

270 Canyon Oaks Santa Cruz, CA 95065

TECHNICAL MEMORANDUM

Date: April 24, 2017

To: Grand Canyon Trust and the Center for Biological Diversity

From: Dustin Mulvaney, PhD, Ben Toscher, MS, & Tiffany Wise-West, PhD,

EcoShift Consulting, LLC

Subject: Greenhouse Gas & Water Footprints of Oil Shale & Tar Sands Resources &

Projects in the Upper Colorado River Basin

1. INTRODUCTION & HIGHLIGHTS

The objective of this study was to determine the water footprint and greenhouse gas (GHG) emissions footprint for **oil shale (OS)** and **tar sands (TS)** lands available for lease, and projects under lease or proposed in the Upper Colorado River Basin. Areas analyzed in this project are mainly federal lands, but also include some private and state lands. In 2012, the Bureau of Land Management designated 132,220 acres of STSAs as available for TS development and 678,700 acres of public lands for OS development.

- Oil shale water & GHG footprint estimates are based on federal lands available under a Research Demonstration and Development (RD&D) lease and specific proposed and existing OS development projects.
- Tar sands water & GHG footprint estimates include specific proposed and existing developments and federal commercial lease-available Special Tar Sands Areas (STSAs).

Table 1 shows resource volumes for federal lands available for lease with ranges for the water and GHG emissions footprints associated with developing these federal OS and TS resources. The fossil fuel resource volumes (MMbbls or million barrels) are based on in place estimates from the USGS and DOI (see footnotes 6 through 8). All sources and assumptions are in the appendices. In place resources with a yield greater than 25 gallons per ton and 25 feet thick (depending on the formation) or more were considered economically viable. Wyoming is an exception, where a less rich resource led assessors to screen the resource with 15 gallons per ton and 15 feet thick.³

_

¹ SITLA (School and Institutional Trust Lands) lands are also available Utah, but were not included in the scope except where they are included in an existing or proposed TS or OS development.

² Department of Interior. 2013. Approved Land Use Amendments/Record of Decision for Allocation of Oil Shale and Tar Sands Resources on Lands Administered by the Bureau of Land Management in Colorado, Utah, and Wyoming and Final Programmatic Environmental Impact Statement. March 2013. http://ostseis.anl.gov/documents/docs/2012_OSTS_ROD.pdf

³ USGS used a lower economic threshold for fossil fuel deposit inventories in Wyoming to account for the extensive, but less rich, resource.

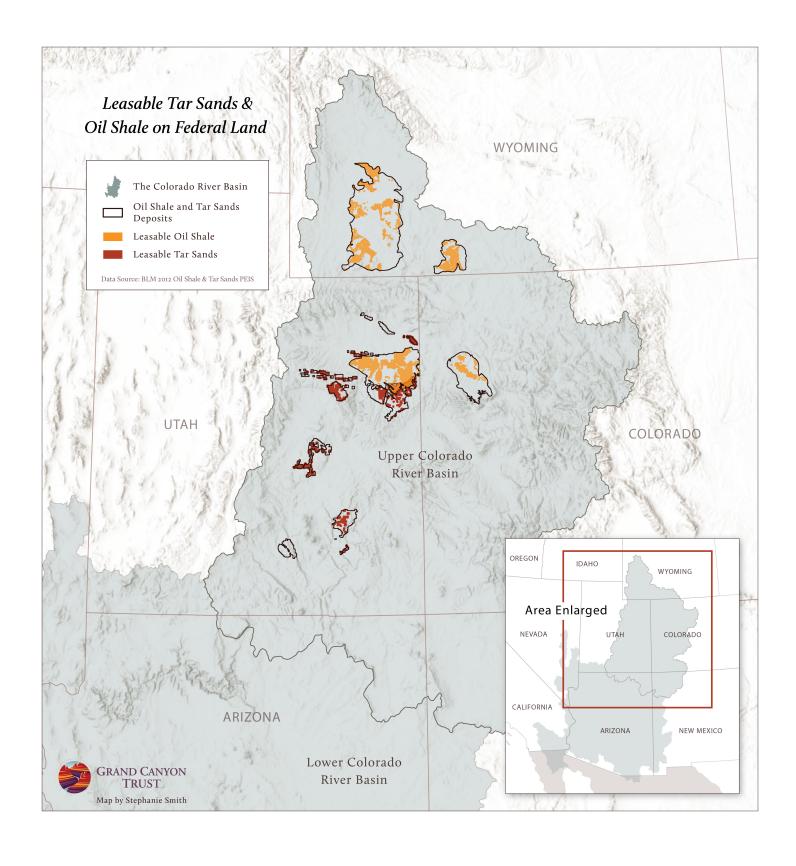


Table 1. Range of GHG and water footprints across all technologies, emission factors, and water use factors evaluated for "Available for Lease" Oil Shale (OS) Resources in CO, WY and UT and Tar Sands (TS) in Special Tar Sands Areas (STSAs) "Available for Lease for Commercial Development" in Utah.

Federal Resource	Resource Volume (MMbbls)	Area (ac)	${ m GHG}$ emissions footprint ${ m (GT~CO_{2e})}^4$	Water footprint (MMBbls Water) ⁵
OS - Piceance Basin Available for Lease ⁶	7,890		2.14 – 2.97	461 – 18,432
OS - Green River & Washakie Basin Available for Lease ⁷	35,074	678,700	9.50 – 13.19	10,522 – 420,889
OS –Uintah Basin Available for Lease ⁸	26,703		7.23 – 10.04	8,011 – 320,437
TS – Utah Special TS Areas (STSAs)		132,200		
Available for Lease for Commercial	4,125		1.32 - 1.43	2,063 - 109,313
Development ⁹				
Totals	73,792	810,900	20.19 – 26.63	21,057 - 869,071

Water footprints are reported in units of millions of barrels of water (MMbbls water; 1 barrel equals 42 fluid gallons). GHG emissions footprints are reported in gigatons of carbon dioxide equivalent (GT CO₂e). The footprints for each project type were analyzed by several extraction technologies commonly proposed since there is a great deal of variation and speculation on the water use requirements for extraction of OS and TS. To provide context for the sum of all federal OS and TS, consider that:

- The range of projected GHG emissions footprint from developing 69,667 MMbbls of federal OS and 4,125 MMbbls of federal TS is at least 20.19 GT CO₂e and as much as 26.63 GT CO₂e.
- The GHG emissions associated with developing federal OS and TS resources is between three and 4.5 times U.S. 2014 GHG emissions (6.70 GT CO₂e).
- The water footprint of developing OS & TS on leasable federal lands (Table 1) equals one-fifth to eight times the annual flow of the Colorado River.

Page 2 of 43

⁴ The GHG emissions footprint is the total well-to-wheels life cycle emissions from extracting, processing, and turning fossil fuel resources into final products.

⁵ The water footprint is based on the local water use needed to extract and upgrade fossil fuel resources. Water used to refine final products or cool power plants is not included in this total.

⁶ U.S. Geological Survey. 2010. In-Place Oil Shale Resources Underlying Federal Lands in the Piceance Basin, Western Colorado. Fact Sheet 2010–3041, Department of Interior, June 2010.

⁷ U.S. Geological Survey. 2011. In-Place Oil Shale Resources Underlying Federal Lands in the Green River and Washakie Basins, Southwestern Wyoming. Fact Sheet 2011–3113, Department of Interior, October 2011.

⁸ Department of Interior. (2013). Approved Land Use Amendments/Record of Decision for Allocation of Oil Shale and Tar Sands Resources on Lands Administered by the Bureau of Land Management in Colorado, Utah, and Wyoming and Final Programmatic Environmental Impact Statement. March 2013, Bureau of Land Management. http://ostseis.anl.gov/documents/docs/2012_OSTS_ROD.pdf

⁹ U.S. Geological Survey. Natural Bitumen Resources of the United States. Fact Sheet 2006–3133 November 2006.

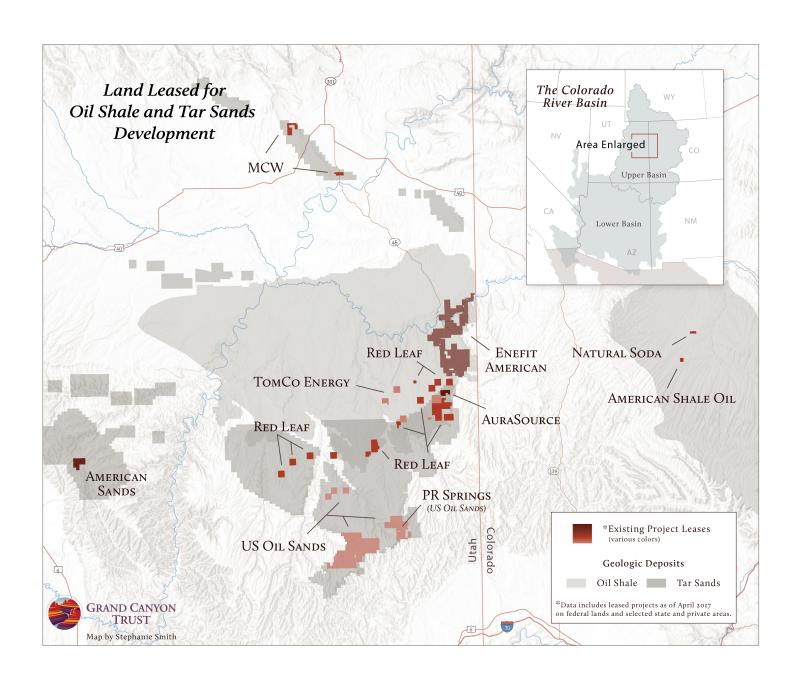


Table 2 below lists the OS and TS projects that are included in the water- and GHG emissions footprint results presented in Table 3. Data for these projects were taken from RD&D leases and company documents.

Table 2. Oil shale (OS) and tar sands (TS) projects and project categories included in primary results

Project	Туре	Project Category
American Shale Oil LLC RD&D Round 1 Lease - Rio Blanco County, CO ¹⁰	Oil Shale	Federal
Enefit American Oil RD&D Round 1 Lease (includes BLM preferential lease) - Vernal, UT	Oil Shale	Federal
AuraSource RD&D Round 2 Lease - Vernal, UT	Oil Shale	Federal
Natural Soda Holdings RD&D Round 2 Lease - Rio Blanco County, CO	Oil Shale	Federal
Enefit SITLA (state leases - Utah Trust Lands Administration) - UT	Oil Shale	Non Federal
Enefit North - UT	Oil Shale	Non Federal
Enefit Orion Property - UT	Oil Shale	Non Federal
Enefit South - UT	Oil Shale	Non Federal
TomCoEnergy proposed oil shale developments	Oil Shale	Non Federal
Red Leaf proposed oil shale development (Seep Ridge, Holiday Block, Wyoming Holdings)	Oil Shale	Non Federal
PR Spring Special Tar Sands Area (STSA) - UT	Tar Sands	Federal
US Oil Sands proposed tar sands development	Tar Sands	Non Federal
American Sands Energy Corporation	Tar Sands	Non Federal
MCW - asphalt ridge	Tar Sands	Non Federal

The water footprint estimates are based on the water use efficiency of extracting OS & TS. Water use factors were taken from a review of prior research and are listed in Appendix A. Factors taken from project developers and companies were used when available. Developer proposed technologies report far lower water use factors than findings in the peer-reviewed research and based on prior experience and practice. Water use estimates based on developer claims should be treated with caution. Hence, this study evaluated several technology types to extract OS and TS, which would imply a range of water use estimates. Developer water use estimates were only used to illustrate water use on a project-by-project basis, not the overall water use estimates. GHG emissions footprints for each project type are presented as low, median and high based on a range of GHG emissions factors and technology types. Water footprints for each project type are presented as minimum, maximum, median, 25th percentile and 75th percentile based on a range of water use factors.

 10 This project was withdrawn shortly before final publication of this report.

¹¹ In practice, the specifics of the formation and the resource can dictate which of the extraction technologies would be used. Further research could better refine this estimate by restricting some technology's use at some sites where the technology might be infeasible because of the underlying geology.

Table 3 below shows the water and GHG emissions footprints associated with developing existing RD&D development proposals for OS, Total Special Tar Sands Areas, and known proposed non-federal OS + TS projects. The resource volumes were estimated from RD&D documentation and company development documents.

