COLORADO RIVER BASIN PROBABLE MAXIMUM FLOODS HOOVER AND GLEN CANYON DAMS

United States Department of the Interior Bureau of Reclamation

September 1990

SUMMARY

High runoff from the late season melt of the snowpack in the spring and summer of 1983 resulted in the first nontest operation of Glen Canyon Dam's spillways since they were placed in operation in 1964. During these operations, cavitation caused severe damage to the concrete lining of the spillways, leading to the Bureau of Reclamation's (Reclamation) assessment of potential modifications to correct the problem. The spillways at Hoover Dam were also damaged from flood releases during 1983. As a part of dam safety investigations, Reclamation computed probable maximum floods for each structure in the following manner.

Upper Limit Design Rainstorms (ULDRS) were developed for three locations in the Colorado River drainage above Hoover Dam. For each location, the rainfall magnitude, spatial and temporal distributions, and seasonal variations ' were determined from transposed and moisture maximized historical events. Storms ranging in size from 5,000 to 100,000 square miles were tested in the hydrologic computer model to arrive at the 40,000-square-mile critical storm area. The magnitude of ULDRS was estimated as averaging from 6.93 to 7.29 inches in depth for 72-hour storms for the three locations. Historical storm data indicated the possibility of two large rain events occurring within a few days of each other; therefore, design storm sequences were developed that incorporated two ULDRS or near-ULDRS events.

The 100-year snowmelt event was selected as the antecedent flood affecting the basin prior to the onset of the ULDRS. A statistical analysis of floodflows was the basis for developing the daily undepleted snowmelt base flood, which had an annual volume of 26.7 million acre-feet at Hoover Dam. Approximately 3.6 million acre-feet of depletions were subtracted from the snowmelt flood to account for present streamflow regulation and use in the upper basin.

A hydrologic model was developed to convert excess precipitation to runoff and to generate the flood hydrographs. Input to the model consisted of the system configuration, rainfall, lag times, loss rates, dimensionless unit hydrographs, and starting reservoir elevations. The 167,000-square-mile drainage basin above Hoover Dam was divided into 99 subbasins, of which 65 were above Glen Canyon Dam. Starting reservoir elevations for the major dams upstream from Glen Canyon were determined by simulating forecasted inflow conditions and routing the 100-year snowmelt flood through the facilities. Release decisions were based on current flood control operating criteria for the Colorado River reservoir system.

The most critical flood condition for Glen Canyon Dam occurs in August. A San Juan Mountains storm, followed a day later by a Boulder Mountains storm, produces the largest flood at Lake Powell. This probable maximum flood for Glen Canyon Dam has a peak inflow of 697,000 ft3/ s and 60-day volume of 5.8 million acre-feet. Routing this flood through the reservoir results in a maximum water surface elevation of 3,709.8 feet, which is more than 5 feet below the dam crest elevation.

At Hoover Dam, the largest flood occurs in August, when a Pine and Cedar Mountains storm lags seven days after the San Juan Mountains storm. This probable maximum flood at the dam has a peak inflow of 1,130,000 ft-'Is and 60-day volume of 9.3 million acre-feet. When this flood is routed through Lake Mead, the maximum reservoir elevation reaches 1,233.0 feet, still 3 feet below the top of the parapet.

TABLE OF CONTENTS

	Sum	mary	S-1
1.0	Introduc	tion	1
	1.1	Authority and Background	1
	1.2	Study Scope and Participants	3
	1.4	Historic Floods in the Colorado River Basin	7
	1.5	Previous Studies	8
2.0	Meteoro	ological Analysis	17
	2.1	Introduction	17
	2.2	Data Collection	17
	2.3	Design Rainstorm Scenario	18
	2.4	Magnitude of Uldrs .	19
	2.5	Spatial and Temporal Distributions of Uldrs	21
	2.6	Storm Sequences	21
	2.7	Seasonal Variation	26
3.0	Hydrolo	gic analysis	29
	3.1	Basin Field trips	29
	3.2	Subbasin Delineation	30
	3.3	Basin Parameters	30
	3.4	Loss Rates	36
	3.5	Lag Coefficients - "C" Factors	39
	3.6	Travel Times	39
	3.7	Dimensionless Graphs	40
4.0	Anteced	lent Flood Analysis	47
	4.1	General	47
	4.2	Methodology for Developing the Antecedent Floods	47
	4.3	Antecedent Floods for Hoover and Glen Canyon	48
	4.4	Monthly Inflows to Major Upper Basin Reservoirs	56
5.0	Depletic	on Analysis	61
	5.1	Background	61
	5.2	1985-Level Depletions Above Glen Canyon	61
	5.3	Depleted Monthly Antecedent Flood Flow for Glen Canyon .	62
	5.4	Daily Depletions for Glen Canyon Dam 63	
	5.5	1985-Level Depletions for Reservoirs Upstream	
		from Glen Canyon	66
	5.6	Depleted Monthly Antecedent Flood Inflows for	
		Reservoirs Above Glen Canyon	67
6.0	Basin M	lodeling	69
	6.1	"Fhar" - Computer Program	69
	6.2	Reservoir Operating Criteria	69
	6.3	Reservoir Routing of 100-Year Snowmelt Flood	72
	6.4	Glen Canyon and Hoover Probable Maximum Floods	73
	6.5	Peak Discharge Envelope Curve	97
8.0	Acknow	ledgements	101
9.0	Referen	ces	103
		I	

LIST OF ACRONYMS

CRSS	Colorado River Simulation System
DAD	Depth-Area-Duration
FHAR	Flood Hydrograph and Routing
HYPO-ULDRS	Hypothetical-Upper Limit Design Rainstorm
MKE	Morrison-Knudsen Engineers
NWS	National Weather Service
PMF	Probable Maximum Flood
PMP	Probable Maximum Precipitation
POS	Plan of Study
Reclamation	Bureau of Reclamation
SEED	Safety Evaluation of Existing Dam&
ULDRS	Upper Limit Design Rain Storm
USGS	U.S. Geological Survey

1.0 INTRODUCTION

1.1 AUTHORITY AND BACKGROUND

The Bureau of Reclamation (Reclamation) Safety Evaluation of Existing Dams (SEED) program provides the authority for updating hydrologic studies for Hoover and Glen Canyon Dams. Discussions with Reclamation's Division of Dam Safety and Division of Water and Land Technical Services were initiated in January 1986 to begin activities related to the probable maximum flood (PMF) study. The need for the study was initially identified by the Division of Dam Safety when consideration was given to replacing the needle valves at Hoover Dam. Funds for the study were obligated from several sources, including Colorado River Storage Project revenues and SEED funds.

High runoff from a late season melt of the snowpack in the spring and summer of 1983 resulted in operation of the Hoover Dam spillways. During this operation, damage to the concrete lining of the spillways occurred, leading to the assessment of potential modifications to alleviate the problem. As a part of this analysis, the adequacy of the hydrologic engineering aspects of the dam were evaluated. Additional high runoff occurrences in 1984 and 1986 have kept the flood issues at Hoover Dam in the forefront. Concern has also been expressed about lesser magnitude floods (e.g., 25-, 50-, and 100-yr frequency floods) as they may affect the current operation at Hoover Dam.

That same year, 1983, also contributed a record inflow to Glen Canyon Dam. These record inflows caused Lake Powell to be at or above surcharge (elevation 3700 feet, 27,000,000 acre-feet) for 3.5 months. Extensions were added to the spillway gates at the dam to accommodate the high inflows and resulting high reservoir water surface elevations. The spillways were operated in the first non-test situation since Glen Canyon Dam was completed in 1964. This operation caused severe cavitation in the spillways. After the flood peak had passed, and the flood danger subsided (July 1983), repairs on the spillways began. High inflows in the following year also occurred. The spillways and power and river outlet works, in combination with reservoir storage, were able to control and pass these high inflows without damage occurring to the spillways.

The flood hydrology data used as a basis for sizing the dams, the outlet works capacity, and the allocated flood storage/surcharge space were found not to conform to the current state-of-the-art with respect to operational criteria and technical methodologies. 'These data also do not reflect recent hydrologic and meteorologic data acquired since the original design was completed. Previous design flood investigations were crudely developed from high water marks left from large historical flood events. This flood investigation accounts for the effects of upstream basin development and reservoir regulation, as well as the knowledge gained from many large storms which have occurred over the basin since the dams were built.

Determination of the PMF for Hoover requires that the design storm be located either in the basin between Hoover and Glen Canyon Dam or in the basin above Glen Canyon Dam. Hoover and Glen Canyon Dams, as well as other upstream dams, are operated as a part of the Colorado River system of reservoirs. The PMFs were developed for both dams in this study.

Personnel of the Flood Section of Reclamation's Denver Office concluded that the design scenario required to produce a reasonable probable maximum flood inflow to these dams would include four specific conditions. These are: (1) the accumulation of an optimum snowpack over the Colorado River Basin during the preceding winter and spring, with low temperatures and continued snowpack accumulation into the late spring; (2) high levels of ground wetness and river flow occasioned by a preceding high runoff year; (3) rapid snowmelt resulting from relatively high temperatures following the snowpack accumulation season; and

(4) the occurrence of a design storm (which may be comprised of a series of storm events) during the recession limb of the snowmelt runoff hydrograph.

1.2 STUDY SCOPE AND PARTICIPANTS

The preliminary work on the PMF study began in January 1986: In a normal situation the development of design storm data would be conducted by the Flood Section at the Denver Office of the Bureau of Reclamation. The Flood Section, however, was not able to complete the necessary meteorology to determine the probable maximum precipitation (PMP) for the study area within scheduled time frames because of commitments to other on-going studies. Therefore, meeting those time frames required the services of an Architect/Engineer firm staffed with professional engineering personnel that had knowledge of development of such design data. Steps were taken to identify and acquire the services of a consulting firm with the necessary expertise. Using the Lower Colorado Region's indefinite quantity contract with Morrison-Knudsen Engineers (MKE), the services of qualified hydrometeorologists were obtained.

