the connection between ecosystem restoration and water supply reliability, and increased reliability’s potential for fewer conflicts over endangered species).
\item 437 See Thompson, Tragically Difficult, supra note 72, at 262–65 (discussing propensities for miscalculation in the face of uncertainty).
\item 438 Some agencies use a “portfolio” approach to water supply, in which they hedge uncertainty by holding multiple rights, or by backing up surface water supplies with groundwater, surface water stored in subsurface banks, or desalinated seawater. See, e.g., SAN DIEGO COUNTY WATER AUTHORITY, AN OVERVIEW (2001), available at http://www.sdcwa.org/about/pdf/overview.pdf (describing efforts to achieve “[r]eliability [t]hrough [d]iversification”).
\end{itemize}
\end{footnotesize}
grows, costs are likely to mount.430 A reliable but, on the average, smaller water source thus can be more valuable than a larger but more erratic supply or a source subject to potentially drastic cutoffs.440 For these reasons, it is easy to understand why water users would want to graft more certainty into the laws governing California water rights, and why they would fear legal principles, like public trust and reasonable use, that theoretically place discretion for implementing an inherent flexibility in government hands.441 Similarly, reliability’s benefits caution against assumptions that resource users will knowingly accept reduced delivery reliability as the quid pro quo that allows increased consumption. California’s troubles instead suggest that management solutions premised on flexibility and adaptation, though deeply rooted in California water law, always have offered a partially false promise.442

If something must give—that is, if adaptive systems, ample funding, or clever engineering cannot make these underlying tensions disappear—then consumption, although valuable, often is the most amenable to limitation. While California must consume lots of water, and derives many benefits from doing so, those benefits do not require consuming as much water as California does at present, let alone more.443 California’s urban water use remains highly uneven in its efficiency, and millions of acre-feet could be saved every year through more aggressive urban conservation and recycling.444 Similarly, agricultural water use presents enormous and relatively low-cost opportunities for use reductions. Much of California’s agricultural water nurtures high-water-demand but low-value crops. Studies have found that when charged water prices approach market levels, growers shift production to higher efficiency and higher value crops.445 In addition, huge volumes of

\begin{quote}
These strategies ameliorate but do not resolve uncertainty problems. Groundwater provides a short-term hedge, but in longer droughts groundwater supplies also can be rapidly depleted, and California’s overall groundwater use currently is not sustainable. Users of multiple water supplies may weather localized shortfalls, but in a statewide drought such hedging may be no more effective than using index funds to insure against a general stock market downturn. 401 See 1 2005 WATER PLAN, \textit{supra} note 110, at 3-13 to 3-14. And while desalination might someday be failsafe, for the foreseeable future California is not likely to have enough desalination plants on line to provide that security. 442 See \textit{Cooley et al.}, \textit{supra} note 191, 25–29.
\end{quote}

430 See \textit{Envisioning Futures}, \textit{supra} note 1, at 105–06, 174 (contrasting the costs of slow and rapid adjustment).

440 See \textit{id.}

442 See supra notes 301–329 and accompanying text.

443 See \textit{supra} notes 188–192 and accompanying text; \textit{Peter H. Gleick et al., California Water 2030: An Efficient Future} 5 (2005) [hereinafter Gleick et al., \textit{California Water}]; 444 See \textit{Hanak}, \textit{supra} note 178; Gleick et al., \textit{Waste Not}, \textit{supra} note 190.

445 See Gleick et al., \textit{California Water}, \textit{supra} note 443, at 20–30, 34–36 (modeling agricultural demand under high-efficiency scenarios); Hanemann, \textit{supra} note 154, at 83; e.g., David Goldhamer & Elias Fereres, \textit{The Promise of Regulated Deficit Irrigation in California’s Orchards and Vineyards}, in 4 2005 WATER PLAN, \textit{supra} note 110, at 4-207 to 4-210 (2005); (estimating that growers of vine and orchard crops could save between 1 and 15 million acre-feet annually, without impacting economic yield, by using regulated deficit irrigation).
water irrigate fields facing toxic drainage problems, which state and federal taxpayers probably will ultimately pay to solve, and decreasing or eliminating deliveries to those lands could save hundreds of thousands of acre-feet. 446

Water consumption also creates substantial collateral costs. Someone must pay for delivery infrastructure and for mitigating the environmental impacts of deliveries. Often that someone is the taxpayer; much water delivery in California is subsidized, and environmental mitigation and restoration projects typically are publicly funded. 447 Using less water can substantially reduce energy demand, an important outcome in a state trying to control ozone pollution, reduce its greenhouse gas footprint, and avoid repetition of its recent rolling blackouts. 448 Similarly, if less water is used, less wastewater requires treatment and disposal. 449 Consequently, using less water can benefit both consumers and government; as with almost any other natural resource, efficient use can bring economic rewards. 450