Table 3. Range of GHG and water footprints for OS and TS projects under lease or proposed across federal and non-federal lands in the Colorado River Basin (across all technologies, emission factors and water use factors evaluated).

Resource type	Resource Volume (MMbbls)	GHG emissions footprint (GT CO _{2e})	Water footprint (MMBbls Water)
Oil shale (OS) RD&D Leases or project proposals	5,971	1.62 – 2.25	3,561 – 60,000
Tar sands (TS) non-federal + Utah STSA	4,304	1.37 – 1.50	2,152 – 114,000
Totals	10,275	2.99 – 3.75	5,713 – 174,000

To provide context for the magnitude of footprints presented in Table 3, we determined:

- The projected peak production of 140.5 MMBbls OS per year¹² could consume as much as 1.7 percent of the annual Colorado River flow, assuming the higher water use scenario.
- The maximum projected GHG emissions footprint from developing 10,275 MMbbls of OS and TS is about 50 percent of 2014 U.S. GHG emissions.

The area for all federal lands available for lease for OS (678,700 ac) and TS developments (132,200 ac) evaluated to determine water and GHG emissions footprints is approximately 0.11 percent of the Colorado River Basin area and 0.21 percent of the Upper Colorado River Basin area. The total acreages of the oil shale and tar sands developments studied in the context of the total acreage of the Colorado River basin are presented in table 4 below.

Table 4. Acreage of Oil Shale and Tar Sands developments as a proportion of total area of Colorado River Basin and Upper Colorado River Basin ¹³

	Overall	(176,636 ac) to overall CO River Basin / Upper	Proportion of area for all Federal OS (678,700)and TS developments (132,200 ac) to overall CO River Basin /	Proportion of area for all Non-federal OS and TS developments (43,996 ac) to overall CO River Basin / Upper CO River
	Acres	CO River Basin	Upper CO River Basin	Basin
Total Colorado River Basin	157,439,999	0.11%	0.08%	0.03%
Upper Colorado River Basin	83,200,000	0.21%	0.16%	0.05%

¹² Colorado, Yampa, and White River Basin Roundtables Energy Subcommittee, *Energy Development Water Needs Assessment (Phase 1 Report)*, September 2008.

1

¹³ Appendix H contains the acreage of all oil shale and tar sands developments.

2. METHODOLOGY

2.1 Water footprint & system boundary

The system boundary for the estimates of water use for OS and TS projects is limited to the site of development. Other downstream water requirements needed to convert fossil fuels into final fuels, such water use at refineries, only fall into the system boundary if they occur at the site of extraction. Since water use onsite is directly related to regional water impacts, only the water use from onsite production phases are included. Appendix A shows the sources for the water use factors and describes whether the upgrading phase—where the resources are pre-prepared for feedstock at a petroleum refinery—is included. The following process was utilized to determine the water footprints:

- 1. Compiled inventory of OS and TS resources associated with a federal inventory of leasable land and of proposed and existing projects on federal and non-federal lands. These resources were further categorized as in place resources, resources available for lease, and projects under lease (or at some stage of development, if on private land).
- 2. Collected water use factors for OS and TS technologies from the literature and specific active applications/developments.
- 3. Generated low, high, median (50th percentile), 25th percentile, and 75th percentile values for water use factors and applied by technology and resource type to OS and TS production volumes.
- 4. Determined water footprints using low, high, 25th, median, and 75th percentile water use factors for OS and TS production values to estimate overall water use needed to extract OS and TS federal and non-federal resources.
- 5. Prepared tables and box and whisker plots to represent water footprint.

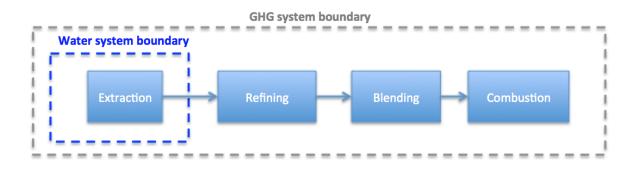


Figure 1: The system boundaries for water use and greenhouse gas emissions

2.2 Greenhouse gas emissions footprint

The system boundary for GHG emissions includes energy used at the site of production, but also embodied carbon in the fossil fuels, as well as all the energy and feedstock requirements to produce a final fuel product. The system boundary here is cast wider than the water use system boundary because most of the GHG emissions are embodied in the fuel itself or in downstream production. Since GHG emissions have global impacts, the entire fuel cycle is included in the system boundary. The following process steps determined the GHG emissions footprints:

- 1. Compiled inventory of OS and TS resources associated with projects on federal and non-federal lands. These resources were further categorized as in place resources, resources available for lease, and projects under lease or under development.
- 2. Compiled and applied emission factors for each technology and resource type to determine GHG emissions footprint.
- 3. Prepared tables to present GHG emissions footprint.

2.3 Data for Tar Sands and Oil Shale Resource Inventories

Three types of data were required to complete the analyses: (1) the total resource volume of OS and TS associated with leasable federal lands and individual development projects, (2) life cycle GHG emission factors for each OS and TS production technology type, and (3) water use factors for each OS and TS extraction technology, as cited in company development documents and the scientific literature.

2.4 Data for Water Use and Greenhouse Gas Emissions Factors

To quantify the volume of water required to develop OS and TS projects, we compiled water use factors from the literature quantified as barrels of water per barrel of oil produced and grouped them according to technology. Because these ranges vary considerably even within OS and TS production technology categories, we present the water footprints in terms of minimum, maximum, medium, 25th percentile and 75th percentile under various OS and TS production technologies. Reporting ranges allows for extreme scenarios for water use to be evaluated.

Product-weighted life-cycle GHG emissions factors were developed to account for the various end products made from OS and TS. End products include finished motor gasoline, distillate fuel oil, kerosene, liquefied petroleum gases, petroleum coke, still gas, and residual fuel oil. Each end product has a different emissions factor to account for differences in refining processes, amounts of primary energy used to produce the end product. This approach accounts for the fact that some carbon is released as GHGs (combusted fuels), while some is embodied in other products (asphalt, plastics). Life-cycle GHG emissions factors were constructed for each type of OS and TS production technology in the study.

Page 6 of 43

¹⁴ See Appendix A for the summary of these water use factors.

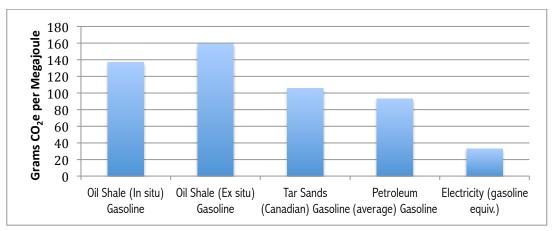


Figure 2: Carbon intensity differences between gasoline refined from various fossil fuel resources¹⁵

Table 5. Oil Shale GHG Emission Factors¹⁶

Life-cycle GHG emissions factor, in Gigatons CO2e / million barrels						
Technology Low Median High						
Surface Retort - Based on Alberta Taciuk Processor (ATP)	0.000326	0.000349	0.000376			
In Situ - Shell In Situ Conversion Process (ICP)	0.000271	0.000309	0.000351			

Table 6. Tar Sands GHG Emission Factors¹⁷

Life-cycle GHG emission factor, in Gigatons CO ₂ e / million barrels							
Technology Low Median High							
In Situ SAGD (steam assisted gravity drainage) SCO (synthetic crude oil) - coker upgrader	0.000330	0.000334	0.000338				
In Situ SAGD SCO - ebulated bed resid hydrocracking upgrader	0.000339	0.000343	0.000347				
In Situ SAGD Bitumen	0.000321	0.000325	0.000329				
Surface Mining SCO - coker	0.000326	0.000329	0.000334				
Surface Mining Bitumen	0.000319	0.000323	0.000327				

¹⁵ From (1) NETL (2008), Development of Baseline Data and Analysis of Life Cycle Greenhouse Gas Emissions of Petroleum-Based Fuels, November 28, 2008, U.S. Department of Energy, DOE/NETL 2009/1346, (2) Brandt, A. R. (2009): Converting oil shale to liquid fuels with the Alberta Taciuk Processor: Energy inputs and greenhouse gas emissions. *Energy & Fuels*, 23(12), 6253–6258, (3) EPA EPA (2010), and (3) Renewable Fuel Standard Program (RFS2): Regulatory Impact Analysis. February 2010, EPA-420-R-10-006. Canadian TS are used for the GHG estimate because there are no commercial TS operations in the US.

¹⁶ These end-use product weighted emissions factors were determined based on the emissions factors of two oil shale extraction technologies found in Brandt, A. R. (2009): Converting oil shale to liquid fuels with the Alberta Taciuk Processor: Energy inputs and greenhouse gas emissions. *Energy & Fuels*, 23(12), 6253-6258; and Brandt, A. R. (2011). Greenhouse gas emissions from liquid fuels produced from Estonian oil shale. *A report prepared for the European Commission*.

¹⁷ These end-use product weighted emissions factors were determined based on the emissions factors of various tar sands extraction technologies cited in Jacobs Consultancy Life Cycle Associates (2009). Life Cycle Assessment Comparison of North American and Imported Crudes. Chicago, IL.

3. RESULTS

Table 1 and 3 in the introduction shows the overall results of the GHG emissions- and water footprints of OS and TS development on federal and non-federal lands available for lease or under lease. The primary results presented in this section include the water use and GHG emissions footprints of OS and TS projects, which were either under lease or in some stage of active development. Projects that were confirmed as no longer under development were excluded from the inventory used to determine these primary results. Projects included in the primary results were placed into project categories based on the ownership of the land in which they take place: federal and non-federal (whether on state or private) lands. Table 2 details the projects included in the primary water and GHG emissions footprints. Secondary results, i.e., the full results for the water and GHG emissions footprints (including in place resources) are available in the appendices.

3.1 Water Footprint of oil shale

The water requirements to bring 10,275 MMBbls of federal and non-federal OS and TS development projects (proposed and existing RD&D leases, STSAs available for lease, and private land) within the Colorado River Basin into production are presented in millions of barrels of water needed to produce the specified resource. Table 7a below describes the water use needed to produce 5,971 MMBbls of oil shale resources based on different technologies and a range of water use factors taken from the literature. We assumed that any of these technologies could be used to develop OS and TS projects.

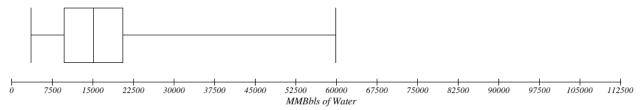
Table 7a shows that surface retorting technologies require nearly three times the volume of water per unit energy extracted compared to other extraction technologies. In situ with technology advancements was considered to have the lowest water use in the published literature. The "All Technologies" category also includes estimates from project developers, which were lower on average (See Appendix A). Given the speculative nature of the water use estimates provided by industry (and not peer reviewed or based on industry practice), we grouped these water use factors into all technologies. Table 7b presents the water use per project based on developer estimates.

-

¹⁸ Staff from Grand Canyon Trust track these projects and determined status. Active projects as of 2016, were included

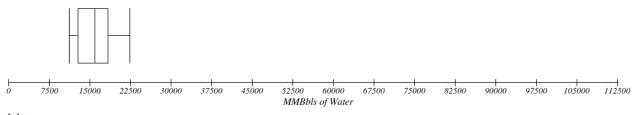
Table 7a. Total water footprint to develop all federal and non-federal oil shale projects (5,971 MMBbls) based on the literature

Millions of barrels of water to produce oil shale by extraction technology and range of water use factors						
Technology	Description	Min	Max	Median	25th Percentile	75th Percentile
ISA	In Situ With Technology Advancements	3,815	21,072	6,322	4,958	8,903
ALL	All Technologies	3,561	59,852	15,075	9,694	20,570
ISU	In Situ - Upgrading Confirmed Included	5,066	56,557	11,119	8,497	17,158
SRU	Surface Retort - Upgrading Confirmed Included	11,169	22,409	15,890	12,855	18,385

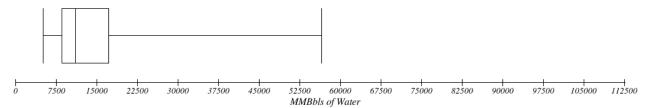

Table 7b. Total water footprint to develop each oil shale project based on developer estimates

Millions of barrels of water to produce oil shale based on developer water use estimates						
Project Energy (MMBbls) Water (MMBbls)						
American Shale Oil LLC	1,536	1,536				
Enefit American Oil	545	1,455				
AuraSource	47	47				
Natural Soda Holdings	300	0.1				
Enefit SITLA	415	1,108				
Enefit North	321	857				
Enefit Orion	132	352				
Enefit South	1,200	3,204				
Red Leaf	1,349	2,023				
TomCoEnergy	126	189				

Figures 2a through 2d present four "box and whisker" plots depicting the million barrels of water required for production of 5,971 MMBbls of oil shale from federal and non-federal developments under different production technologies. The line in the center of the box represents the median, the left and right sides of the box are the 25th and 75th percentiles, and the furthest extent of the whiskers represent the minimum and maximum water use factors found in the literature.