A task order was issued in April 1986, to MKE to develop a Plan of Study (POS) to acquire the necessary hydrometeorological design data for Hoover Dam. The POS was completed on July 1, 1986, for \$34,700. The POS identified five study parts estimated to cost about \$990,000 and would require nearly 3 years to complete. The five parts were:

- 1. Initial Project Specifications.
- 2. Phase I Optimum Snowpack Accumulation and Critical Melt Criteria.
- 3. Phase II Development of Upper Limit Design Rain Storm(s) (ULDRS).
- 4. Phase III Need for and Determination of Storms Less Than ULDRS (for use in combination with Phase I).
- 5. Phase IV Evaluation of Less Than Optimum Snowpack for Use in Combination with ULDRS.

The five study parts were examined in detail, and the implications of doing or not doing some of the phases or portions thereof were thoroughly explored. Phase II was considered most important because the current criteria available for developing probable maximum precipitation in the study area are limited to watersheds with drainage areas less than 5,000 square miles. The total cost of determining the PMF, including all five parts of the meteorologic investigation and the accompanying hydrologic studies, would be approximately \$1,250,000 and would require about 3.5 years to complete. Because of the high estimated study cost, an alternative method for determining the snowpack and snowmelt runoff was developed. Phase II and the initial project specifications were the only portions of the POS undertaken. The Hoover Dam and Glen Canyon Dam PMF study combines the design rainstorm (ULDRS) and the 100-yr snowmelt flood to obtain an estimate of the PMF.

The hydrology study began in January 1987 and involved active participation by Reclamation's Lower Colorado and Upper Colorado Regions and Denver Office and by Morrison-Knudsen Engineers. Study leadership was provided by the Flood.Section at the Denver Office.

A field reconnaissance of the subbasins around Lake Mead and upstream of Lake Powell was completed in June 1987. The regional hydrology staffs were responsible for subbasin delineation and map preparation, and assisted in subbasin hydrologic parameter estimation. The Upper Colorado regional staff prepared the, preliminary data for the 100-yr snowmelt flood analysis. All of the offices played a role in preparing the necessary computer files and data for testing and final use of the meteorological analysis.

1.3 BASIN DESCRIPTION

The Colorado River above Hoover Dam drains an area of 167,000 square miles. The drainage basin includes parts of Wyoming, Colorado (western half), Utah (eastern half), New Mexico, Arizona, and Nevada, as shown on figure 1.1. Approximately 108,000 sq. mi. of the drainage basin are above Glen Canyon.

The river originates in the Rocky Mountains *of* Colorado and Wyoming and flows south-southwest about 800 river miles to Hoover Dam. The basin is about 600 miles in length from its northern boundary in the Wind River Range in Wyoming to its southern boundary at Hoover Dam and varies in width from 300 miles in the upper section to 500 miles in the lower section.

The basin boundary consists of mountains that are 13,000 to 14,000 feet high in Wyoming, Colorado, and Utah; the boundary drops to elevations of less than 1,000 feet at Hoover Dam. The northern portion of the basin, in Colorado and Wyoming, is a mountainous plateau that ranges 5,000 to 8,000 feet in elevation. This plateau encompasses deep canyons, rolling valleys, and intersecting mountain ranges. The central and southern portions of the basin, in eastern Utah, northwestern New Mexico, and northern Arizona, consist of rugged mountain ranges interspersed with rolling plateaus and broad valleys. In general, the mountains in the southern part of the basin are much lower than those in the northern part. Much of the interior basin consists of plateaus that range from 5,000 to 8,000 feet in elevation. The entire basin averages about 6,700 feet in elevation. The portion of the basin above Glen Canyon Dam averages about-7,400 feet in elevation.

The Colorado River and its principal tributaries flow mostly in deep canyons. The Green River, the largest tributary, flows through similar canyons in Wyoming, Colorado, and Utah. The Yampa, White, Duchesne, Price, and San Rafael Rivers, flow through canyons and rolling hills to the Green River. The Gunnison and Dolores Rivers drain much of western Colorado prior to joining the Colorado River. The San Juan River drains mountains and plateaus in southwestern Colorado, northwestern New Mexico, and northern Arizona, and flows through a large canyon in southern Utah to join the Colorado River in Lake Powell. Below Glen Canyon Dam, the Colorado River flows through Marble Canyon and Grand Canyon and then into Lake Mead. The Little Colorado River joins the Colorado River in this lower area. It flows through wide valleys and some canyon areas in its upper reaches and then enters a broad, low-walled, sandy channel in the middle reaches. In the lower reaches, it flows through a deep canyon until it reaches the Colorado River in Grand Canyon. The Virgin River combines with the Colorado River in Lake Mead.

Many dams and reservoirs have been constructed in the basin over the years. The larger reservoirs are formed from water impounded by Fontenelle, Flaming Gorge, Blue Mesa, Morrow Point, Crystal, Dillon, Navajo, Glen Canyon, and Hoover Dams. Table 1.1 shows the drainage areas and reservoir capacities for these reservoirs.

Rocks of all geological ages, from the Archean age to most recent alluvial deposits, are found in the Colorado basin. The Rocky Mountains in the basin are composed of granite schists, gneisses, lavas, and sharply folded sedimentary rocks. The high watershed mountains in Colorado (Rocky Mountains), Wyoming (Wind River Mountains), and Utah (Uinta and Wasatch Mountains) have all been glaciated. The geology of the plateau areas in the basins of southwestern Wyoming, eastern Utah, and northern Arizona is primarily horizontal sedimentary rock. There are also many formations of hard sandstone, limestone, and soft shale. Remnants of volcanic activity can also be found in many areas of the basin. The Colorado River and its tributaries have cut narrow, deep canyons into the flat-topped mesas of the basin. The broad Grand Canyon area was carved as the formations arched several thousand feet higher than the surrounding country, and the Colorado River cut through these formations to the ancient

underlying granites.

Soils of the basin consist of the remains of the underlying parent rocks found in the basin. The parent materials include limestones, sandy limestones, sandstones, shales, conglomerates, valley and river alluvium, terrace gravels, igneous and metamorphics, and volcanics. The soils include sands, silts, clays, and loams, and vary widely in areal extent and location. Most of the deeper soils are found in the higher elevations in both the lower and upper basins.

		Total	
		reservoir	Drainage
	River/state	capacity	area
Dam	year completed	(acre-feet)	<u>(sq. mi.)</u>
Fontenelle	Green/Wyoming 1964	345,360	4,200
Flaming Gorge	Green/Utah 1964	3,788,700	15,200
Blue Mesa	Gunnison/Colorado 1966	940,700	3,500
Morrow Point	Gunnison/Colorado 1968	117,200	3,600
Dillon	Blue/Colorado 1963	254,000	335
Crystal	Gunnison/Colorado	25,200	4,000
Navajo	San Juan/ New Mexico 1963	1,708,600	3,600
Glen Canyon	Colorado/Arizona 1963	27,000,000	108,000
Hoover	Colorado/Nevada 1935	29,755,000	167,000

Table 1.1.-- Major dams in the Colorado River basin

The basin is arid to semi-arid with an average annual rainfall of about 10 inches. The annual precipitation varies from over 40 inches in the higher mountainous areas to less than 3 inches near Hoover Dam. Long cold winters and cool short summers characterize the climate of the mountains in the basin. In the lower areas the winters are mild and short, and the summers are long and warm. The temperature extremes in the basin range from -50°F to 115°F. The average annual runoff is less than 1.5 inches for the entire basin. Most of this runoff is produced in the upper-basin areas. Snow accumulation normally begins in October in the high mountains and in some years continues through May.

Vegetation varies from typical desert related plants in the lower basin (cactus, Joshua trees, creosote bush, salt bush, greasewood, desert sage, and mesquite), to sage brush and perennial short and semi-desert grasses in the high plateaus, to typical mountainous vegetation (Juniper, Spruce, and Piñon Pine) in the higher portions of the basins. The vegetation density correlates nearly directly with elevation increase (higher elevation means more dense cover). Flooding from snowmelt in the basin normally begins in April and May and reaches its maximum in mid to late June or sometimes in early July, depending on the year. Flooding also occurs as the result of intense thunderstorms over small basins during the summer. Late season (July-October) tropical storms have occurred over large portions of the basin.

1.4 HISTORIC FLOODS IN THE COLORADO RIVER BASIN

The largest recorded flood is that of July 1884, which was estimated to have had a peak flow of about 300,000 ft³/s on July 7 or July 8, in the Black Canyon of the Colorado, site of Hoover Dam. Estimates of this peak flow have ranged between 250,000 and 350,000 ft³/s. The 1884 flood had three distinct peaks, the maximum being around 300,000 ft³/s. Many spring floods in the lower Colorado mainstem tend toward a generally broad shaped hydrograph. The 1884 flood estimate was made by the Bureau of Reclamation and the U.S. Geological Survey (USGS) and was based on gage height observations at Grand Junction, Colorado, and Yuma, Arizona; flood observations at Lees Ferry; and high water marks in the Black Canyon. The volume of the 1884 flood was estimated to be about 30,000,000 acre-feet for a five month period. Some evidence exists of a flood prior to that time, about 1862, that may have been greater, but estimates of its volume have not been made.

On June 18-19, 1921, a flood peak of 220,000 ft³/s was observed at Lees Ferry. Other major floods of record with flows of over 110,000 ft³/s occurred in the vicinity of Hoover and Glen Canyon Dams in 1880, 1885, 1886, 1901, 1905, 1906, 1907, 1909 (June and September), 1912, 1914, 1917, 1920, 1922, 1927 (July and September), 1928, 1929, 1941, 1952, and 1957. The flow into Hoover Dam would have exceeded 100,000 ft³/s in 1983 and 1984 if the upstream reservoirs had not been in place. Between 1878 and 1976 the flow has exceeded 100,000 ft³/s 31 times and has exceeded 200,000 ft³/s three times. It has exceeded 50,000 ft ³/s many, many times.