Consumption reductions are by no means without costs. As with many natural resources, water use does generate economic benefits. No matter how aggressively they conserve, homes still require water, and California faces chronic housing shortages. 451 By allowing more lands to be cultivated, increased water supplies can increase agricultural activity, providing jobs, lowering prices, and boosting rural economies. Water use is essential to industry; making a computer chip, for example, requires lots of water. 452 Land-based recreation similarly necessitates irrigation; the public parks and golf courses that so many Californians value would appear drastically different if landscaping hoses ran dry. These needs, and many others, preclude consumption reductions from constituting an easy fix, and the unavoidable challenges of restraining use of a common-access resource—California’s hundreds of water-supply agencies are generally vigorous advocates for increased exploitation of water supplies—will only add to the political difficulties inherent in a policy of restraint. Nevertheless, tradeoffs must be made somehow, and if environmental commitments are fairly

447 See Environmental Working Group, supra note 169 (describing subsidies).

448 See 1 2005 WATER PLAN, supra note 110, at 3-16 (noting that water management consumes “approximately 20 percent of the state’s total electricity, 30 percent of the natural gas, and 88 million gallons of diesel”); RONNIE COHEN ET AL., ENERGY DOWN THE DRAIN: THE HIDDEN COSTS OF CALIFORNIA’S WATER SUPPLY, at v (2004).

449 See CONGRESSIONAL BUDGET OFFICE, supra note 53, at 25 (“Conservation programs, however, generally help reduce problems with water quality.”).

450 Water use efficiency’s benefits also “include better water quality and more water in streams and rivers Water use efficiency can also reduce peak demand, curb runoff from landscape irrigation, and reduce green waste caused by inefficient watering of landscapes.” 2 2005 WATER PLAN, supra note 110, at 22-4.

451 Affordable and infill housing, which generally occupy smaller footprints, tend to require less water. See 1 2005 WATER PLAN, supra note 110, at 4-24 (“Larger residential parcels tend to consume more water per capita than do smaller parcels.”).

inflexible and reliability is unavoidably important, consumption reductions offer a promising place to start.

VI. CONCLUSION

In a recent chronicle of the impending consequences of climate change, Elizabeth Kolbert tells a brief but revealing anecdote about western water management. She quotes David Rind, a climate scientist at the Goddard Institute for Space Studies, describing reactions to model results predicting climate change could cause severe future droughts: “I gave a talk based on these drought indices out in California to water-resource managers... And they said, ‘well, if that happens, forget it.’ There’s just no way they could deal with that.”

Kolbert did not tell this story to fault the water managers; her criticism instead was directed at Bush Administration’s decision to respond to climate change solely through adaptation, not prevention. But those managers’ attitude toward managing a different future—a future that will only be made more difficult if western water managers continue to subsidize and promote increased water consumption—suggests the inadequate paradigms informing much environmental management. The scenario they deemed unmanageable was an extreme, but possible, version of the probably-recurring reality of our future, particularly if we cannot slow climate change. Some resources will remain abundant, and we may find ways to replace others, but problems with variable, scarce resources, which presumably will remain protected by popular preferences and legal mandates limiting environmental degradation, are likely to recur over and over again. Whether the resource is water, energy, fisheries, forests, clean air, coastal wetlands, or something else, we are inescapably in a world where management schemes must address dynamism and scarcity, no matter how difficult that task may be.

The CALFED experience illustrates that our present conceptual frameworks are ill-suited for that job. If any environmental crisis gave traditional approaches the chance to shine, it was this one; levels of expertise, political attention, and funding in the CALFED process far exceeded those normally available to environmental managers, and some of the resulting policies were genuinely creative. But the CALFED agencies’
decision making, by discounting the basic tensions between consumption, protection, and reliability, and placing faith that regulatory brilliance, ample funding, and benign environmental conditions could allow increased consumption even at the brink of environmental non compliance, laid the foundations for solutions that would prove fragile in the face of change. The consequences already are manifest; with species on the brink of extinction, pump shutdowns threatening to become chronic, and agencies scrambling back to the drawing board, an effort once hailed as a model is in shambles. The CALFED experience amply demonstrates the need for a better way of understanding and solving environmental problems.

By integrating the relationships between consumption, protection, and reliability, this Article’s proposed conceptual framework can facilitate better understanding and can help environmental managers achieve more lasting solutions. By acknowledging inherent tensions and by demonstrating that when protection requirements are inflexible, increases in consumption typically have direct reliability costs, this conceptual framework explains the necessity of tradeoffs. It similarly explains the reliability risks inherent in assuming that environmental limits are fixed and determinable, and that consuming to those limits is desirable and safe. Finally, this framework illustrates how maintaining margins for error and reducing consumptive footprints can keep management schemes robust and resource allocations reliable, even as environmental conditions change.