(a)

Water Needed for Federal + Non Federal Oil Shale Projects (5,971 MMBbls) - Technology: All Technologies


(b)

Water Needed for Federal + Non Federal Oil Shale Projects (5,971 MMBbls) - Technology: Surface Retort w/ Upgrading

(c)

Water Needed for Federal + Non Federal Oil Shale Projects (5,971 MMBbls) - Technology: In Situ w/ Upgrading

(d)

Water Needed for Federal + Non Federal Oil Shale Projects (5,971 MMBbls) - Technology: In Situ w/Technology Advancements

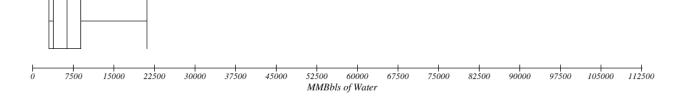


Figure 2 (a) Water required for oil shale development averaged across all technologies used in production, (b) Water required for oil shale development by surface retort production w/upgrading, (c) Water required for oil shale development by in situ production w/upgrading, (d) Water required for oil shale development by in situ production w/advancements.

3.2 Water Footprint of Tar Sands

Table 8a below describes the water requirements to produce 4,304 MMBbls of TS resources available on private land or through STSAs in the Colorado River watershed based on different technologies and a range of water use factors cited in the scientific literature. Table 8b presents specific project developments and the water use estimates provided by the project developers.

Table 8a. Tar sands water footprint range to produce 4,304 MMBls of federal and non-federal resources based on water use factors cited in scientific literature

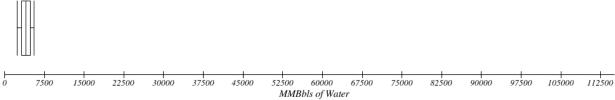
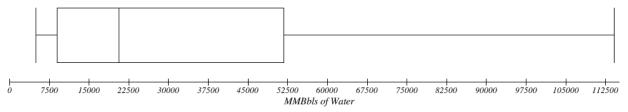
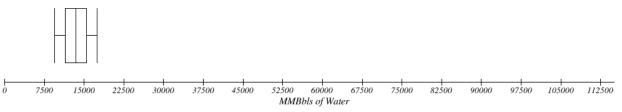

Millions of barrels of water to produce tar sands by extraction technology and range of water use factors									
Technology Key	DescriptionMinMaxMedian25th75thPercentilePercentile								
SV	Conventional mining and solvent extraction	4,907	114,072	20,641	8,943	51,763			
ALL	All Technologies	2,368	5,596	3,982	3,175	4,789			
SRU	Surface retort upgrading confirmed included	9,470	17,434	13,452	11,461	15,443			
SAGDU	SAGD Upgrading confirmed included	2,152	15,066	8,394	3,444	13,452			
CSSU	CSS upgrading confirmed included	13,344	13,344	13,344	13,344	13,344			

Table 8b. Total water footprint to develop each oil shale project based on developer estimates

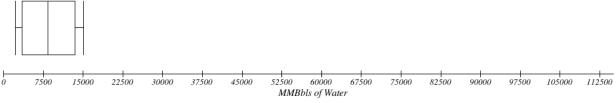
Millions of barrels of water to produce oil shale based on developer water use estimates					
Project Energy (MMBbls) Water (MMBbls)					
US Oil Sands	9.6	14.4			
American Sands Energy Corporation	150	NA			
MCW	20	NA			


Figures 3a through 3e presents five box and whisker plots depicting the million barrels of water required for production of 4,304 MMBbls of tar sands from federal and non-federal developments under different production technologies. The line in the center of the box represents the median, the left and right sides of the box are the 25th and 75th percentiles, and the furthest extend of the whiskers represent the minimum and maximum water use factors found in the literature. The "All Technologies" category is an average that includes data for water use factors not included in the other technologies, including some estimates for water use on existing and proposed TS projects. "All Technologies" is not an average of the other categories of technology.

(a)
Water Needed for Federal Lease Available + Non Federal Tar Sands Projects (4,304 MMBbls) - Technology: All Technologies


(b)

Water Needed for Federal Lease Available + Non Federal Tar Sands Projects (4,304 MMBbls) - Technology: Conventional Mining & Solvent Extraction


(c)

Water Needed for Federal Lease Available + Non Federal Tar Sands Projects (4,304 MMBbls) - Technology: Surface Retort w/ Upgrading

(d)

Water Needed for Federal Lease Available + Non Federal Tar Sands Projects (4,304 MMBbls) - Technology: Steam Assisted Gravity Drainage w/ Upgrading

(e)

Water Needed for Federal Lease Available + Non Federal Tar Sands Projects (4,304 MMBbls) - Technology: Cyclical Steam Stimulation w/ Upgrading

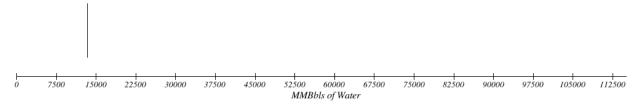


Figure 3. (a) Water required for tar sands production averaged across all technologies, (b) Water required for tar sands production of tar sands using conventional mining & solvents extraction, (c) Water required for tar sands production using surface retort with upgrading, (d) Water required for tar sands production using in situ steam assisted gravity drainage with upgrading, (e) Water required for tar sands production using in situ cyclical steam stimulation with upgrading.

3.3 Water Requirements to extract OS and TS in the Colorado River context

To help contextualize the water footprints, estimated volumes of water are compared to the annual flows of the Colorado River. The *Supplemental Streamflow Analysis* (SSFA) published by the Bureau of Reclamation in 2012 estimates that the annual water flow rate through the Colorado River is about 108,617 million barrels (14,000,000 acre-feet). An optimistic industry estimate of peak production of 140.5 MMBbls of OS per year someday could use as much as 1.7 percent of the Colorado River flow annually based on this flow rate.

Depletions throughout the upper Colorado River basin currently total approximately 48,352 million barrels (4.6 million acre-feet) of water, approximately 1/3 of the average seasonal flow²¹. For this analysis, it was not determined whether the water is available for development. This is important to consider in the context of the water that is available for use, especially in years of drought. The Bureau of Reclamation indicates that for the period from 2001 to 2008 there was a deficit of nearly 30,000,000 acre-feet in the Colorado River Basin.²²

Importantly, annual runoff in the Colorado River basin appears to be declining, with significant consequences for reduced streamflow.²³ During 2001–2010, warm temperatures and dry conditions reduced average flows in the Colorado River (measured at Lees Ferry) to the second-lowest-flow decade since 1901, to12.6 million acre-feet per year compared to the 1901–2000 average of 15.0 million acre-feet per year.²⁴

Moreover, modeling studies project that runoff and streamflow will continue to decrease substantially in the Colorado River basin during this century.²⁵ Scientists Barnett and Pierce

A. Ray, editors. Assessment of climate change in the Southwest United States: a report prepared for the National Climate Assessment. Island Press, Washington, D.C., USA.

¹⁹ US Bureau of Reclamation. Supplemental Streamflow Analysis. (2012), http://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Technical%20Report%20B%20-%20Water%20Supply%20Assessment/TR-B Appendix5 FINAL.pdf

Assuming oil shale projects have a 32 year production lifetime and production is equally distributed across all years, peak production = 140.5 MMBbls per year. Under the maximum water use factor used in this study (13.35 barrels water / barrel oil), this results in a peak water use of approximately 1,876 MMBbls per year. A production lifetime of 32 years is derived from Table 5.6 in Colorado, Yampa, and White River Basin Roundtables Energy Subcommittee, *Energy Development Water Needs Assessment (Phase 1 Report)*, September 2008

²¹ This statement is drawn from a Grand Canyon Trust confidential memo and sources for the statistics cited could not be identified and verified by EcoShift.

²² U.S. Bureau of Reclamation and Colorado River Basin Water Supply and Demand Study Team. 2011. Colorado River basin Water Supply and Demand Study: Technical Report B– Water Supply Assessment. Interim Report No.1.

U.S. Bureau of Reclamation and Colorado River Basin Water Supply and Demand Study
 Team. 2011. Colorado River basin Water Supply and Demand Study: Technical Report B
 Water Supply Assessment. Interim Report No. 1.

Hoerling, M. P., M. Dettinger, K. Wolter, J. Lukas, J. Eischeid, R. Nemani, B. Liebmann, and K. E. Kunkel. 2013. Evolving weather and climate conditions of the Southwest United States. Pages 74–100 in G. Garfin, A. Jardine, M. Black, R. Merideth, J. Overpeck, and

Ray, A.J., Barsugli, J.J., Averyt, K.B., Wolter, K., Hoerling, M., Doesken, N. Udall, B. and R.S. Webb. 2008. Climate change in Colorado: a synthesis to support water resources management and adaptation. Report for the Colorado Water Conservation Board. University of Colorado, Boulder; Das, T., Pierce, D.W., Cayan, D.R., Vano,

concluded that anthropogenic climate change is likely to reduce runoff in the Colorado River basin by 10-30 percent by 2050.²⁶ Projected reductions in runoff range from 6-7 percent²⁷ to 45 percent²⁸ depending on the models and methods used in each study²⁹ Hoerling and Eischeid predict streamflow to decrease by 25 percent during 2006-2030, and by 45 percent during 2035-2060.

Although there are both natural and human influences on these hydrologic trends, studies indicate that anthropogenic greenhouse gases began to impact snow-fed streamflow timing during 1950-1999.³⁰ Approximately half of the observed decline in snowpack in the western United States during 1950-1999 has been attributed to the effects of anthropogenic greenhouse gases, ozone and aerosols.³¹ Modeling studies have projected that snowmelt, spring runoff, and streamflow timing will continue to shift earlier across much of the Southwest.³²

J.A., and D.P. Lettenmaier. 2011. The importance of warm season warming to western US streamflow changes. Geophysical Research Letters 38(23); US Bureau of Reclamation and Colorado River Basin Water Supply and Demand Study Team. 2011. Colorado River basin Water Supply and Demand Study: Technical Report B – Water Supply Assessment. Interim Report No. 1; Cayan, D. et al. 2013. Future climate: projected average. Pages 101–125 in G. Garfin, A. Jardine, R. Merideth, M. Black, and S. LeRoy, editors. Assessment of climate change in the southwest United States: a report prepared for the National Climate Assessment. A report by the Southwest Climate Alliance. Island Press, Washington, D.C., USA; Georgakakos, A., P. Fleming, M. Dettinger, C. Peters-Lidard, T.C. Richmond, K. Reckhow, K. White, and D. Yates. 2014. Water resources. Pages 69–112 in J. M. Melillo, T. C. Richmond, and G. W. Yohe, editors. Climate change impacts in the United States: the third National Climate Assessment. U.S. Global Change Research Program, Washington, D.C., USA; Dettinger, M., B. Udall, and A. Georgakakos. 2015. Western water and climate change. Ecological Applications 25: 2069-2093.

States. Pages 74–100 in G. Garfin, A. Jardine, M. Black, R. Merideth, J. Overpeck, and A. Ray, editors. Assessment of climate change in the Southwest United States: a report prepared for the National Climate Assessment. Island Press, Washington, D.C., USA.

²⁶ Barnett, T.P. and D.W. Pierce. 2009. Sustainable water deliveries from the Colorado River in a changing climate. PNAS 106: 7334-7338.

²⁷ Christensen, N.S. and D.P. Lettenmaier. 2007. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin. Hydrology and Earth System Sciences 11: 417-1434.

Hoerling, M. and J. Eischeid. 2007. Past peak water in the Southwest. Southwest Hydrology 35:18–19.