Notable floods on the Colorado River and its tributaries were compiled from USGS Water Supply Paper 918 and other USGS water supply papers. These data were collected at USGS stream flow recording stations and are shown in table 1.2.

Since Hoover Dam was completed in 1935, the largest floods occurred in 1941, 1952, 1957, and 1983. Maximum reservoir inflows were 119,200, 122,000, 124,000, and 94,600 ft³/s, respectively. Maximum reservoir releases were 35,500, 30,900, 18,400, and 50,800 ft³/s for each of these years.

Since Glen Canyon Dam was completed in 1963, the largest reservoir inflows occurred in 1983 and 1984. The maximum inflow to Lake Powell was 116,000 ft³/s in 1983 and 125,600 ft³/s in 1984. Reservoir releases were limited to a maximum of 97,300 and 44,600 ft³/s in 1983 and 1984, respectively.

		Peak flow	Drainage area
River/Location	Date	(ft3/3)	(sq. mi.)
		1405 000	47.000
Colorado River	July 4, 1884	125,000	17,800
near Fruita CO	June 16, 1921	81,100	
Colorado River	July 4, 1884	'125,000	24,100
near Cisco UT	June 19, 1917	76,800	
Yampa River	May 27, 1984	70,300	3,410
near Maybell CO	June 27, 1983	61,900	
Green River	June 27, 1917	68,100	44,850
near Green River UT	June 17, 1921	65,500	
Lower San Juan River	Oct. 10, 1911	¹ 80,000	12,900
San Juan River	Oct 7 1911	85 000	23 000
near Bluff LIT		00,000	23,000
Colorado River	luly 7 1884	¹ 300 000	107 000
at Lees Ferry AZ	lune 18 1021	220,000	107,500
Little Colorado Divor	Sopt 10, 1921	120,000	21 200
et Crend Falls AZ	Sept. 19, 1923	120,000	21,200
	Dec. 6, 1066	25 200	F 000
	Dec. 6, 1966	35,200	5,090
at Littlefield AZ	March 3, 1938	22,000	
Colorado River	1862	500,000	137,800
at Grand Canyon AZ		1	
Colorado River	June-July 1862	400,000	172,300
at Topock Bridge AZ	July 10, 1884	'300,000	
	June 22, 1921	200,000	

Table 1.2.-- Notable floods on the Colorado River and its tributaries

¹ Estimated flows from high water marks; actual flows may have been higher.

1.5 PREVIOUS STUDIES

The studies that follow for Hoover and Glen Canyon Dams provide the hydrologic design criteria for the existing facilities. They also establish operating rules for the reservoirs which were used in developing the new PMFs. Each report is listed in approximate order of importance to this investigation. Additional reports are available for other dams within the Colorado River Basin, but have not been summarized here.

1.5.1 Hoover Dam

1. <u>Hydrology of the Boulder Canyon Reservoir</u>, by E. B. Debler, Bureau of Reclamation, January 31, 1930.

This study includes analyses of floods in the Black Canyon, site of Hoover Dam. The results were used to size spillways and flood control space for the dam. Flood frequency analyses were also completed for the dam site. The following paragraphs contain information that was presented in Debler's report.

Prior to construction of Hoover Dam, high flows along the lower Colorado River occurred annually. The 1884 flood had a peak flow between 250,000 and 300,000 ft ³/s, as estimated by the Geological Survey and Bureau of Reclamation, respectively. These estimates were based on gage heights at Grand Junction and Yuma, a flood observation at Lees Ferry, newspaper accounts, and high water marks in Black Canyon. Between 1878 and 1929, peak flows were estimated to exceed 100,000 ft³/s 23 times and 200,000 ft³/s three times (1884, 1920, and 1921) at Black Canyon.

Newspapers of 1884 contain numerous references to heavy snows and the late arrival of spring, but only one precipitation station was available in the upper basin. The station was located in the San Juan basin at Fort Lewis and showed precipitation 40 percent above normal from October to May, with temperatures below normal in the spring.

Flood waters of the Colorado River appeared in Salton Sink in 1828, 1840, 1849, 1852, and 1867; however, this fact does not necessarily indicate floods greater than 1884. Some evidence indicates, the 1867 flood was probably a high flood, but may not be larger than the 210,000 ft³/s which occurred in 1921. Changes in stream bed elevation greatly affect gage heights recorded for some of these events.

Debler considered the 1884 event a "near maximum flood." He indicated that with 9,500,000 acre-feet of flood control capacity, reservoir outflow could be limited to 75,000 ft³/s. The spillways were each sized to pass 200,000 ft³/s, for a total capacity of 400,000 ft³/s. The outlet works were sized to pass 100,000 ft³/s, and the flood control space was set at 9,500,000 acre-feet.

The 1884 flood was determined to be about a 500-year flood. Table 1.3 displays the flood frequency analysis conducted as a part of Debler's study.

Table 1.3.- 1930 flood frequency analysis for Hoover Dam

Frequency (year)	Probability (percent)
5	20.00
10	10.00
20	5.00
50	2.00
100	1.00
500	0.20
1,000	0.10
10,000	0.01
	Frequency (year) 5 10 20 50 100 500 1,000 10,000

The 1884 flood was estimated to have a volume of 30,450,000 acrefeet. The flood occurred from May 3 through August 22. When the inflow design flood was developed, the period of the flood was extended from April through the end of August. The resulting flood hydrograph is quantified in table 1.4 and shown on figure 1.2.

Table 1.4.--Original 1930 inflow design flood hydrograph for Hoover Dam

Month	Volume (acre-feet)	mean monthly flow (ft ³ /s)
April	2,000,000	33,610
May	5,000,000	81,320
June	11,850,000	199,160
July	11,350,000	184,590
August	3,000,000	48,790
April-August	33,200,000	·

2. <u>Review of Flood Control Regulation</u> - Colorado River Basin, Hoover Dam, by Corps of Engineers and Bureau of Reclamation, July 1982.

This report is a review and update of flood information since the closures of Hoover and Glen Canyon Dams. The Corps concluded that, with the reservoir conservation space in the Colorado River Basin now filled, the potential for damaging flood control releases from Hoover Dam exists. For many years the flood control operation plan for Hoover Dam had incorporated a target maximum release of 40,000 ft³/s. However, encroachment in the floodplain below Hoover Dam has significantly reduced that figure to about 28,000 ft³/s, which has been estimated as the maximum release that will not damage inhabited structures downstream.

3. <u>Boulder Canyon Project Final Reports</u>, Part IV - Design and Construction, Bulletin 3, Diversion, Outlet, and Spillway Structures and <u>Boulder Canyon Project</u>, Final Report, Part I, 1946.

These reports presented the original design criteria for Hoover Dam (Boulder Dam). The total outlet capacity of Hoover Dam at the completion of construction was 520,000 ft³/s. The spillways had a capacity of 400,000 ft³/s; the outlet works could pass 100,000 ft³/ s and the powerplant had a capacity of 20,000 ft³/s.

4. <u>The Colorado River and Its Proposed Development</u> The Boulder Canyon Project, by Daniel W. Mead, March 11, 1929.

This report discusses the basin and its associated hydrology, as well as other facets of basin development. The advantages and disadvantages of the Boulder Canyon Project are discussed in some detail. The writer was unable to reach any definite conclusion as to whether or not the project is the best solution for the development of the lower Colorado River. He states that many of the water problems would be solved, but the project may never pay for itself.

1.5.2, Glen Canyon Dam

 <u>Cooperative Studies Report No. 9</u>, Maximum Possible Flood Producing Meteorological Conditions: (1) Colorado River Basin above Glen Canyon Dam Site, (2) Colorado River Basin above Bridge Canyon Dam Site, (3) San Juan River above Bluff Dam Site, and (4) Little Colorado River above Coconino Dam Site, by the U.S. Weather Bureau, June 1949.

This study surveyed major storms which produced large rainfall depths over areas of 10,000 square miles or larger. A final estimate of the maximum possible rainfall and its seasonal variation in the Colorado River basin for the Glen Canyon, Bridge Canyon, Bluff, and Coconino dam sites was presented. The Bridge Canyon Dam site is located on the Colorado River between Glen Canyon and Hoover Dams.

Isohyetal maps were constructed for 42 storms. Storms were adjusted a maximum possible moisture condition for estimating the maximum possible storm. Another adjustment accounted for

the rate of moist air inflow. Storms were not transposed from areas outside the basin. The time interval between major storms and types of storms were evaluated in a spaciotemporal manner.

The probable maximum snowpack was determined by the synthetic season method. The extent of snow cover was based on that which existed as the latest occurrence of the first five consecutive days above 32°F. The April 16th snowpack configuration was adopted as the probable maximum condition. Snow melt runoff factors were established by comparing historic runoff records with the total volume of the snowpack for several subbasins.

<u>2. Spillway Design Flood Studies</u> (Preliminary to Glen Canyon) - Bridge Canyon, Colorado River Storage (Glen Canyon Unit), and Coconino Projects, December 6, 1951, by W. R. Slater, Region 3.

Design flood studies were performed to estimate the probable maximum floods for Glen Canyon, Coconino, and Bridge Canyon dam sites. Table 1.5 shows the estimated design floods for each of these dams.