²⁹ See Barnett and Pierce, supra note 15 at Table 2.

³⁰ Barnett, T. P., et al. 2008. Human-induced changes in the hydrology of the western United States. Science 319: 1080–1083; Hidalgo, H. G., T. Das, M. D. Dettinger, D. Cayan, D.W. Pierce, T. P. Barnett, G. Bala, A. Mirin, A.W. Wood, C. Bonfils, B.D. Santer, and T. Nozawa. 2009 Detection and attribution of streamflow timing changes to climate change in the western United States. Journal of Climate 22: 3838-3855; Hoerling, M. P., M. Dettinger, K. Wolter, J. Lukas, J. Eischeid, R. Nemani, B. Liebmann, and K. E. Kunkel. 2013. Evolving weather and climate conditions of the Southwest United

Pierce, D. W., T. P. Barnett, H. G. Hidalgo, T. Das, C. Bonfils, B. D. Santer, G. Bala, M. D. Dettinger, D. Cayan, A. Mirin, A. W. Wood, and T. Nozawa. 2008. Attribution of

declining western U.S. snowpack to human effects. Journal of Climate 21: 6425-6444.

³² Stewart, I. T., D. R. Cayan, and M. D. Dettinger. 2004. Changes in snowmelt runoff timing in western North America under a 'Business as Usual' climate change scenario. Climatic Change 62: 217-232; Rauscher, S. A., J. S. Pal, N. S. Diffenbaugh, and M. M. Benedetti. 2008. Future changes in snowmelt-driven runoff timing over the western US. Geophysical Research Letters 35: L16703, doi:10.1029/2008GL034424; Dettinger, M., B. Udall, and A. Georgakakos. 2015. Western water and climate change. Ecological Applications 25: 2069-2093.

See Appendix B for separate water footprint tables for OS and TS non-federal projects and federal RD&D projects. See Appendix C for separate water footprint tables for in place federal OS and TS resources available and those available for lease under PEIS and ROD³³ in the Piceance Basin (Colorado), Green River and Washakie Basins (Wyoming), and Uintah Basin (Utah). See Appendix D for separate water footprint tables for each OS and TS development lease.

3.4 Greenhouse Gas Emissions Footprint of Oil Shale

The life-cycle GHG emissions for the federal and non-federal development projects within the Colorado River Basin, if brought into production, range from 2.69 to 3.75 GT CO₂e. Tables 9 and 10 illustrate the estimated GHG emissions footprint range for each resource by technology type and for various emission factors.

Table 9. Life-cycle GHG emissions footprint from oil shale production

Life-cycle emissions, in Gigatons CO2e, of developing specific Oil Shale Resources Under Various Emissions Factors and Technologies Federal + Non-federal Projects – 5,971 MMBbls						
Technology	Low	Median	High			
Surface Retort - Based on Alberta Taciuk Processor (ATP)	1.95	2.08	2.25			
In Situ - Shell In Situ Conversion Process (ICP)	1.62	1.84	2.10			

3.5 Greenhouse Gas Emissions Footprint of Tar Sands

Table 10. Life-cycle GHG emissions footprint from tar sands production

Life-cycle emissions, in Gigatons CO2e, of developing specific Tar Sands Resources Under Various Emissions Factors and Technologies Federal + Non-federal – 4,304 MMBbls						
Technology	Low	Median	High			
In Situ SAGD (steam assisted gravity drainage) SCO (synthetic crude oil) - coker upgrader	1.42	1.44	1.46			
In Situ SAGD SCO - ebulated bed resid hydrocracking upgrader	1.46	1.48	1.50			
In Situ SAGD Bitumen	1.38	1.40	1.42			
Surface Mining SCO - coker	1.40	1.42	1.44			
Surface Mining Bitumen	1.37	1.39	1.41			

These overall GHG emissions footprints are presented in a variety of other formats. See Appendix E for separate GHG emissions footprint tables for OS and TS non-federal projects and

³³ PEIS is the programmatic environmental impact statement; ROD is the record of decision in which the amount of federal resource available for lease is specified. Available from: http://ostseis.anl.gov/

federal RD&D projects. See Appendix F for separate GHG emissions footprint tables for in place federal OS and TS resources available and those available for lease under PEIS and ROD in the Piceance Basin (Colorado), Green River and Washakie Basins (Wyoming), and Uintah Basin (Utah). See Appendix G for separate GHG emissions footprint tables for each OS and TS development lease.

4. CONCLUSIONS

This technical memo reports the area for all federal lands available for lease for OS (678,700 ac) and TS developments (132,200 ac) and evaluated their water and GHG emissions footprints. The area available for lease is approximately 0.11 percent of the Colorado River Basin area and 0.21 percent of the Upper Colorado River Basin area. The maximum projected GHG emissions footprint from developing 69,667 MMbbls of federal OS and 4,125 MMbbls of TS is at least 20.19 GT CO₂e or over three times U.S. 2014 GHG emissions of 6.70 GT CO₂e, and as much as 26.63 GT CO₂e or over 4.5 times U.S. annual emissions. The amount of federal resource available for lease has a water footprint that equals one-fifth to eight times the flow of the Colorado River.

4.1 Water requirements for oil shale and tar sands development in the Colorado River Basin

The water use requirements for existing and proposed OS and TS development projects under lease equals 10,275 million barrels of water in the Colorado River Basin. The water footprint to develop 5,971 MMBbls of OS in existing and proposed projects across all technologies and water use factors ranges from 3,561 million barrels (459,000 acre-feet) to nearly 60,000 million barrels (77,334 acre-feet) of water. ³⁴ The water footprint to develop 4,304 MMBbls of TS across all technologies and water use factors ranges from 2,152 million barrels (277,400 acre-feet) to over 114,000 million barrels (14,690,000 acre-feet) of water.

Previous estimates suggest that 2,933 million barrels (378,000 acre-feet) of water per year could be needed to develop oil shale alone at a production rate of 1.5 million barrels per day³⁵. According to the Colorado River Water Conservation District, full-scale oil shale development (2 MMBbls per day) could require as much as 1,897,169 million barrels (244,532,000 acre-feet) of water to develop oil shale over the life of the developments. ³⁶4.2 Greenhouse gas emissions from oil shale and tar sands development on Colorado Plateau

The life cycle GHG emissions for 10,275 MMBbls of oil shale and tar sands development on the Colorado River Basin are bulleted below.

³⁶ Ibid.. footnote 4.

³⁴ The barrel of water measurement used throughout equals 42 gallons or X acre-feet.

³⁵ This amount may be highly speculative. Colorado, Yampa, and White River Basin Roundtables Energy Subcommittee, Energy Development Water Needs Assessment (Phase 1 Report), September 2008.

- The GHG emissions footprint associated with developing and using oil shale resources range from 1.62 to 2.25 GT CO₂e (Table 3).
- The GHG emissions footprint from tar sands development and use ranges from 1.37 to 1.50 GT CO₂e (Table 3).

To provide a sense of magnitude, the annual global fossil fuel and cement emissions were about $49.9 \text{ GT CO}_{2}\text{e}$ in $2014.^{37}$ Total U.S. emissions in 2014 were about $7.5 \text{ GT CO}_{2}\text{e}.^{38}$

4.3 Limitations of Analysis

Our analysis is limited by the accuracy of the volumes of fossil fuels in the underlying data sources. For many projects, such as RedLeaf's projects in Utah, we have relied upon resource estimates provided by that company on their website. Further, both our water footprint and carbon footprint methodologies are top down calculations – rather than bottom-up engineering estimates from actual project specifications. Since lease durations were unavailable, we have assumed that the entirety of the resource (defined by a minimum thickness and yield) associated with the lease are extracted and combusted, which may or not be reflective of economic reality in the future. There was a wide range of water use factors in the literature, as well as clear consensus by other researchers in the literature that water use estimates from tar sands and oil shale product vary widely. We rectified this by providing a range of water use factors and water footprints. There are also conflicting data sources for GHG emission factors, which we rectified by providing ranges from the most recent meta-analyses prepared by the Department of Energy. Additionally, since the information containing the distribution of production over the lifetime of projects was sparse, we made a rough estimation of what peak production might look like, as described in footnote 10. Appendices A through H follow with tables detailing the water and carbon footprint estimates summarized in this Technical Memorandum.

-

³⁷ Le Quéré, C, R Moriarty, RM Andrew, JG Canadell, S Sitch, JI Korsbakken, P Friedlingstein, GP Peters, RJ Andres, TA Boden, RA Houghton, JI House, RF Keeling, P Tans, A Arneth, DCE Bakker, L Barbero, L Bopp, J Chang, F Chevallier, LP Chini, P Ciais, M Fader, RA Feely, T Gkritzalis, I Harris, J Hauck, T Ilyina, AK Jain, E Kato, V Kitidis, K Klein Goldewijk, C Koven, P Landschützer, SK Lauvset, N Lefèvre, A Lenton, ID Lima, N Metzl, F Millero, DR Munro, A Murata, JEMS Nabel, S Nakaoka, Y Nojiri, K O'Brien, A Olsen, T Ono, FF Pérez, B Pfeil, D Pierrot, B Poulter, G Rehder, C Rödenbeck, S Saito, U Schuster, J Schwinger, R Séférian, T Steinhoff, BD Stocker, AJ Sutton, T Takahashi, B Tilbrook, IT van der Laan-Luijkx, GR van der Werf, S van Heuven, D Vandemark, N Viovy, A Wiltshire, S Zaehle, and N Zeng 2015 Global Carbon Budget 2015 Earth System Science Data, 7, 349-396 doi:10.5194/essd-7-349-2015

This estimate is derived by taking the CO2 emissions reported by the EIA and multiplying by 1.39 to convert to CO₂e. Energy Information Agency. 2015. *U.S. Energy-Related Carbon Dioxide Emissions, 2014*. http://www.eia.gov/environment/emissions/carbon/

APPENDIX A: WATER USE FACTORS BY TECHNOLOGY & PHASE

Barrels (of Water / Barr Produced	el of Oil			
Low	Mean	High	Technology	Source	Upgrading Included?
	2.52		M	Keiter 2010	Uncertain
0.7	4.5	11.5	IS	GAO 2010	Yes
1.5	2.5	3.6	SR	GAO 2010	Yes
	4.8		IS	NRDC 2011	Yes
	3		U	Rand 2005	Uncertain
	3.29		M	DOI 2008	Uncertain
	3.29		SR	DOI 2008	Uncertain
	2		IS	DOI 2008	Uncertain
	2.94		SR	URS 2008	Yes
	1.52		IS	URS 2008	Yes
	2		IS	Burian 2009	Uncertain
	0.75		ISA	Burian 2009	Uncertain
0.6		1.3	IS	AMEC 2014	Yes
2.4		2.6	IS	AMEC 2014	Yes
0.3		1	IS	AMEC 2014	Yes
1.4		1.6	IS	AMEC 2014	Yes
1	5	12	IS	GAO 2010	Uncertain
2		4	SR	GAO 2010	Uncertain
2.6		4	SR	OSTS PEIS	Yes
1		3	IS	OSTS PEIS	Yes
2.5		4	IS	Gleick 1994	
1.5		2	SR	Email from R. Dubuc	Yes
	0.47			Redleaf NOI	
	Phased Water	Use Factors ²	39	Source	Phase
0	0.7	1	IS	GAO 2010	Extraction/Retort
0.6	0.9	1.6	IS	GAO 2010	Upgrading

.

³⁹ Phased water use factors were used to estimate missing water use where certain steps like upgrading were known to be missing, but were not used in the water use profile.

0.1	1.5	3.4	IS	GAO 2010	Power Generation
0	1.4	5.5	IS	GAO 2010	Reclamation
0.9	1.5	1.9	SR	GAO 2010	Extraction/Retort/Upgrade
0	0.3	0.9	SR	GAO 2010	Power Generation
0.6	0.7	0.8	SR	GAO 2010	Reclamation
	0.19		SR	URS 2008	Mining and Crushing
	0.28		SR	URS 2008	Retorting
	0.777		SR	URS 2008	Upgrading
	1.54		SR	URS 2008	Processing Shale Disposal
	0.15		SR	URS 2008	Revegetation
	0.18		IS	URS 2008	Site Preparation
	0.25		IS	URS 2008	Subsurface Preparation
	0.57		IS	URS 2008	production/upgrading
	0.53		IS	URS 2008	reclamation and rinsing

Technology Key	Description	Min	Max	Median	25th Percentile	75th Percentile
IS	In Situ	0.3	12	2	1.075	3.75
SR	Surface Retort	1.5	4	2.6	2	3.445
M	Mix	2.52	3.29	2.905	2.7125	3.0975
U	Uncertain	3	3	3	3	3
ISA	In Situ With Technology Advancements	0.75	0.75	0.75	0.75	0.75
ALL	All Technologies – includes water use claims that have not been demonstrated, but that are included in project development proposals.	0.3	12	2.5	1.5	3.445
ISU	In Situ - Upgrading Confirmed Included	0.3	11.5	1.52	1	2.8
SRU	Surface Retort - Upgrading Confirmed Included	1.5	4	2.55	1.875	3.105

APPENDIX B: WATER FOOTPRINT TABLES FOR OS AND TS NON-FEDERAL PROJECTS AND FEDERAL RD&D PROJECTS

Table B.1. Water Footprints for Non Federal and Federal RD&D Oil Shale Projects

Millions of	Millions of Barrels of Water needed to produce specified Oil Shale Resources by extraction technology and range of water use factors Non-federal Projects – 3,543 MMBbls										
Technology	Description	Min	Max	Median	25th Percentile	75th Percentile					
ISA	In Situ With Technology Advancements	1,994	19,251	4,501	3,137	7,082					
ALL	All Technologies	2,833	30,716	9,005	6,052	12,206					
ISU	In Situ - Upgrading Confirmed Included	4,337	28,635	7,428	6,069	10,359					
SRU	Surface Retort - Upgrading Confirmed Included	7,527	12,697	9,698	8,303	10,846					
Millions of	Barrels of Water needed to produce spec range of wa Federal RD&D Proj	ter use f	actors		by extraction te	chnology and					
Technology	Description	Min	Max	Median	25th Percentile	75th Percentile					
ISA	In Situ With Technology Advancements	1,821	1,821	1,821	1,821	1,821					
ALL	All Technologies	728	29,136	6,070	3,642	8,364					
ISU	In Situ - Upgrading Confirmed Included	728	27,922	3,691	2,428	6,798					
	Surface Retort - Upgrading Confirmed										

Table B.2. Water Footprints for Non Federal and Federal RD&D Tar Sands Projects

Millions of Barrels of Water needed to produce specified Tar Sands Resources by extraction technology and range of water use factors

Non-federa	l Projects –	179.6 MMBbls
------------	--------------	--------------

Technology Key	Description	Min	Max	Median	25th Percentile	75th Percentile
SV	Conventional mining and solvent extraction	205	4,759	861	373	2,160
ALL	All Technologies	99	233	166	132	200
SRU	Surface retort upgrading confirmed included	395	727	561	478	644
SAGDU	SAGD Upgrading confirmed included	90	629	350	144	561
CSSU	CSS upgrading confirmed included	557	557	557	557	557

Millions of Barrels of Water needed to produce specified Tar Sands Resources by extraction technology and range of water use factors

Federal Resource	Available for	Lease – 4,125 MMBbls
------------------	---------------	----------------------

Technology Key	Description	22	53	38	30	45
SV	Conventional mining and solvent extraction	4,703	109,313	19,779	8,570	49,603
ALL	All Technologies	2,269	5,363	3,816	3,042	4,589
SRU	Surface retort upgrading confirmed included	9,075	16,706	12,891	10,983	14,798
SAGDU	SAGD Upgrading confirmed included	2,063	14,438	8,044	3,300	12,891
CSSU	CSS upgrading confirmed included	12,788	12,788	12,788	12,788	12,788

APPENDIX C: WATER FOOTPRINT TABLES FOR ALL IN PLACE FEDERAL OS AND TS RESOURCES AVAILABLE AND THOSE AVAILABLE FOR LEASE UNDER PEIS AND ROD⁴⁰ IN THE PICEANCE BASIN (COLORADO), GREEN RIVER AND WASHAKIE BASINS (WYOMING), AND UINTAH BASIN (UTAH).

Table C.1. Water Footprints for In Place Federal Oil Shale Resources in CO, WY and UT⁴¹

Millions of Barrels of Water needed to produce specified Oil Shale Resources by extraction technology and range of water use factors In Place Federal Resources Available in Piceance Basin (yield > 25 GPT) 284,800 MMBbls – CO									
Technology	Description	Min	Max	Median	25th Percentile	75th Percentile			
ISA	In Situ With Technology Advancements	213,600	213,600	213,600	213,600	213,600			
ALL	All Technologies	85,440	3,417,600	712,000	427,200	981,136			
ISU	In Situ - Upgrading Confirmed Included	85,440	3,275,200	432,896	284,800	797,440			
SRU	Surface Retort - Upgrading Confirmed Included	427,200	1,139,200	726,240	534,000	884,304			

Millions of Barrels of Water needed to produce specified Oil Shale Resources by extraction technology and range of water use factors

In Place Federal Resources Available in Green River and Washakie Basins (yield > 15 GPT) – 72,179 MMBbls – WV

Technology	Description	Min	Max	Median	25th Percentile	75th Percentile
ISA	In Situ With Technology Advancements	54,134	54,134	54,134	54,134	54,134
ALL	All Technologies	21,654	866,148	180,448	108,269	248,657
ISU	In Situ - Upgrading Confirmed Included	21,654	830,059	109,712	72,179	202,101
SRU	Surface Retort - Upgrading Confirmed Included	108,269	288,716	184,056	135,336	224,116

Millions of Barrels of Water needed to produce specified Oil Shale Resources by extraction technology and range of water use factors

In Place Federal Resources Available in Uintah Basin (yield > 25 GPT) – 26,703 MMBbls - UT

Technology	Description	Min	Max		25th Percentile	75th Percentile
ISA	In Situ With Technology Advancements	20,027	20,027	20,027	20,027	20,027
ALL	All Technologies	8,011	320,437	66,758	40,055	91,992
ISU	In Situ - Upgrading Confirmed Included	8,011	307,086	40,589	26,703	74,769

⁴⁰ PEIS is the programmatic environmental impact statement; ROD is the record of decision in which the amount of federal resource available for lease is specified. Available from: http://ostseis.anl.gov/

⁴¹ Different thresholds were used by USGS to account for Wyoming oil shale deposits to account for the extensive resources, but

	Surface Retort - Upgrading Confirmed					
SRU	Included	40,055	106,812	68,093	50,068	82,913

Table C.2. Water Footprints for In Place Federal Oil Shale Resources Available for Lease under PEIS and ROD in CO and WY and UT

Millions of Barrels of Water needed to produce specified Oil Shale Resources by extraction technology and range of water use factors

In Place Federal Resources Available for Lease Under PEIS and ROD UT - Uintah Basin – 26,703 MMBbls

Technology	Description	Min	Max	Median	25th Percentile	75th Percentile
ISA	In Situ With Technology Advancements	20,027	20,027	20,027	20,027	20,027
ALL	All Technologies	8,011	320,437	66,758	40,055	91,992
ISU	In Situ - Upgrading Confirmed Included	8,011	307,086	40,589	26,703	74,769
SRU	Surface Retort - Upgrading Confirmed Included	40,055	106,812	68,093	50,068	82,913

Millions of Barrels of Water needed to produce specified Oil Shale Resources by extraction technology and range of water use factors

In Place Federal Resources Available for Lease Under PEIS and ROD

	CO - I ICEANCE DA	$\sin - 7, c$	SOU IVIIVII	0018		
Technology	Description	Min	Max	Median	25th Percentile	75th Percentile
ISA	In Situ With Technology Advancements	1,152	1,152	1,152	1,152	1,152
ALL	All Technologies	461	18,432	3,840	2,304	5,292
ISU	In Situ - Upgrading Confirmed Included	461	17,664	2,335	1,536	4,301
SRU	Surface Retort - Upgrading Confirmed Included	2,304	6,144	3,917	2,880	4,769

Millions of Barrels of Water needed to produce specified Oil Shale Resources by extraction technology and range of water use factors

In Place Federal Resources Available for Lease Under PEIS and ROD WY – 35,074 MMBbls

Technology	Description	Min	Max	Median	25th Percentile	75th Percentile
ISA	In Situ With Technology Advancements	26,306	26,306	26,306	26,306	26,306
ALL	All Technologies	10,522	420,889	87,685	52,611	120,830
ISU	In Situ - Upgrading Confirmed Included	10,522	403,352	53,313	35,074	98,207
SRU	Surface Retort - Upgrading Confirmed Included	52,611	140,296	89,439	65,764	108,905

Table C.3. Water Footprints for All In Place Federal Tar Sands Resources in WY and UT

Millions of Barrels of Water needed to produce specified Tar Sands Resources by extraction technology and range of water use factors Federal In Place Tar Sands - 10,834 MMBbls - UT 25th 75th Technology Key Description Min Max Median Percentile Percentile Conventional mining and solvent SVextraction 12,351 287,112 51,951 130,284 22,508 In situ steam assisted gravity 5,959 7,990 **SAGD** drainage 14,085 10,022 12,053 CSS In situ cyclical steam stimulation 23,836 43,879 33,858 28,847 38,868 IS In situ (un specified) 5,417 37,920 21,127 8,668 33,858 M 33,587 33,587 Mixed technology types 33,587 33,587 33,587 ALL All Technologies 5,417 32,503 16,522 43,744 287,112 Surface retort upgrading confirmed SRU included 24,919 43,338 62,298 34,128 52,818 SAGD Upgrading confirmed 14,085 **SAGDU** included 14,085 14,085 14,085 14,085 CSSU CSS upgrading confirmed included 23,836 23,836 23,836 23,836 23,836

Millions of Barr	Millions of Barrels of Water needed to produce specified Tar Sands Resources by extraction technology and range of water use factors Federal In Place Tar Sands - 40.60 MMBbls - WY								
Technology Key	Description	Min	Max	Median	25th Percentile	75th Percentile			
SV	Conventional mining and solvent extraction	46	1,076	195	84	488			
SAGD	In situ steam assisted gravity drainage	22	53	38	30	45			
CSS	In situ cyclical steam stimulation	89	164	127	108	146			
IS	In situ (un specified)	20	142	79	32	127			
M	Mixed technology types	126	126	126	126	126			
ALL	All Technologies	20	1,076	122	62	164			
SRU	Surface retort upgrading confirmed included	93	162	233	128	198			
SAGDU	SAGD Upgrading confirmed included	53	53	53	53	53			
CSSU	CSS upgrading confirmed included	89	89	89	89	89			

APPENDIX D: WATER FOOTPRINT TABLES FOR EACH OS AND TS DEVELOPMENT LEASE

Table D.1. Water Footprints for Oil Shale Leases in CO, WY and UT

	Millions o	Millions of Barrels of Water needed to produce specified Oil Shale Resources by extraction technology and range of water use factors American Shale Oil LLC ⁴² RD&D Round 1 Lease - 1,536 MMBbls - Rio Blanco County, CO								
Developer Estimate	Technology	hnology Description Min Max Median Percentile Percentile								
1,536 ⁴³	ISA	In Situ With Technology Advancements	1,152	1,152	1,152	1,152	1,152			
	ALL	All Technologies	461	18,432	3,840	2,304	5,292			
	ISU	In Situ - Upgrading Confirmed Included	461	17,664	2,335	1,536	4,301			
	SRU	Surface Retort - Upgrading Confirmed Included	2,304	6,144	3,917	2,880	4,769			

		Millions of Barrels of Water needed to produce specified Oil Shale Resources by extraction technology and range of water use factors Enefit American Oil RD&D Round 1 Lease (includes BLM preferential lease) 545 MMBbls – Vernal, UT								
Developer Estimate	Technology	chnology Description Min Max Median Percentile Percentile								
1,455 ⁴⁴	ISA	In Situ With Technology Advancements	409	409	409	409	409			
	ALL	All Technologies	164	6,540	1,363	818	1,878			
	ISU	In Situ - Upgrading Confirmed Included	164	6,268	828	545	1,526			
	SRU	Surface Retort - Upgrading Confirmed Included	818	2,180	1,390	1,022	1,692			

	Millions of Barrels of Water needed to produce specified Oil Shale Resources by extraction technology and range of water use factors AuraSource RD&D Round 2 Lease – 47 MMBbls - Vernal, UT							
Developer Estimate	Technology	Description	Min	Max	Median	25th Percentile	75th Percentile	

⁴² This project was withdrawn after the analysis.