I

Table 1.51951	design floods	for Glen Canyor	n, Coconino,	and Bridge	Canyon
		dam sites			

	Drainage			
	area	Peak	Volume	
Site	<u>(sq. mi.)</u>	(ft ³ /s)	(acre-feet)	Duration
Probable maximum Rain	Floods:			
Glen Canyon	108,000	417,000	2,063,600	6 days
Coconino	26,200	566,000	1,260,100	6 days
Bridge Canyon	145,700	552,000	3,002,400	6 days
Probable Maximum Snow	vmelt Floods:			
Glen Canyon	108,000	196,100	28,460,200	Apr-July
Coconino	26,200			
Bridge Canyon	145,700	196,900	26,832,600	Apr-July
Probable Maximum Sprin	g Floods (snowmel	t plus rain):		
Glen Canyon	108,000	196,100	28,923,900	Apr-July
Coconino	26,200			
Bridge Canyon	145,700	196,900	27,304,800	Apr-July

The peak and volume of the probable maximum rain flood were recommended for use as were the maximum volumes for the probable maximum snowmelt and spring floods. However, the peaks for the latter two floods were not adopted, since they were lower than the peak discharges experienced with the 1884 and 1921 floods. The study recommended revising the peak discharge estimates.

3. <u>Inflow Design Flood Study</u>, Glen Canyon Dam Site, Colorado River above Lees Ferry, Arizona, June 1954, by A.M. Gering.

This 1954 investigation revised the 1951 studies, but built upon many of the results. The snowmelt flood volume of 28,500,000 acre feet developed in the 1951 study was retained. The drainage basin above Glen Canyon was divided into the Green River, the Colorado River, and the San Juan River basins. Correlations between accumulated April-July runoff and accumulated maximum temperatures were used to shape the snow flood hydrograph. The volume was prorated to develop hydrographs for each basin. The hydrographs were added together and combined with a spring-type rain flood. The inflow design floods that were recommended for use in the design of the Glen Canyon Dam spillways are shown in table 1.6 and on figure 1.3.

Flood Event	Peak (ft ³ /s)	Volume (acre-feet)	Duration
Snowmelt + Rain	380,000	29,060,000	Apr-July
Probable Max Rain	417,000	2,063,600	6 days

Historic snowmelt season runoff was analyzed on a probability of occurrence basis to evaluate the diversion requirement flows for construction of Glen Canyon Dam. Diversion requirement hydrographs were developed, and the results are presented on table 1.7.

4. <u>Review of Inflow Design Flood Study</u> - Glen Canyon Dam Site - Colorado River Storage Project, April 5, 1955, by D. L. Miller.

The design floods developed in the June 1954 study were approved for use, as were the diversion requirement flood hydrographs. Recommendations on routing the inflow design flood through Glen Canyon Dam and Reservoir were also made as part of the review.

The reservoir was assumed to be at the top of the conservation pool, elevation 3700 feet (26,000,000 acre-feet), during the onset of the probable maximum rain flood. For the snowmelt plus rain event, the reservoir was assumed to contain 22,500,000 acre-feet of storage (elevation 3685 feet). Operations were based on runoff forecasts and an integrated criteria for operating Colorado River basin reservoirs.

	Peak	Maximum	volume
Frequency	discharge	15-day	30-day
(years)	<u>(ft³/s)</u>	(acre-feet)	(acre-feet)
5	118,000	2,723,800	4,936,100
10	150,000	3,180,000	5,600,000
25	196,000	3,550,000	6,400,000
50	238,000	3,880,000	7,000,000
100	284,600	4,265,200	7,614,600

Table 1.7.-- 1954 flood frequency analysis for Glen Canyon Dam

5. <u>Frequency Study, August through October Flows - Colorado River at Lees Ferry</u> - Colorado River Storage Project, December 15, 1961, by Orville B. Ridgely.

A frequency study of non-snowmelt season discharges was completed. The study was performed using maximum 1-, 5-, 10-, 15-, and 20-day discharges at Lees Ferry. It was based on August through October flows for the 1921 through 1960 period. The analyses were used to supplement the results for the snowmelt season found in the 1954 study. The results are shown in table 1.8.

Frequency Peak			Maximum Volume)
<u>(ft³/s)</u>	1-day	5-day	<u> 10-day</u>	15-day	<u>20-day</u>
38,800	76,000	293,000	517,000	702,000	848,000
56,900	108,000	414,000	698,000	933,000	1,108,000
81,700	157,000	603,000	960,000	1,250,000	1,465,000
	/ Peak <u>(ft³/s)</u> 38,800 56,900 81,700	 Peak (ft³/s) 38,800 76,000 56,900 108,000 81,700 157,000 	r Peak (ft ³ /s) Maximum 1-day Maximum 5-day 38,800 76,000 293,000 56,900 108,000 414,000 81,700 157,000 603,000	/ Peak (ft ³ /s) Maximum Volume 1-day Maximum Volume 5-day Maximum Volume 10-day 38,800 76,000 293,000 517,000 56,900 108,000 414,000 698,000 81,700 157,000 603,000 960,000	v Peak (ft ³ /s) Maximum Volume 1-day (acre-feet) 5-day 38,800 76,000 293,000 517,000 702,000 56,900 108,000 414,000 698,000 933,000 81,700 157,000 603,000 960,000 1,250,000

Table 1.8.--1961 flood frequency analysis for Glen Canyon Dam

2.0 METEOROLOGICAL ANALYSIS

2.1 INTRODUCTION

The following is a summary of the procedure used to derive the ULDRS (Upper Limit Design Rainstorm) for the drainage above Hoover Dam in the Colorado River Basin. Details concerning this derivation are fully addressed in a report prepared for Reclamation by MKE. That report, titled "Hydrologic Design Data Acquisition - Determination of an Upper Limit Design Rainstorm for the Colorado River above Hoover Dam", was completed in March, 1989. The report developed two separate ULDRS's - one critical for inflow to Glen Canyon Dam and the other critical for inflow to Hoover Dam. Specific storm analyses involved determination of the ULDRS magnitude, spatial and temporal distributions, storm sequencing, and seasonal variation. In addition to the development of these criteria for the two individual ULDRS's determined from the contracted report, a third ULDRS was analyzed for another location in the drainage above Glen Canyon Dam. This ULDRS and associated data were developed by hydrometeorologists in Reclamation's Flood Section. Development of this third ULDRS was consistent with the agreed upon design scenarios that would be used for the determination of the critical design flood for Hoover Dam.

2.2 DATA COLLECTION

As with any study of this nature, it was first necessary to assemble an exhaustive listing of all known major storms that have occurred in or near the region surrounding the Colorado River Basin above Hoover Dam. Due to the large area of the subject drainage and the availability of extreme precipitation estimates from Hydrometeorological Report No. 49 for areas less than 5000 square miles, the search for critical storm data concentrated on finding severe rainfall events for areas greater than 5,000 square miles. A general literature search was performed. The purpose was to find all pertinent investigations which could be useful for the present analysis. This information, along with severe storm data maintained in the files of the Hydrometeorological Branch of the National Weather Service (NWS) and in the files of the Flood Section of Reclamation's Denver Office, served as a basis for identifying major storms of record. From a review of these data, 20 storms (table 2.1) were selected for detailed meteorological analyses and used to determine the causes of large-area heavy rainfall in the region.

In defining the ULDRS, determination of maximum average areal rainfall for major storms of record occurring in the basin and major storms of record considered transposable to the basin is required. Of the twenty storms for which detailed meteorological investigations were performed, thirteen storms (identified in table 2.1 with an asterisk) were analyzed to provide the

necessary Depth-Area-Duration (DAD) data. Individual storm analyses used standard DAD procedures and a computer program developed by USBR to expedite the data processing.

		General storm	DAD
Storm dates	Storm type ¹	location	available
October 4-6, 1911	Т	AZ, CO, NM	Yes
April 5-9, 1926	ET	AZ, UT	No
September 11-13, 1927	Т	AZ, CO, NM, UT	Yes
October 11-14, 1928	ET	UT	No
September 3-7, 1939	Т	AZ, CO, UT	Yes
September 8-13, 1939	Т	AZ, CO, NM, UT	Yes
May 30 - June 3, 1943	ET	CO, UT	Yes
October 26-29, 1946	ET	NV, UT	No
October 10-15, 1947	ET	AZ, CO, NM, UT	Yes
August 26-30, 1951	Т	AZ, NV, UT	Yes
September 4-7, 1970	Т	AZ, CO, UT	Yes
May 4-8, 1971	ET	NV, UT	No
September 28 - Oct. 2, 1971	Т	AZ	No
October 3-7, 1972	Т	AZ, CO	Yes
October 17-21, 1972	ET	AZ, NM	Yes
September 7-12, 1980	ET	UT	Yes
July 16-18, 1981	ET	CO, UT	No
September 26-Oct. 1, 1982	Т	AZ, NM, UT	Yes
September 28-Oct. 2, 1983	Т	AZ	No
July 20-23, 1984	ET	NV, UT	Yes

Table 2.1.--Storms critical for the development of ULDRS over the Colorado River basin above Hoover Dam

¹T (Tropical Cyclone), ET (Extra-Tropical Cyclone)

2.3 DESIGN RAINSTORM SCENARIO

From the examination of the twenty selected storms, two hypothetical weather situations were developed that could cause the ULDRS over the study basin. One scenario involves a tropical cyclone developing over the tropical eastern Pacific Ocean to eventually penetrate the southwestern United States. Remnants of the tropical cyclone would then interact with mid-latitude upper-air circulation, which would enhance the rainfall potential of the storm. This Hypothetical-Upper Limit Design Rainstorm (HYPO-ULDRS) would occur sometime between late June and well into the fall season. The second HYPO-ULDRS scenario occurs from an optimum extra-tropical cyclone having abundant moisture inflow from the tropical Pacific. This type of major rainfall event could occur in either May or June and from mid September through October.