⁴³ http://amso.net/our-commitment/environment/. AMSO states it's goal is to use less than 1 barrel of water per barrel of shale oil; however we assume the process uses 1 barrel of water per barrel of oil since the company literature does not specify water use except to say it uses less than one gallon.

http://enefitutah.com/project/low-water-use/. Enefit cites Harvard University and the National Shale Oil Associating and indicates oil shale uses .06 gallons / 1000 kcal of energy produced, which is $(1,400,000 \text{ kcal }/1 \text{ barrel of oil}) \times (.06 \text{ gallons of water }/1,000 \text{ kcal}) \times (1 \text{ barrel of water (US)}/31.5 \text{ gallons of water}) = 2.67 \text{ barrels of water per barrel of oil}$

47 ⁴⁵	ISA	In Situ With Technology Advancements	35	35	35	35	35
	ALL	All Technologies	14	564	118	71	162
	ISU	In Situ - Upgrading Confirmed Included	14	541	71	47	132
	SRU	Surface Retort - Upgrading Confirmed Included	71	188	120	88	146

	Millions of Barrels of Water needed to produce specified Oil Shale Resources by extraction technology and range of water use factors Natural Soda Holdings RD&D Round 2 Lease - MMBbls - Rio Blanco County, CO – 300 MMBbls											
Developer Estimate	Technology	Technology Description Min Max Median Percentile Percentile										
0.1198 46	ISA	In Situ With Technology Advancements	225	225	225	225	225					
	ALL	All Technologies	90	3,600	750	450	1,034					
	ISU	In Situ - Upgrading Confirmed Included	90	3,450	456	300	840					
	SRU	Surface Retort - Upgrading Confirmed Included	450	1,200	765	563	932					

	Millions of Barrels of Water needed to produce specified Oil Shale Resources by extraction technology and range of water use factors Enefit SITLA (state leases - Utah Trust Lands Administration) – 415 MMBbls - UT							
Developer Estimate	Technology	Description	Min	Max	Median	25th Percentile	75th Percentile	
1,108 ⁴⁷	ISA	In Situ With Technology Advancements	311	311	311	311	311	
	ALL	All Technologies	125	4,980	1,038	623	1,430	
	ISU	In Situ - Upgrading Confirmed Included	125	4,773	631	415	1,162	
	SRU	Surface Retort - Upgrading Confirmed	623	1,660	1,058	778	1,289	

http://www.aurasourceinc.com/n12.html. We assume the process uses the maximum scenario of 1 barrel of water per barrel of oil since the company literature says that the amount of water use is less than 1, but does not specify. From Table 2.3 in

⁴⁷ See footnote 28.

http://www.blm.gov/style/medialib/blm/co/field_offices/white_river_field/oil_shale/Round_2 - POO_and_Map.Par.73287.File.dat/doiblmco11020110177ea_final.pdf. Assuming 32 year project lifetime, total water use is (100 barrels x 30 days) + (365 days x 32 years x 10 barrels per day) = 119,800 barrels of water.

	Included		

	Millions of Barrels of Water needed to produce specified Oil Shale Resources by extra technology and range of water use factors Enefit North - 321 MMBbls - UT							
Developer Estimate	Technology	Description	Min	Max	Median	25th Percentile	75th Percentile	
857 ⁴⁸	ISA	In Situ With Technology Advancements	241	241	241	241	241	
	ALL	All Technologies	96	3,852	803	482	1,106	
	ISU	In Situ - Upgrading Confirmed Included	96	3,692	488	321	899	
	SRU	Surface Retort - Upgrading Confirmed Included	482	1,284	819	602	997	

	Millions of	f Barrels of Water needed to proc technology and ran Enefit Orion Prope	ige of	water ı	ise factor	S	extraction
Developer Estimate	Technology	Description	Min	Max	Median	25th Percentile	75th Percentile
352 ⁴⁹	ISA	In Situ With Technology Advancements	99	99	99	99	99
	ALL	All Technologies	40	1,584	330	198	455
	ISU	In Situ - Upgrading Confirmed Included	40	1,518	201	132	370
	SRU	Surface Retort - Upgrading Confirmed Included	198	528	337	248	410

	Millions	of Barrels of Water needed to produ technology and rang Enefit South – 1,	ge of wa	ater use	factors	Resources by	extraction
Developer Estimate	Technology	Description	Min	Max	Median	25th Percentile	75th Percentile
3,204 ⁵⁰	ISA	In Situ With Technology Advancements	900	900	900	900	900
	ALL	All Technologies	360	14,400	3,000	1,800	4,134
	ISU	In Situ - Upgrading Confirmed Included	360	13,800	1,824	1,200	3,360
	SRU	Surface Retort - Upgrading Confirmed Included	1,800	4,800	3,060	2,250	3,726

Millions of Barrels of Water needed to produce specified Oil Shale Resources by extraction technology and range of water use factors

⁴⁸ See footnote 28.
49 See footnote 28.

⁵⁰ See footnote 28.

	Red Leaf pro	oposed oil shale development (Seep M	Ridge, IMBbls	Holiday	Block, V	Vyoming Hold	ings) – 1,349
Developer Estimate	Technology Key	Description	Min	Max	Median	25th Percentile	75th Percentile
2,023 ⁵¹	IS	In Situ	405	16,188	2,698	1,450	5,059
	SR	Surface Retort	2,024	5,396	3,507	2,698	4,647
	M	Mix	3,399	4,438	3,919	3,659	4,179
	U	Uncertain	4,047	4,047	4,047	4,047	4,047
	ISA	In Situ With Technology Advancements	1,012	1,012	1,012	1,012	1,012
	ALL	All Technologies	405	16,188	3,373	2,024	4,647
	ISU	In Situ - Upgrading Confirmed Included	405	15,514	2,050	1,349	3,777
	SRU	Surface Retort - Upgrading Confirmed Included	2,024	5,396	3,440	2,529	4,189
	Technology	technology and ra TomCoEnergy proposed oil s	hale de	velopme	nts – 126	25th	75th
	Key	Description	Min	Max	Median	Percentile	Percentile
189 ⁵²	IS	In Situ	38	1,512	252	135	473
	SR	Surface Retort	189	504	328	252	434
	M	Mix	318	415	366	342	390
	U	Uncertain	378	378	378	378	378
	ISA	In Situ With Technology Advancements	95	95	95	95	95
	ALL	All Technologies	38	1,512	315	189	434
	ISU	In Situ - Upgrading Confirmed Included	38	1,449	192	126	353
	SRU	Surface Retort - Upgrading Confirmed Included	189	504	321	236	391

⁵¹ http://www.riversimulator.org/Pubs/OSTS/Ref/Presentations4RedLeaf.pdf. Pg 28. 1.5 barrels of water / barrel of

oil
52 Since this project uses the same technology as Red Leaf, and water use data for TomCoEnergy could not be found, we apply the same 1.5 barrels of water / barrel of oil that Red Leaf cites.

Table D.2. Water Footprints for Tar Sands Leases in CO, WY and UT

Millions of Bar	rels of Water needed to produce spec range of w PR Spring Special Tar Sands A	ater use	factors			echnology and
Technology Key		Min	Max	Median	25th Percentile	75th Percentile
SV	Conventional mining and solvent extraction	4,703	109,313	19,779	8,570	49,603
SAGD	In situ steam assisted gravity drainage	2,269	5,363	3,816	3,042	4,589
CSS	In situ cyclical steam stimulation	9,075	16,706	12,891	10,983	14,798
IS	In situ (un specified)	2,063	14,438	8,044	3,300	12,891
M	Mixed technology types	12,788	12,788	12,788	12,788	12,788
ALL	All Technologies	2,063	109,313	12,375	6,291	16,655
SRU	Surface retort upgrading confirmed included	9,488	16,500	23,719	12,994	20,109
SAGDU	SAGD Upgrading confirmed included	5,363	5,363	5,363	5,363	5,363
CSSU	CSS upgrading confirmed included	9,075	9,075	9,075	9,075	9,075

	Millions of I	Barrels of Water needed to produ technology and ran US Oil Sands proposed tar sa	ge of v	vater	use factor	S	y extraction
Developer Estimate	Technology Key	Description	Min	Max	Median	25th Percentile	75th Percentile
14.4 ⁵³	SV	Conventional mining and solvent extraction	11	254	46	20	115
	ALL	All Technologies	5	254	29	15	39
	SRU	Surface retort upgrading confirmed included	22	38	55	30	47
	SAGDU	SAGD Upgrading confirmed included	12	12	12	12	12
	CSSU	CSS upgrading confirmed included	21	21	21	21	21

	Millions of B	arrels of Water needed to produ technology and ran American Sands Energy	ge of	water u	se factor	S	y extraction
_	Technology Key	Description	Min	Max			75th Percentile
NA ⁵⁴	SV	Conventional mining and	171	3,975	719	312	1,804

⁵³ http://www.usoilsandsinc.com/index.php/operations/environmental-leadership/water-conservation. 1.5 barrels of water / barrel of oil

Page 29 of 43

This company seems to have gone out of business and its website is no longer accessible. No information found.

	solvent extraction					
ALL	All Technologies	75	3,975	450	229	606
SRU	Surface retort upgrading confirmed included	345	600	863	473	731
SAGDU	SAGD Upgrading confirmed included	195	195	195	195	195
CSSU	CSS upgrading confirmed included	330	330	330	330	330

	Millions of	Barrels of Water needed to prod technology and ra MCW - asphalt	nge of v	vater	use factor		y extraction
Developer Estimate	Technology Key	Description	Min	Max	Median	25th Percentile	75th Percentile
NA ⁵⁵	SV	Conventional mining and solvent extraction	23	530	96	42	241
	ALL	All Technologies	10	530	60	31	81
	SRU	Surface retort upgrading confirmed included	46	80	115	63	98
	SAGDU	SAGD Upgrading confirmed included	26	26	26	26	26
	CSSU	CSS upgrading confirmed included	44	44	44	44	44

http://www.mcwenergygroup.com/technology/overview. It appears MCW's technology is an effort to use solvents on a pile of oil sands tailing on a liner above ground. No mention of water use, only water discharge, which may be from separation.

APPENDIX E: GHG EMISSIONS FOOTPRINT TABLES FOR TS & OS NON-FEDERAL PROJECTS & FEDERAL RD&D PROJECTS

Table E.1. GHG emissions footprints for Non Federal and Federal RD&D Oil Shale Projects

Life-cycle emissions, in Gigatons CO2e, of developing specific Oil Shale Resou Factors and Technologies Non-federal Projects – 3,543 MMBbls	rces Unde	er Various En	nissions
Technology	Low	Median	High
Surface Retort - Based on Alberta Taciuk Processor (ATP)	1.16	1.23	1.33
In Situ - Shell In Situ Conversion Process (ICP)	0.96	1.09	1.24
Life-cycle emissions, in Gigatons CO2e, of developing specific Oil Shale Resou Factors and Technologies Federal RD&D Projects – 2,428 MMBbls	rces Undo	er Various En	nissions
Technology	Low	Median	High
Surface Retort - Based on Alberta Taciuk Processor (ATP)	0.79	0.85	0.91
In Situ - Shell In Situ Conversion Process (ICP)	0.66	0.75	0.85

Table E.2. GHG emissions footprints for Non-Federal and Federal RD&D Tar Sands Projects

Tojects			
Life-cycle emissions, in Gigatons CO2e, of developing specific Tar Sands Resources Un Factors and Technologies Federal + Non-federal - 4,304.6 MMBbls	ider Va	rious Emi	issions
Technology	Low	Median	High
In Situ SAGD (steam assisted gravity drainage) SCO (synthetic crude oil) - coker upgrader	1.42	1.44	1.46
In Situ SAGD SCO - ebulated bed resid hydrocracking upgrader	1.46	1.48	1.50
In Situ SAGD Bitumen	1.38	1.40	1.42
Surface Mining SCO - coker	1.40	1.42	1.44
Surface Mining Bitumen	1.37	1.39	1.41
Life-cycle emissions, in Gigatons CO2e, of developing specific Tar Sands Resources Un Factors and Technologies Non-federal Projects – 179.6 MMBbls	ider Va	rious Emi	issions
Technology	Low	Median	High
In Situ SAGD (steam assisted gravity drainage) SCO (synthetic crude oil) - coker upgrader	0.06	0.06	0.06
In Situ SAGD SCO - ebulated bed resid hydrocracking upgrader	0.06	0.06	0.06
In Situ SAGD Bitumen	0.06	0.06	0.06
Surface Mining SCO - coker	0.06	0.06	0.06

Surface Mining Bitumen	0.06	0.06	0.06
Life-cycle emissions, in Gigatons CO2e, of developing specific Tar Sands Resources Un Factors and Technologies Federal Resource Available for Lease – 4,125 MMBbls	ider Va	rious Emi	issions
Technology	Low	Median	High
In Situ SAGD (steam assisted gravity drainage) SCO (synthetic crude oil) - coker upgrader	1.36	1.38	1.40
In Situ SAGD SCO - ebulated bed resid hydrocracking upgrader	1.40	1.41	1.43
In Situ SAGD Bitumen	1.33	1.34	1.36
Surface Mining SCO - coker	1.34	1.36	1.38
Surface Mining Bitumen	1.32	1.33	1.35

APPENDIX F: GHG EMISSIONS FOOTPRINT TABLES FOR IN PLACE FEDERAL OS & TS RESOURCES AVAILABLE IN CO, WY AND UT AND THOSE OS RESOURCES AVAILABLE FOR LEASE UNDER PEIS & ROD⁵⁶ IN CO, WY AND UT

Table F.1. GHG emissions footprints for In Place Federal Oil Shale Resources in CO, WY and UT

Life-cycle emissions, in Gigatons CO2e, of developing specific Oil Shale Res Factors and Technologies	sources Un	der Various I	Emissions
In Place Federal Resources Available in Piceance Basin (yield > 25 GPT	T) – 284,80	0 MMBbls - C	CO
Technology	Low	Median	High
Surface Retort - Based on Alberta Taciuk Processor (ATP)	92.87	99.27	107.11
In Situ - Shell In Situ Conversion Process (ICP)	77.15	87.93	99.97
Life-cycle emissions, in Gigatons CO2e, of developing specific Oil Shale Res Factors and Technologies			
In Place Federal Resources Available in Green River and Washakie Basins (yie WY	eld > 15 GF	⁹ T) – 72,179 M	1MBbls -
In Place Federal Resources Available in Green River and Washakie Basins (yie	eld > 15 GF Low	PT) – 72,179 M Median	MBbls - High
In Place Federal Resources Available in Green River and Washakie Basins (yie WY			
In Place Federal Resources Available in Green River and Washakie Basins (yie WY Technology	Low	Median	High
In Place Federal Resources Available in Green River and Washakie Basins (yie WY Technology Surface Retort - Based on Alberta Taciuk Processor (ATP)	Low 23.54	Median 25.16	High 27.15
In Place Federal Resources Available in Green River and Washakie Basins (yie WY Technology Surface Retort - Based on Alberta Taciuk Processor (ATP)	Low 23.54 19.55 sources Un	Median 25.16 22.28 der Various I	High 27.15 25.34 Emissions
In Place Federal Resources Available in Green River and Washakie Basins (yie WY Technology Surface Retort - Based on Alberta Taciuk Processor (ATP) In Situ - Shell In Situ Conversion Process (ICP) Life-cycle emissions, in Gigatons CO2e, of developing specific Oil Shale Res Factors and Technologies	Low 23.54 19.55 sources Un	Median 25.16 22.28 der Various I	High 27.15 25.34 Emissions
In Place Federal Resources Available in Green River and Washakie Basins (yie WY Technology Surface Retort - Based on Alberta Taciuk Processor (ATP) In Situ - Shell In Situ Conversion Process (ICP) Life-cycle emissions, in Gigatons CO2e, of developing specific Oil Shale Res Factors and Technologies In Place Federal Resources Available in Uintah Basin (yield > 25 GPT	Low 23.54 19.55 sources Un	Median 25.16 22.28 der Various I MMBbls - UT	High 27.15 25.34 Emissions

Table F.2. GHG emissions footprints for In Place Federal Oil Shale Resources Available for lease under PEIS and ROD in CO and WY and UT

Life-cycle emissions, in Gigatons CO2e, of developing specific Oil Shale Resources Under Various Emissions Factors and Technologies In Place Federal Resources Available for Lease Under PEIS and ROD - CO - Piceance Basin – 7,890 MMBbls:					
Technology Low Median High					
Surface Retort - Based on Alberta Taciuk Processor (ATP)	2.57	2.75	2.97		
In Situ - Shell In Situ Conversion Process (ICP) 2.14 2.27					
Life-cycle emissions, in Gigatons CO2e, of developing specific Oil Shale Resources Under Various Emissions					

⁵⁶ PEIS is the programmatic environmental impact statement; ROD is the record of decision in which the amount of federal resource available for lease is specified. Available from: http://ostseis.anl.gov/

Factors and Technologies In Place Federal Resources Available for Lease Under PEIS and ROD - WY – 35,074 MMBbls				
Technology Low Median High				
Surface Retort - Based on Alberta Taciuk Processor (ATP)	11.44	12.23	13.19	
In Situ - Shell In Situ Conversion Process (ICP)	9.50	10.83	12.31	

Life-cycle emissions, in Gigatons CO2e, of developing specific Oil Shale Resources Under Various Emissions
Factors and TechnologiesIn Place Federal Resources Available for Lease Under PEIS and ROD - UT - Uintah Basin - 26,703 MMBbls:TechnologyLowMedianHighSurface Retort - Based on Alberta Taciuk Processor (ATP)8.719.3110.04In Situ - Shell In Situ Conversion Process (ICP)7.238.249.37

Table F.3. GHG emissions footprints for In Place Federal Tar Sands Resources in WY and UT

Life-cycle emissions, in Gigatons CO2e, of developing specific Tar Sands Resources Under Various Emissions Factors and Technologies Federal In Place Tar Sands – 10,834 MMBbls - UT				
Technology	Low	Median	High	
In Situ SAGD (steam assisted gravity drainage) SCO (synthetic crude oil) - coker upgrader	3.58	3.62	3.67	
In Situ SAGD SCO - ebulated bed resid hydrocracking upgrader	3.68	3.71	3.76	
In Situ SAGD Bitumen	3.48	3.52	3.57	
Surface Mining SCO - coker	3.53	3.57	3.62	
Surface Mining Bitumen	3.46	3.50	3.55	
Life-cycle emissions, in Gigatons CO2e, of Various Emissions Federal In Place Tar S	Factors and Techr	ıologies	sources Under	
Technology	Low	Median	High	
In Situ SAGD (steam assisted gravity drainage) SCO (synthetic crude oil) - coker upgrader	0.01	0.01	0.01	
In Situ SAGD SCO - ebulated bed resid hydrocracking upgrader	0.01	0.01	0.01	
In Situ SAGD Bitumen	0.01	0.01	0.01	
Surface Mining SCO - coker	0.01	0.01	0.01	
Surface Mining Bitumen	0.01	0.01	0.01	

APPENDIX G: GHG EMISSIONS FOOTPRINT TABLES FOR EACH TS & OS DEVELOPMENT LEASE IN CO, WY AND UT

Table G.1. GHG emissions footprints for Oil Shale Leases in CO, WY and UT

Life-cycle emissions, in Gigatons CO2e, of developing specific Oil Shale Resou Factors and Technologies			nissions
American Shale Oil LLC RD&D Round 1 Lease - MMBbls - Rio Blanco Cou	ınty, CO –	- 1,536 MMBl	ols
Technology	Low	Median	High
Surface Retort - Based on Alberta Taciuk Processor (ATP)	0.50	0.54	0.58
In Situ - Shell In Situ Conversion Process (ICP)	0.42	0.47	0.54
Life-cycle emissions, in Gigatons CO2e, of developing specific Oil Shale Resou Factors and Technologies Enefit American Oil RD&D Round 1 Lease (includes BLM preferential lease)			
Technology	Low	Median	High
Surface Retort - Based on Alberta Taciuk Processor (ATP)	0.18	0.19	0.20
In Situ - Shell In Situ Conversion Process (ICP)	0.15	0.17	0.19
Life-cycle emissions, in Gigatons CO ₂ e, of developing specific Oil Shale Resour Factors and Technologies AuraSource RD&D Round 2 Lease – 47 MMBbls - Vern		er Various En	nissions
Technology	Low	Median	High
Surface Retort - Based on Alberta Taciuk Processor (ATP)	0.02	0.02	0.02
In Situ - Shell In Situ Conversion Process (ICP)	0.01	0.01	0.02
Life-cycle emissions, in Gigatons CO ₂ e, of developing specific Oil Shale Resou Factors and Technologies Natural Soda Holdings RD&D Round 2 Lease - MMBbls - Rio Blanco Cou			
Technology	Low	Median	High
Surface Retort - Based on Alberta Taciuk Processor (ATP)	0.10	0.10	0.11
In Situ - Shell In Situ Conversion Process (ICP)	0.08	0.09	0.11
Life-cycle emissions, in Gigatons CO ₂ e, of developing specific Oil Shale Resour Factors and Technologies Enefit SITLA (state leases - Utah Trust Lands Administration) - MMBbls			nissions
Technology	Low	Median	High
Surface Retort - Based on Alberta Taciuk Processor (ATP)	0.14	0.14	0.16
In Situ - Shell In Situ Conversion Process (ICP)	0.11	0.13	0.15
Life-cycle emissions, in Gigatons CO ₂ e, of developing specific Oil Shale Resour Factors and Technologies	rces Unde	er Various En	nissions

Enefit North - MMBbls – UT – 321 MMF	Bbls		
Technology	Low	Median	High
Surface Retort - Based on Alberta Taciuk Processor (ATP)	0.10	0.11	0.12
In Situ - Shell In Situ Conversion Process (ICP)	0.09	0.10	0.11
Life-cycle emissions, in Gigatons CO ₂ e, of developing specific Oil Shale Factors and Technologies Enefit Orion Property - MMBbls – UT – 132 N		r Various En	1issions
Technology	Low	Median	High
Surface Retort - Based on Alberta Taciuk Processor (ATP)	0.04	0.05	0.05
In Situ - Shell In Situ Conversion Process (ICP)	0.04	0.04	0.05
Life-cycle emissions, in Gigatons CO ₂ e, of developing specific Oil Shale Factors and Technologies Enefit South - MMBbls – UT – 1,200 MM		r Various En	nissions
Technology	Low	Median	High
Surface Retort - Based on Alberta Taciuk Processor (ATP)	0.39	0.42	0.45
In Situ - Shell In Situ Conversion Process (ICP)	0.33	0.37	0.42
Life-cycle emissions, in Gigatons CO ₂ e, of developing specific Oil Shale Factors and Technologies TomCoEnergy proposed oil shale developments 1		r Various En	nissions
Technology	Low	Median	High
Surface Retort - Based on Alberta Taciuk Processor (ATP)	0.04	0.04	0.05
In Situ - Shell In Situ Conversion Process (ICP)	0.03	0.04	0.04
Life-cycle emissions, in Gigatons CO ₂ e, of developing specific Oil Shale Factors and Technologies Red Leaf proposed oil shale development (Seep Ridge, Holiday Block, W			
Technology	Low	Median	High
Surface Retort - Based on Alberta Taciuk Processor (ATP)	0.44	0.47	0.51
In Situ - Shell In Situ Conversion Process (ICP)	0.37	0.42	0.47

Table G.2. GHG emissions footprints for Tar Sands Leases in CO, WY and UT

Life-cycle emissions, in Gigatons CO ₂ e, of developing specific Tar Sands Resources Under Various Emissions Factors and Technologies PR Spring Special Tar Sands Area (STSA) – 4,125 MMBbls - UT			
Technology	Low	Median	High

In Situ SAGD (steam assisted gravity drainage) SCO (synthetic crude oil) - coker upgrader	1.36	1.38	1.40
In Situ SAGD SCO - ebulated bed resid hydrocracking upgrader	1.40	1.41	1.43
In Situ SAGD Bitumen	1.33	1.34	1.36
Surface Mining SCO - coker	1.34	1.36	1.38
Surface Mining Bitumen	1.32	1.33	1.35