2.4 MAGNITUDE OF ULDRS

Since the study basin is located in a region of complex topography which produces a significant effect on total storm rainfall, it was necessary to estimate likely storm centerings and associated "generic" isohyetal patterns prior to development of the ULDRS. An important consideration in the development of likely storm centerings was the specific location of Glen Canyon Dam in relation to Hoover Dam. The objective was to provide the necessary design storms that would affect not only the design of Hoover, but also the design of Glen Canyon, or the two dams operating in combination. Examination of the isohyetal and isopercental (analysis of storm

rainfall percentages of some rainfall index) patterns of rainfall associated with major storms occurring in the drainage were particularly useful in identifying three storm centerings at 370451 N, 1070451 W (San Juan Mountains); 38001 N, 1110401 W (Boulder Mountains); and 370151 N, 113*101 W (Pine and Cedar Mountains) and their related generic isohyetal patterns. Figure 2.1 indicates the location of the three storm centerings.

The ULDRS magnitude for each of the three storm centerings was evaluated by two separate approaches. Traditional techniques of design storm development were employed in developing each approach. However, both methodologies incorporated the use of a restriction to inflow moisture. This restriction to moisture availability was developed because the large areal extent of the drainage and corresponding design storms required evaluation. Differing from typical design storm studies, the full storm moisture maximization technique was restricted to the storm rainfall region of primary moisture inflow. Rainfall occurring beyond this region was adjusted by a reduced moisture maximization factor.

In developing the ULDRS magnitude, the first approach examined made use of techniques provided in NWS Hydrometeorological Report No. 55A. This approach is commonly referred to as the "storm separation" method whereby observed areal storm precipitation is separated into components (convergence and orographic). Each precipitation component is treated and evaluated separately, and later recombined, to provide total design storm precipitation. The procedure is based on: (1) estimating the convergence (nonorographic) portion of individual storm rainfall for key area sizes and durations, (2) moisture maximization and transposition of the convergence rainfall, (3) evaluating the adjusted convergence rainfall for orographic contributions, and (4) determining ULDRS values for a complete array of storm area sizes and durations.

The second approach made use of the traditional method of storm moisture maximization and transposition. In this procedure, individual storms were moisture maximized in place. A transposition index was selected to account for differences in storm precipitation due to orographic and distance from moisture source effects when individual storms were transposed from in situ centerings to selected design storm centerings. Transposed storm rainfall data were enveloped to complete an array of design storm areal and durational depths.

After evaluation of the assumptions and uncertainties involved in application of each approach, the results of each method were averaged to produce the final array of ULDRS depths. Table 2.2 provides the final averaged ULDRS precipitation values for each of the selected storm centerings.

2.5 SPATIAL AND TEMPORAL DISTRIBUTIONS OF ULDRS

Due to the large basin and storm areas involved, it was necessary to describe the spatial distribution of average areal ULDRS precipitation provided in table 2.2. This would permit the determination of average subbasin precipitation for any group of subbasins delineated within the total study region. To avoid the necessity of determining the spatial distribution of ULDRS precipitation for each of the area sizes indicated in table 2.2, hydrologic trials were conducted by Reclamation hydrologists using preliminary average areal precipitation. These results implied that, for an ULDRS type event, a storm area of 40,000 square miles was critical for development of the maximum inflow flood for both Hoover and Glen Canyon Dams. The ULDRS results for this area (table 2.2) were used in conjunction with DAD relations from major storms located in and surrounding the subject basin to develop ULDRS DAD curves. The ULDRS DAD relations and the 100-year, 24-hour precipitation-frequency maps that apportion regional rainfall were used to develop total storm and incremental isohyetal patterns for the three storm centerings. The total storm (72 hours) isohyetal maps for each selected centering are provided on figures 2.2 to 2.4.

Major storms in the region were examined to determine characteristic time distributions. Results from these investigations indicated a different temporal distribution would be appropriate for the storm centering located in the San Juan Mountains, compared to that found at the Pine/Cedar Mountain location. The same temporal distribution indicated for the San Juan Mountain centering was adopted for the Boulder Mountain centering. Figure 2.5 provides the temporal distributions for the ULDRS centerings used in this study.

2.6 STORM SEQUENCES

It was hypothesized that critical inflow to the dams could result from a series of storms occurring in sequence. Investigations were undertaken to define the relation between storm magnitude and dryperiod interval separating sequenced storms. Due to differences in storm types controlling the ULDRS on a seasonal basis, relations developed were separated into distinct spring and late summer/early fall categories. Pairs of storms that provided major rainfalls in and near the study region were examined for each defined season. Days separation between storms and the relation of the magnitude of areal rainfall both prior and subsequent to the main storm were noted. The resulting relations developed for each season were combined and are presented in figure 2.6. The relationships provided in this figure are only applicable for the sequenced events having individual storms centered on the San Juan, Boulder, or Pine/Cedar Mountains and having storm area sizes 40,000 square miles or larger.

Dry-day interval as used here is defined as the number of days of no rain separating the end of the rainfall from the first storm event to the beginning of rainfall from the second storm. One or both sequenced storms are of ULDRS magnitude dependent on season and dryday interval chosen. The relationship of secondary storm rainfall to primary (ULDRS) is independent of ULDRS positioning in the sequence (i.e., secondary storm rainfall can be placed either prior or after the ULDRS event).

2.7 SEASONAL VARIATION

Major floods in the study basin can occur as the result of melt of the snowpack that accumulated over the cool season from September through May. To assess adequately the flood potential for Hoover and Glen Canyon Dams, it was necessary to define the magnitude of the ULDRS event for the period from May through October. It is during this period that the greatest flood threat on the Colorado River above Hoover and Glen Canyon Dams would likely result from the combination of the ULDRS event with the snowmelt hydrograph.

The evaluation of the ULDRS seasonal variation involved the use of both indirect (moisture/wind) as well as direct measures of precipitation. The examination revealed that the ULDRS event for all three centerings could occur with the same magnitude during the period from August 1 through October 31. Prior to August 1, the seasonal variation of the ULDRS would indicate a decrease in rainfall potential. A greater decrease is indicated for the storm centering located in the drainage between Hoover and Glen Canyon Dams than that shown for the two storm centerings located above Glen Canyon Dam. Figure 2.7 indicates the adopted seasonal variation for the three centerings investigated in this study.

.3.0 HYDROLOGIC ANALYSIS

3.1 BASIN FIELD TRIPS

Prior to planning a field trip to the Colorado River basin, previous Reclamation flood studies were reviewed for other dams in the basin and for similar basins, such as Roosevelt Dam in

Arizona. Twenty seven studies were reviewed, and a compilation of lag-equation coefficients and loss rates was made. All of the recent studies were in the mountainous areas above Glen Canyon Dam. The areas which lacked hydrologic information and recent field investigations were the lower elevation, desert and foothill areas, plus nearly all of the Little Colorado River basin in northern Arizona. The field trips concentrated on collecting information in these areas, while relying on data from past studies for the necessary hydrologic parameters in the upper reaches of the basin.

Field trips were made through the lower basin (Hoover Dam to Glen Canyon Dam) and the upper basin (above Glen Canyon Dam) in June, 1987. Personnel from the Lower Colorado Regional Office and Denver office performed a reconnaissance of the lower part of the basin on June 1-3, 1987. They visited areas adjacent to Lake Mead (north and south sides), Muddy Creek, Meadow Valley Wash, Santa Clara River, Virgin River, Kanab Creek, Kaibab Creek, northern tributaries to the Little Colorado River, Zuni River, and the Little Colorado River. Personnel from the Upper Colorado Regional Office and Denver Office performed a reconnaissance of portions of the upper and lower basin, June 1-10, 1987. They visited the areas tributary to Lake Powell including the Paria River, Escalante River, Fremont River, Dirty Devil River, San Rafael River, lower Green River, and San Juan River.

The field trips were made to become familiar with the subbasins; to observe soil and geologic conditions for use in estimating loss or infiltration rates; to observe land use, vegetation type and cover, and basin roughness and steepness; and to observe evidence of previous high flows. Estimates of lag coefficients ("C" values) and loss rates, for use in deriving the probable maximum floods, were made for all of the subbasins visited.

In general, the lower basin near Lake Mead and the northside tributaries to Lake Mead are areas of low infiltration rates and are subject to flash flooding. The other areas and tributaries, especially Kanab Creek, Kaibab Creek, and most of the Little Colorado River basin had somewhat higher loss rates. (Loss rates are a measure of the precipitation lost to infiltration evaporation, transpiration, and absorption, and also to minor detention storage in the basin.) In these areas, the vegetative cover was heavier and the loss rates appeared to increase with elevation rise. Most of the Little Colorado River basin showed very little evidence of flash flooding or stream channel development.

In the upper basin, those areas tributary to Lake Powell were very desert-like and exhibited signs of flash flooding. The loss rates appeared quite low, and the vegetative cover was very sparse. Some portions of the lower Green River subbasin had extensive outcrops of Mancos Shale. The upper basin areas exhibited a similar increase in vegetation and loss rates with elevation rise. Many of the loss rates used in the 1951 study were found to still be appropriate, although adjustments were necessary for some subbasins.

3.2 SUBBASIN DELINEATION

The Colorado River basin above Hoover Dam includes some 167,000 square miles. Of this total, 59,000 square miles are between Hoover Dam and Glen Canyon Dam in the lower basin, and 108,000 square miles are above Glen Canyon Dam in the upper basin. The lower and upper basins were divided into smaller subbasins for ease in meteorologic and hydrologic analysis. In general, subbasin delineation was made by following major tributary basin boundaries. Subbasins that had similar characteristics of elevation, slope, and stream development were combined where' possible. The size of the subbasins was limited to areas of less than 5,000 square miles. The lower basin was divided into 34 subbasins and the upper basin into 65 subbasins. The average subbasin size was about 1,700 square miles. Figure 3.1 shows the subbasin boundaries along with their identification numbers.

The base maps used for subbasin delineation were the "hydrologic unit" maps prepared by the

Geological Survey for the six states. These maps were published at a scale of 1:500,000. The maps provided a consistent set of basin boundaries for both the meteorologic and hydrologic studies. For the hydrologic investigation, subbasins were delineated from the river basin boundaries outlined on these maps. Some additional boundaries were established to divide basins at dam site locations, and some small basins were combined to facilitate computer modeling. Basin identification numbers were abbreviated from the hydrologic unit numbers supplied by the USGS.