Life-cycle emissions, in Gigatons CO₂e, of developing specific Tar Sands Resources Under Various Emissions Factors and Technologies US Oil Sands proposed tar sands development — 9.6 MMBbls

Technology	Low	Median	High
In Situ SAGD (steam assisted gravity drainage) SCO (synthetic crude oil) - coker upgrader	0.003	0.003	0.003
In Situ SAGD SCO - ebulated bed resid hydrocracking upgrader	0.003	0.003	0.003
In Situ SAGD Bitumen	0.003	0.003	0.003
Surface Mining SCO - coker	0.003	0.003	0.003
Surface Mining Bitumen	0.003	0.003	0.003

Life-cycle emissions, in Gigatons CO₂e, of developing specific Tar Sands Resources Under Various **Emissions Factors and Technologies**

American Sands Energy Corporation – 150 MMBbls

Technology	Low	Median	High
In Situ SAGD (steam assisted gravity drainage) SCO (synthetic crude oil) - coker upgrader	0.05	0.05	0.05
In Situ SAGD SCO - ebulated bed resid hydrocracking upgrader	0.05	0.05	0.05
In Situ SAGD Bitumen	0.05	0.05	0.05
Surface Mining SCO - coker	0.05	0.05	0.05
Surface Mining Bitumen	0.05	0.05	0.05

Life-cycle emissions, in Gigatons CO₂e, of developing specific Tar Sands Resources Under Various **Emissions Factors and Technologies** MCW – Asphalt Ridge – 20 MMBbls

Technology	Low	Median	High
In Situ SAGD (steam assisted gravity drainage) SCO (synthetic crude oil) - coker upgrader	0.01	0.01	0.01
In Situ SAGD SCO - ebulated bed resid hydrocracking upgrader	0.01	0.01	0.01
In Situ SAGD Bitumen	0.01	0.01	0.01

Surface Mining SCO - coker	0.01	0.01	0.01
Surface Mining Bitumen	0.01	0.01	0.01

APPENDIX H: ACREASE OF EACH TS & OS DEVELOPMENT LEASE IN CO, WY AND UT

Table H.1. Acreage of Oil Shale and Tar Sands developments

Project	Туре	Acres
American Shale Oil LLC RD&D Round 1 Lease - MMBbls - Rio Blanco County, CO	Oil Shale	160 ^a
Enefit American Oil RD&D Round 1 Lease (includes BLM preferential lease) - MMBbls - Vernal, UT	Oil Shale	160 ^a
AuraSource RD&D Round 2 Lease - MMBbls - Vernal, UT	Oil Shale	160 ^a
Natural Soda Holdings RD&D Round 2 Lease - MMBbls - Rio Blanco County, CO	Oil Shale	160 ^a
Enefit SITLA (state leases - Utah Trust Lands Administration) - MMBbls - UT	Oil Shale	4,051
Enefit North - MMBbls - UT	Oil Shale	4,592
Enefit Orion Property - MMBbls - UT	Oil Shale	3,070
Enefit South - MMBbls - UT	Oil Shale	13,441
TomCoEnergy proposed oil shale developments	Oil Shale	2,919
Red Leaf proposed oil shale development (Seep Ridge, Holiday Block, Wyoming Holdings)	Oil Shale	12,720
US Oil Sands proposed tar sands development in PR Spring STSA - MMBbls - UT	Tar Sands	6,017
US Oil Sands proposed tar sands development (private land)	Tar Sands	315
American Sands Energy Corporation	Tar Sands	1,760
MCW - asphalt ridge	Tar Sands	1,128

a – excludes preference area

BIBLIOGRAPHY

Allen, E. W. (2008). Process water treatment in Canada's oil sands industry: I. Target pollutants and treatment objectives. *Journal of Environmental Engineering and Science*, 7(2), 123-138.

AMEC, (2012). "Energy Development Water Needs Assessment, Phase II, Final Report", prepared for Colorado River Basin Roundtable and Yampa/White River Basin Roundtable, January 2012.

Barnett, T. P., & Pierce, D. W. (2009). Sustainable water deliveries from the Colorado River in a changing climate. *Proceedings of the National Academy of Sciences*, 106(18): 7334–38.

Bureau of Reclamation. (2011). Supplemental Streamflow Analysis. http://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Technical%20Report%20B%20-%20Water%20Supply%20Assessment/TR-B_Appendix5_FINAL.pdf

Bureau of Reclamation and Colorado River Basin Water Supply and Demand Study Team. (2011). Colorado River basin Water Supply and Demand Study: Technical Report B, Water Supply Assessment. Interim Report No. 1.

Brandt, A. R. (2009): Converting oil shale to liquid fuels with the Alberta Taciuk Processor: Energy inputs and greenhouse gas emissions. *Energy & Fuels*, 23(12), 6253–6258.

Brandt, A. R. (2011). Greenhouse gas emissions from liquid fuels produced from Estonian oil shale. A report prepared for the European Commission.

Cayan, D., et al. (2013). Future climate: projected average. Pages 101–125 in G. Garfin, A. Jardine, R. Merideth, M. Black, and S. LeRoy, editors. Assessment of climate change in the Southwest United States: a report prepared for the National Climate Assessment. Southwest Climate Alliance. Island Press, Washington, D.C., USA

Christensen, N.S. and Lettenmaier, D.P. (2007). A multi-model ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. *Hydrology and Earth System Sciences Discussions* 3(6): 3727–3770.

Colorado, Yampa, and White River Basin Roundtables Energy Subcommittee, (2008), *Energy Development Water Needs Assessment*, Phase 1 Report.

Crawford, P., Dean, C., Stone, J., and Killen, J. (2012). Assessment of Plans and Progress on US Bureau of Land Management Oil Shale RD&D Leases in the United States. BLM RD&D Lease Paper, April 29, 2012.

Das, T., Pierce, D.W., Cayan, D.R., Vano, J.A., and Lettenmaier, D.P. (2011). The importance of warm season warming to western US streamflow changes. *Geophysical Research Letters* 38(23): 1–5.

Department of Interior. (2008). "EPCA Phase III Inventory." United States Departments of Agriculture & Interior (USDA, DOE, DOI).

http://www.blm.gov/wo/st/en/prog/energy/oil_and_gas/EPCA_III.html

Department of Interior. (2013). Approved Land Use Amendments/Record of Decision for Allocation of Oil Shale and Tar Sands Resources on Lands Administered by the Bureau of Land Management in Colorado, Utah, and Wyoming and Final Programmatic Environmental Impact Statement. March 2013, Bureau of Land Management.

http://ostseis.anl.gov/documents/docs/2012_OSTS_ROD.pdf

Department of Interior. (2012). 2012 Oil Shale and Tar Sands Final Programmatic Environmental Impact Statement. September, 2012. http://ostseis.anl.gov/documents/peis2012/index.cfm

Dettinger, M., Udall, B. and Georgakakos, A. (2015). Western water and climate change. *Ecological Applications*, 25: 2069–93.

Energy Information Agency. (2015). *U.S. Energy-Related Carbon Dioxide Emissions*, 2014. http://www.eia.gov/environment/emissions/carbon/

Georgakakos, A., P. Fleming, M. Dettinger, C. Peters-Lidard, T.C. Richmond, K. Reckhow, K. White, and D. Yates. (2014). Water resources. Pages 69–112 in J. M. Melillo, T. C. Richmond, and G. W. Yohe, editors. Climate change impacts in the United States: the third National Climate Assessment. U.S. Global Change Research Program, Washington.

U.S. Government Accountability Office. (2011). Energy Development and Water Use: Impacts of Potential Oil Shale Development on Water Resources, GAO-11-929T.

U.S. Government Accountability Office. (2010). A Better and Coordinated Understanding of Water Resources Could Help Mitigate the Impacts of Potential Oil Shale Development, GAO-11-35.

Gleick, P. H. (1994). Water and energy. *Annual Review of Energy and the Environment*, 19(1), 267–99.

Hidalgo, H. G., T. Das, M. D. Dettinger, D. Cayan, D.W. Pierce, T. P. Barnett, G. Bala, A. Mirin, A.W. Wood, C. Bonfils, B.D. Santer, and T. Nozawa. (2009). Detection and attribution of streamflow timing changes to climate change in the western United States. Journal of Climate 22: 3838-3855.

Hoerling, M. P., M. Dettinger, K. Wolter, J. Lukas, J. Eischeid, R. Nemani, B. Liebmann, and K. E. Kunkel. (2013). Evolving weather and climate conditions of the Southwest United States. Pages 74–100 in G. Garfin, A. Jardine, M. Black, R. Merideth, J.Overpeck, and A. Ray, editors. Assessment of climate change in the Southwest United States: a report prepared for the National Climate Assessment. Island Press, Washington, D.C., USA.

Keiter, R. B., Ruple, J., & Tanana, H. (2011). Policy Analysis of Produced Water Issues Associated with In-Situ Thermal Technologies.

Jacobs Consultancy Life Cycle Associates (2009). Life Cycle Assessment Comparison of North American and Imported Crudes. Chicago, IL.

Jordaan, S. M. (2012). Land and water impacts of oil sands production in Alberta. *Environmental Science and Technology* 46: 3611–7.

Le Quéré, C, et al. (2015). Global Carbon Budget, 2015. Earth System Science Data, 7: 349-96.

Mercier, T. J., Johnson, R. C., Brownfield, M. E., & Self, J. G. (2010). *In-place oil shale resources underlying Federal lands in the Piceance Basin, western Colorado* (No. 2010-3041). US Geological Survey.

Mercier, T. J., Johnson, R. C., & Brownfield, M. E. (2011). *In-place oil shale resources underlying Federal lands in the Green River and Washakie Basins, southwestern Wyoming* (No. 2011-3113, pp. 1-2). US Geological Survey.

Dudley-Murphy, B., Han, W-S., Jones, E., Nash, G., and Burian, S. (2009). Quantifying Water Availability Impacts and Protecting Water Quality While Developing Utah Oil Shale and Sands. DOE Award Number: DE-FC26-06NT15569

National Oil Shale Association, (2014). Water use estimate, March 2014.

Pierce, D. W., Barnett, T.P., Hidalgo, H.G., Das, T., Bonfils, C., Santer, B.D., Bala, G., Dettinger, M.D., Cayan, D., Mirin, A., Wood, A.W., and Nozawa, T.. (2008). Attribution of declining western U.S. snowpack to human effects. Journal of Climate 21: 6425–44.

Rauscher, S. A., J. S. Pal, N. S. Diffenbaugh, and M. M. Benedetti. (2008). Future changes in snowmelt-driven runoff timing over the western US. *Geophysical Research Letters* 35: L16703.

Ray, A.J., Barsugli, J.J., Averyt, K.B., Wolter, K., Hoerling, M., Doesken, N. Udall, B. and Webb, R.S. (2008). Climate change in Colorado: a synthesis to support water resources management and adaptation. Report for the Colorado Water Conservation Board. University of Colorado, Boulder.

Ruple, J., and Keiter, R. (2010). Policy Analysis of Water Availability and Use Issues For Domestic Oil Shale and Oil Sands Development, Institute for Clean and Secure Energy, March 2010.

Stewart, I. T., D. R. Cayan, and M. D. Dettinger. (2004). Changes in snowmelt runoff timing in western North America under a 'Business as Usual' climate change scenario. *Climatic Change* 62: 217–32.

URS, (2008). Energy development water needs assessment, phase 1 report. September 2008.

U.S. Geological Survey. (2006). Natural Bitumen Resources of the United States. Fact Sheet 2006-3133. https://pubs.usgs.gov/fs/2006/3133/pdf/FS2006-3133_508.pdf

U.S. Geological Survey. (2010). In-Place Oil Shale Resources Underlying Federal Lands in the Piceance Basin, Western Colorado. Fact Sheet 2010–3041, Department of Interior, June 2010.

U.S. Geological Survey. (2011). In-Place Oil Shale Resources Underlying Federal Lands in the Green River and Washakie Basins, Southwestern Wyoming. Fact Sheet 2011–3113, Department of Interior, October 2011.

Vanden Berg, Michael, John Dyni, and David Tabet. (2006). Utah Oil Shale Database. Utah Geologic Survey, Open File Report 469.

Wu, M., Mintz, M., Wang, M., & Arora, S. (2009). *Consumptive water use in the production of ethanol and petroleum gasoline* (No. ANL/ESD/09-1). Argonne National Laboratory.