3.3 BASIN PARAMETERS

The basin parameters of channel length, slope, and distance to the centroid were used in calculating basin factors and lag times. The stream length (L) was measured along the longest stream course from the basin outlet to the watershed divide. The basin centroid (Lca) was measured from the basin outlet to a point on the stream nearest the centroid. The subbasin's low elevation and high elevation along the longest stream course were used in calculating the stream slope (S). The basin factor (BF) was determined using the formula,

BF=
$$(LLca)^{0.33}$$

These parameters are summarized in table 3.1 along with the drainage areas of each subbasin.

3.4 LOSS RATES

As previously stated, loss rates are a measure of the precipitation lost to infiltration, evaporation, transpiration, and absorption, and also to minor detention storage in the basin. Data to define or represent loss rates during an extreme event, such as a PMF, are very limited. Therefore, loss rates were estimated using previous studies and based on information gathered during the June 1987 field trips through the basin.

The loss rates used in previous inflow design and/or probable maximum flood studies were compiled and compared. The 1951 study included a substantial amount of information about loss rates. In that study, soil characteristics, surface geology, and vegetative cover were analyzed to estimate loss rates. Generalized surface geology and vegetative maps were prepared for the upper basin and portions of the lower basin. The area in the lower basin below the Bridge Canyon dam site was not included in the 1951 study because the original spillway studies for Hoover Dam did not use precipitation and/or loss rate data to develop the spillway design peaks and volumes. Examination of other flood studies also indicated a lack of loss rate information for much of the lower basin, especially in the desert area around Lake Mead.

In general, the lower basin areas adjacent to Lake Mead and the northside tributaries to Lake Mead were found to be areas of low loss rates and subject to flash flooding. The other tributary areas, especially Kanab Creek, Kaibab Creek, and most of the Little Colorado River basin, have somewhat higher loss rates. In general, the vegetative cover and loss rates increase with elevation rise. Most of the Little Colorado River basin showed very little evidence of flash flooding or stream channel development.

In the upper basin, those areas tributary to Lake Powell were very desert-like with sparse vegetation, and exhibited signs of flash flooding. The loss rates were quite low. Some portions of the lower Green River subbasin have extensive outcrops of Mancos Shale. The upper basin also exhibited the same increase in vegetation and loss rates with elevation increase as the lower basin.

Table 3.2 summarizes the field trip observations and relationships between elevation, vegetation, and soils, and the accompanying generalized estimates of "C" values and loss

rates. This table represents a refinement of the application of the generalized criteria presented in table 3.3.

For this study, the delineated subbasins were further divided into the elevation bands shown on table 3.2. Weighted averages, based on the amount of area contained in each elevation band, were used to determine loss rates and "C" values for each subbasin. The results of this analysis are presented in table 3.1.

Many of the loss rates used in the 1951 study were found to still be appropriate, although adjustments were made for some subbasins. Table 3.4 is a comparison of the loss rates from the 1951 study with estimates based on observations made in 1987 for areas in the lower basin.

Elevatio	n Magnetation/apile	"C"	Loss rate
<u>(leet)</u>	vegetation/solis	value	(11/11)
Colorado River Sub	basins Northwest of Lakes Mead and Powell		
Below 5500	Steep walled Rocky Canyons Cottonwoods along Streams Scattered Pinon and Juniper	0.8	0.10
5500 - 7000	Predominate Flat Desert Plateaus, Sage and Grass on Hard Crusted Sandy Soils	1.8	0.15
7000 - 8000	Pinon-Juniper Forest Mild Slopes with Crusted Sandy Soils	2.2	0.15
Above 8000	Ponderosa Pine Forests Steeper Slopes with Crusted Sandy Soils	2.5	0.15
Little Colorado Rive	r Subbasins South and East of Lake Powell:		
Below 4000	Canyons and Rocky Cliffs Little Vegetation Very Steep, Very Hard	0.8	0.10
4000 - 5500	Plateaus and Flat Deserts Scattered Sage and Grass Thin Crusted Sandy Soil Flat Terrain, some Rock Formations	2.0	0.25
5500 - 7000	Pinyon-Juniper Forest Scattered Sage and Grass Thin Crusted Very Sandy Mild Slopes, Eroded Gullies	2.2	0.20
Above 7000	Pine Forest with a Fair Amount of Forest Litter over Sandy Soils	2.5	0.25

Table 3.2.--Lag coefficients and loss rates in relation to elevation, vegetation, and soils

Table 3.3.--Generalized guidelines for estimating lag coefficients

Watershed condition	"C" value
Forests	2.5 - 3.5
Sage, grass	1.8 - 2.5
Rocky, canyon areas	0.5 - 1.8

Table 3.4.--Comparison of loss rates

Study Subbasin	Loss Rate (in/hr)		
	1951	1987	
Upper Grand Canyon	.23	.2025	
Zuni and Upper Little Colorado Rivers .	.23	.20	
Puerco Wash	.16	.20	
Jadito Wash, Pueblo Colorado Wash	.23	.2025	
Lower Little Colorado and Cedar Wash	.1823	.2025	
Upper Grand Canyon	.23	.20	
Kanab Creek	.18	.20	
Havasu Creek and Lower Grand Canyon	.25	.25	

Table 3.1 showed the selected loss rates for the upper and lower basins. Loss rates developed in previous studies were used if they were available for the subbasins. In the other subbasins, the loss rates were determined by using the elevation-vegetation-loss rate relationship.

The areas around Lake Mead and Lake Powell were generally those with the lower loss rates. Those subbasins showed evidence of flash flooding and also had extensive areas of "desert pavement" - a very hard-packed, nearly impervious soil. Many of these subbasins had extensive rock outcrops. The vegetation in these subbasins was very sparse or non-existent. The higher plateaus and mountains generally have higher loss rates.

Some subbasins in the upper basin, generally west and north of Lake Powell, also are areas of low loss rates. These areas are more desert-like and more prone to flash floods than had been anticipated prior to the June, 1987 field trip.

MISSING 3.5 AND 3.6 (PAGE 39 OF ORIGINAL DOCUMENT)

To determine travel times for each of the channel reaches in the Colorado River basin, knowledge obtained from similar basins and similar studies was applied. Flood flow velocities usually range between 8 and 12 ft/s; therefore, average streambed slopes and channel conveyance characteristics were used to estimate the flow velocities. Generally, the steeper portions of the upper basin had the highest velocities, and the flatter areas around Lake Powell and Lake Mead had the lower values. The channel lengths were divided by the flow velocities to

obtain travel times for each reach. Table 3.5 shows the selected travel times for each subbasin.

3.7 DIMENSIONLESS GRAPHS

The dimensionless unit hydrograph is used with the FHAR computer program to calculate the flood hydrograph for each subbasin. The basin above Hoover Dam includes three basic types of terrain - deserts, foothills, and mountains. Data gathered from the field reconnaissance and from analysis of basin features shown on topographic maps were compared with similar data for basins where unit hydrographs had been developed from observed flood hydrographs. Separate dimensionless graphs were used for each type of topography. The following three dimensionless graphs were used in the study: (1) Southwest Desert for the desert areas, (2) Buckhorn for the foothill areas, and (3) Uinta for the mountainous areas. Tables 3.6, 3.7, and 3.8 show the unitgraph ordinates for the three dimensionless graphs. These dimensionless graphs were derived from analysis of flood events for the Salt River in Arizona, Buckhorn Creek in Colorado, and the Uinta Mountains in Utah. They are considered appropriate for use in this study.

	Distance	Velocity	Travel time
Subbasin to subbasin	(miles)	(ft/sec)	(hours)
Abc	ve Glen Canyon Dam		
44102 44101	26.0	10	1 1
44102-44101	30.0	12	4.4
44101-44104	22.9	12	2.0
44104-44103	35.Z	12	4.3
44103-44100	U.7 E4 9	12	0.1
44106-44107	04.0 60 5	12	0.7
44100-46001	10.0	12	7.4
44109-40001	10.0	12	2.3
45004-45003	72.9	12	0.1
45001-45005	12.0	12	0.9 5.0
45003-46001	42.0	12	5.Z
40002-40001	40.3 50.7	12	5.9
40004-40003	50.7 1 E	12	0.2
40003-45007	1.0	10	0.Z
45005-45007	100.0	12	12.3
45007-40000	0.0	11	0.0 12.0
40000-40000	90.0 20 E	10	12.0
40003-40009	59.5 00.9	10	0.0 1/ 0
40000-43003	90.0	9	14.0
41071-41002	JZ.7	12	4.0
4102-41072	19.0	12	2.4
41072-41002	13.9	12	1.7
41002-41003	00.9 10.0	12	1.2
41003-41004	10.0	12	Z.Z 1 E
42001-42003	12.3	12	1.5
42003-42072	3.3 22 E	12	0.4
42062-42004	33.5	12	4.1
42004-42006	10.4	12	2.0
42000-41005	48.3	12	5.9
41004-41006	50.5	12	6.9

Table 3.5.--Channel routing times between subbasins

Table 3.5Channel routing times between subbasins (continued)						
43003-43005	58.5	11	7.8			
42005-43001	35.3	11	4.7			
41006-42005	32.7	12	4.0			

Subbasin to subb	asin	Distance (miles)	Velocity (ft/sec)	Travel time (hours)
	Abov	ve Glen Canyon Da	<u>m</u>	
41005-43005 43001-46008 47003-47001 43005-47001 48171-48103 48103-48105 48161-48106 48106-48201 48105-48202 48202-48203 48203-48205 48201-47001		30.0 92.0 57.1 16.7 17.2 23.7 27.8 29.5 25.2 9.5 25.2 70.0	11 10 9 7 12 12 12 12 12 10 10 10 9	4.0 13.5 9.3 3.5 2.1 2.9 3.4 3.6 3.7 1.4 3.7 1.4
	Between G	Blen Canyon and He	oover Dams	
52001-52003 52003-52004 52004-52005 52005-52008 52006-52008 52007-52009 52013-52014 52014-52008 8.2 52007-52009 4.9 52009-52010 21.3 52010-52011 9.8 52011-52012 36.0 52012-52015 4.9 52015-52016 20.5 52008-52017 4.1 52017-52018 36.0 52018-51001 48.3 47007-52016 58.9 52016-51002 26.2 51001-51003 55.2 51003-51004 13.0 51004-51005 80.5 51009-51005 58.6 51011-51013 51.5 51013-51005 13.1	$12 1.0 \\ 12 0.6 \\ 12 2.6 \\ 12 1.2 \\ 12 4.4 \\ 12 0.6 \\ 12 2.5 \\ 12 0.5 \\ 12 4.4 \\ 12 5.9 \\ 12 7.2 \\ 12 3.2 \\ 10 8.1 \\ 10 1.9 \\ 10 11.8 \\ 10 8.6 \\ 12 6.3 \\ 12 1.6 \\ 1 6.0 \\ 1 6.0 \\ 1 6.0 \\ 1 6.0 \\ 1 0 1 0 \\ 1 0 1 0 \\ 1 0 1 0 \\ 1 0 1 0$	21.3 16.4 122.0 26.2 123.2 13.1 121.0 64.6 127.9 4.9 120.0 4.9 120.0		2.6

Table 3.6.--Southwest desert dimensionless hydrograph

% Lag+D/2 Flow % Lag+D/2 Flow % Lag+D/2 Flow Flow % Lag+D/2 (ft^{3}/s) (ft ³/s) $(ft ^{3}/s)$ (ft ³/s) 0.00 135 9.04 270 1.68 405 0.38 0 5 0.19 140 8.20 275 1.59 410 0.36 10 0.32 145 7.36 280 1.50 415 0.34 0.48 150 6.78 285 1.43 420 15 0.33 0.74 155 6.20 290 1.36 425 20 0.30 25 1.21 160 5.83 295 1.28 430 0.28 30 1.81 165 5.47 300 1.21 435 0.27 35 2.63 170 5.15 305 1.15 440 0.26 40 3.68 175 4.84 310 1.08 445 0.24 45 5.47 180 4.57 315 1.02 450 0.23 50 8.41 185 4.31 320 0.97 455, 0.22 55 12.61 190 4.10 325 0.91 460 0.21 60 16.50 195 3.87 330 0.86 465 0.20 65 20.50 200 3.68 335 0.82 470 0.19 70 23.97 205 3.47 340 0.78 475 0.18 75 27.75 210 3.28 345 0.74 480 0.17 80 28.91 215 3.10 350 0.69 485 0.16 85 28.07 220 2.93 355 0.66 490 0.15 90 26.38 225 2.75 360 0.63 495 0.15 95 24.18 230 2.63 365 0.59 500 0.13 100 21.55235 2.47 370 0.56 505 0.12 18.92240 105 2.33 375 0.53 510 0.12 110 16.08 245 2.22 380 0.50 515 0.11 115 14.19250 2.10 385 0.47 520 0.10 120 12.61 255 1.99 390 0.45 125 11.04 260 1.88 395 0.42 130 9.99 265 1.78 400 0.40

Southwest Desert Great Basin and Colorado Plateau (Reclamation Flood Hydrology Manual Table 4-13, 1989)

Table 3.7.--Buckhorn dimensionless hydrograph

% Lag+	·D/2	Flow (ft ³ /s)	% La	g+D/2	Flow (ft ³ /s)	%	Lag+D/2	Flow (ft ³ /s)	% Lag+D/2	Flow (ft ³ /s)
0	0.00'	155	5.98	310	1.00	465	0.26			
5	0.14	160	5.47	315	0.96	470	0.25			
10	0.21	165	4.97	320	0.92	475	0.24			
15	0.33	170	4.55	325	0.88	480	0.23			
20	0.51	175	4.25	330	0.84	485	0.22			
25	0.84	180	3.89	335	0.81	490	0.21			
30	1.62	185	3.59	340	0.77	495	0.20			
35	3.74	190	3.34	345	0.74	500	0.19			
40	6.38	195	3.13	350	0.71	505	0.18			
45	8.61	200	2.93	355	0.68	510	0.17			
50	10.94	205	2.75	360	0.65	515	0.17			
55	13.26	210	2.61	365	0.62	520'	0.16			
60	15.70	215	2.44	370	0.59	525	0.16			
65	18.23	220	2.31	375	0.57	530	0.15			
70	20.76	225	2.17	380	0.55	535	0.15			
75	23.30	230	2.04	385	0.52	540	0.14			
80	25.83	235	1.95	390	0.50	545	0.14			
85	28.36	240	1.84	395	0.48	550	0.13			
90	26.53	245	1.76	400	0.46	555	0.13			
95	24.71	250	1.69	405	0.43	560	0.12			
100	22.68	255	1.62	410	0.42	565	0.12			
105	20.76	260	1.55	415	0.40	570	0.11			
110	18.84	265	1.49	420	0.38	575	0.11			
115	16.81	270	1.42	425	0.36	580	0.10			
120	14.99	275	1.36	430	0.35	585	0.10			
125	12.86	280	1.30	435	0.33	590	0.09			
130	11.04	285	1.24	440	0.32	595	0.09			
135	9.52	290	1.19	445	0.31	600	0.08			
140	8.41	295	1.14	450	0.29					
145	7.50	300	1.09	455	0.28					
150	6.69	305	1.05	460	0.27					

Rocky Mountain Thunderstorm (Reclamation Flood Hydrology manual Table 4-11, 1989)

Table 3.8.--Uinta dimensionless hydrograph

% L	ag+D/2	Flo (ft ³	w /s)	% L	ag+D/	2 F (1	low t³/s)	% Lag+D	/2 Flo (ft ³	ow /s)	% Lag+D/2	2 Flow (ft ³ /s)
0	0.00	155	C 40	240	4 57	105	0.44					
0	0.00	100	6.40 6.00	310	1.57	405	0.44					
С 1	0.20	100	0.00	210	1.30	470	0.42					
1	0 0.90 5 2 00	100	5.05	320	1.40) 4/J	0.41					
ו 2	02.00	170	5.55	320	1.38	7 400 1 485	0.40					
2	5500	175	1 80	330	1.04	2 400	0.30					
2 2	0680	185	4.00	3/10	1.20	2 /05	0.37					
3 3	5770	100	4.30	345	1 10	5 4 500	0.33					
4	0 9 00	195	4 10	350	1 19	8 505	0.04					
- 4	0	200	3 00	355	1.10	510	0.00					
5	0 1 4 .01 0 18 11	205	3.72	360	1.00	515	0.02					
5	5 21 51	210	3 55	365	1.00	520	0.20					
6	0 24 01	215	3 40	370	0.97	7 525	0.27					
6	5 22 81	220	3 25	375	0.93	3 530	0.26					
7	0 21.21	225	3.10	380	0.90	535	0.25					
.7	5 19.31	230	3.00	385	0.86	540	0.24					
8	0 16.91	235	2.87	390	0.83	3 545	0.23					
8	5 15.21	240	2.75	395	0.80) 550	0.23					
9	0 14.21	245	2.65	400	0.77	555	0.22					
9	5 13.41	250	2.52	405	0.74	560	0.21					
1	00 12	.7125	5 2.4	42 4	10 C	.68 5	65 0.	20				
1	05 11	.91 260	0 2.3	33 4	15 0	.65 5	70 0.	19				
1	10 11	.21 26	5 2.2	24 4	20 0	.63 5	75 0.	19				
1	15 10	.61 270	0 2.	15 4	25 0	.60 5	80 0.	18				
1	20 10	.01 27	5 2.0	07 4	I30 0	.58 5	85 0.	17				
1	25 9.4	10 280	0 1.9	99 4	I35 0	.56 5	90 0.	17				
1	30 8.8	30 28	5 1.9	91 4	40 0	.54 5	95 0.	16				
1	35 8.2	25 290	0 1.8	83 4	45 0	.52 6	00 0.	16				
1	40 7.7	70 29	5 1.	76 4	450 C	.50						
1	45 7.2	25 300	0 1.	70 4	155 C	.48						

Rocky Mountain General Storm (Reclamation Flood Hydrology manual Table 4-9, 1989)

4.0 ANTECEDENT FLOOD ANALYSIS

4.1 GENERAL

150 6.80 305 1.63 460 0.46

The antecedent flood is that flood, and associated climatic conditions, affecting the basin prior to the onset of the Upper Limit Design Rain Storm (ULDRS). For this study, the antecedent flood is a 100-year snowmelt event. This flood is not nearly as large as what might be expected as the probable maximum snowmelt flood, but the volume is still very large when compared to the volume of the ULDRS flood event. In order to model operations of the reservoirs of the

Colorado River above Hoover Dam, daily flows were required for a complete calendar year.

4.2 METHODOLOGY FOR DEVELOPING THE ANTECEDENT FLOODS

A statistical analysis of flood flows for the Colorado River above Hoover Dam was the basis for developing the snowmelt base flood. Flooding in the Colorado River Basin is dominated by snowmelt runoff. The basic data were not adjusted to remove the effects of rainfall runoff. The assumption was made that the data include rainfall similar to that which would be found in any year in which the ULDRS might occur. The 100-year flood volume was determined for various time intervals, up to and including a full year period. This information was used to construct an annual daily flow hydrograph that is hydrologically reasonable. The 100-year flood volumes for the area above Glen Canyon Dam and between Glen Canyon Dam and Hoover Dam were also calculated in the same manner as the 100-year inflow to Hoover Dam.

The timing of the peak of the hydrograph was based on observations of time of occurrence of flood peaks during the years of record. The shape of the daily flows near the peak of the hydrograph could not be based on the monthly data base itself, and accordingly was patterned after the 1984 flood hydrograph. Runoff in 1984 resulted in a single peaked hydrograph of the same order of magnitude as the 100-year snowmelt flood.

To accommodate the modeling requirements for the flood control and storage operations of the upstream storage facilities, the inflow hydrograph was separated into two constituent hydrographs, one for inflow into Glen Canyon Dam and one for the intervening area between Glen Canyon Dam and Hoover Dam. A 100-year balanced hydrograph was calculated for the flows into Glen Canyon Dam, and the remainder of the flow was the concurrent intervening inflow (i.e., the difference between the Hoover Dam 100-year inflow and the Glen Canyon Dam 100-year inflow).

The data used for statistical analysis were the undepleted, unregulated, natural flow data base that was prepared for use with the Colorado River Simulation System (CRSS). These data consist of monthly flows for the period from 1906 to 1983. The data base was augmented by provisional values for 1984 to 1986. Both log-Pearson type III and Pearson type III frequency analyses were performed, and the Pearson type III was found to be more applicable. This decision was based on both theoretical considerations and results of analyses of the data. The-frequency analysis was performed for volumes with durations of one month, two months, etc. An adjustment was made to the results to arrive at 100-year peak 30-day volumes, 60-day volumes, etc. based on the 100-year peak one monthly volume, two monthly volumes, etc. This adjustment, used to compensate for the fixed interval of the base data, was very small. It was less than 6 percent for 30 days and practically negligible for periods longer than 60 days. An inspection of the data shows that the adjustment was not dependent on the magnitude of runoff. These flood frequency curves are illustrated on figures 4.1 and 4.2 for Lakes Powell and Mead, respectively.

The resulting 100-year volumes were used with the balanced hydrograph procedure to arrive at daily hydrograph values. The values near the peak, those for the peak thirty days, were patterned to resemble the shape of the peak experienced during the natural runoff into Glen Canyon Dam in 1984. The remainder of the hydrograph was patterned to reflect a shape typical of that normally experienced in high runoff years. The timing within the year was also determined based on that normally experienced in high runoff years.

The 100-year peak volumes were examined for temporal consistency. The values for the 90-day peak volume appeared excessively large with respect to all of the other values. Therefore, in order to arrive at a reasonably consistent hydrograph, the 90-day values were

adjusted downward. This adjustment amounts to 2 percent for the inflow into Hoover Dam. The intervening flows are approximately 5 percent or less of the total and were also smoothed temporally for consistency. It should be noted that as a computational expediency the peak 10, 11, and 12 month volumes were calculated using water year data, but these values were used in constructing a hydrograph for the calendar year. This discrepancy is insignificant in terms of this study.

4.3 ANTECEDENT FLOODS FOR HOOVER AND GLEN CANYON

The resulting ordinates of the 100-year hydrograph for inflow into Hoover Dam are shown in table 4.1. Table 4.2 provides the ordinates for the 100-year inflow hydrograph for Glen Canyon Dam, and table 4.3 lists the concurrent flow in the intervening reach between Hoover and Glen Canyon Dams. The ordinates from tables 4.2 and 4.3 for any given day sum to give the corresponding unregulated, undepleted daily flow in table 4.1.

Table 4.4 summarizes the results of the separation technique used in the snowmelt flood analysis. The method calculated a 100-year balanced snowmelt hydrograph for flows into Glen Canyon, with the remainder of the 100-year inflow to Hoover Dam coming from the intervening area between the dams.

_	Flow	_	Flow	_	Flow	_	Flow
Day	<u>(ft°/s)</u>	Day	<u>(ft°/s)</u>	Day	<u>(ft°/s)</u>	Day	<u>(ft°/s)</u>
0	0	50	11.203	100	26.286	150	166.433
1	10.910	51	10,799	101	26.887	151	161.271
2	10,990	52	10,401	102	27.925	152	156,103
3	11,066	53	9,997	103	28,964	153	152,115
4	11,147	54 9,670 ⁻	104 30,002	2 154	148,117		
5	11,227	55 9,352	105 31,030	3 155	144,119		
6	11,303	56 8,808	106 32,07	5 156	140,126		
7	11,383	57 8,349	107 33,11	3 157	137,050		
8	11,459	58 7,643 ⁻	108 34,14 [.]	7 158	133,980		
9	11,540	597,290	1.09 35,19	1 159	130,905		
10	11,620	60 7,890	110 36,224	4 160	127,834		
11	11,696	61 8,485 i	II 37,267	161 12	24,764		
12	11,777	62 9,085 ⁻	112 38,88	5 162	121,683		
13	11,852	63 9,831 ⁻	113 41,93	1 163	118,613		
14	11,933	64 11,480) 114 45,	047 16	64 115,543		
15	12,014	65 12,614	115 48,	157 16	65 110,270		
16	12,089	66 13,093	3 116 50,	265 16	6 107,401		
17	12,170	67 13,562	2 117 51,	363 16	67 104,533		
18	12,246	68 14,041	118 52,	463 16	68 101,669		
19	12,326	69 14,515	5 119 53,	557 16	69 98,800		
20	12,407	70 14,994	120 54,	661 17	70 95,936		
21	12,483	71 15,493	3 121 55,	760 17	71 93,310		
22	12,563	72 16,652	2 122 56,	859 17	72 92,115		
23	12,664	73 18,080) 123 57,	958 17	73 91,162		
24	12,881	74 18,947	<mark>' 124 59</mark> ,	053 17	74 90,204		
25	13,118	75 19,259	125 60,	156 17	75 89,246		

Table 4.1.--Undepleted unregulated 100-year base snowmelt - Hoover Dam

Daily inflow to Hoover Dam

26	13,355	76 19	,571	126	61,255	176	88,294
27	13,592	77 19	,879	127	62,969	177	87,341
28	13,824	78 20	,186	128	66,201	178	86,383
29	14,061	79 20	,504	129	69,498	179	85,425
30	14,297	80 20	,812	130	72,791	180	84,472
31	14,349	81 21	,124	131	77,545	181	83,514
32	14,213	82 21	,432	132	83,750	182	82,561
33	14,081	83 21	,744	133	89,962	183	81,608
34	13,945	84 22	,138	134	102,39	0 184	80,650
35	13,814	85 22	,990	135	115,54	3 185	79,692
36	13,678	86 23	,918	136	127,83	4 186	78,734
37	13,547	87 24	,855	137	140,12	6 187	77,787
38	13,416	88 25	,349	138	156,10	3 188	76,829
39	13,279	89 25	,399	139	158,97	7 189	75,871
40	13,012	91 25	,506	141	164,70	9 191	72,791
42	12,881	92 25,56	1 14	2 16	67,578 1	92 6	9,498
43	12,746	93 25,61	6 14	3 17	70,441 1	93 6	6,201
44	12,609	94 25,67	2 14	4 17	73,315 1	94 62	2,969
45	12,478	95 25,72	2 14	5 17	76,184 1	95 6	1,255
46	12,342	96 25,77	7 14	6 17	79,047 1	96 6	0,156
47	12,211	97 25,83	3 14	7 18	31,916 1	97 5	9,053
48	11,999	98 25,96	5 14	8 17	76,754 1	98 5	7,958
49	11,605	99 26,12	6 14	9 17	71,596 1	99 5	6,859

Table 4.1.--Undepleted unregulated 100-year base snowmelt -Hoover Dam
(continued)

Daily inflow to Hoover Dam

	FI	ow			Flow		Flow		Flow
Day	(ft	. ³ /s)	Day		(ft³/s)	Day	(ft ³ /s)	Day	(ft ³ /s)
200	55,760	242	22,632	284	9,660 326	8,858			
201	54,661	243	22,007	285	9,503 327	8,909			
202	53,557	244	21,739	286	9,357 328	8,959			
203	52,463	245	21,482	287	9,216 329	9,014			
204	51,363	246	21,225	288	9,075 330	9,059			
205	50,265	247	20,963	289	8,929 331	9,120			
206	48,157	248	20,711	290	8,787 332	9,170			
207	45,047	249	20,453	291	8,641 333	9,226			
208	41,931	250	20,196	292	8,495334	9,281			
209	38,886	251	19,944	293	8,354 335	9,337			
210	37,267	252	19,687	294	8,213336	9,388			
211	36,224	253	19,430	295	8,066 337	9,428			
212	35,191	254	19,179	296	7,925338	9,443			
213	34,147	255	18,922	297	7,779339	9,463			
214	33,113	256	18,503	298	7,633340	9,478			
215	32,075	257	17,918	299	7,497 341	9,499			
216	31,036	258	17,333	300	7,350342	9,514			
217	30,002	259	16,748	301	7,204 343	9,539			
218	28,964	260	16,168	302	7,058 344	9,554			
219	27,925	261	15,634	303	7,063345	9,569			
220	26,887	262	15,392	304	7,215346	9,589			
221	26,312	263	15,195	305	7,366 347	9,605			

222	26,196	264	15,004	306	7,517 348	9,625
223	26,080	265	14,807	307	7,673349	9,645
224	25,960	266	14,615	308	7,825350	9,665
225	25,853	267	14,419	309	7,970 351	9,680
226	25,803	268	14,222	310	8,051 352	9,695
227	25,767	269	14,031	311	8,102353	9,716
228	25,727	270	13,834	312	8,152 354	9,730
229	25,687	271	13,643	313	8,198 355	9,755
230	25,652	272	13,446	314	8,253 356	9,770
231	25,611	273	13,249	315	8,304 357	9,790
232	25,571	274	13,058	316	8,349 358	9,790
233	25,536	275	12,861	317	8,405 359	9,790
234	25,491.	276	12,670	318	8,455 360	9,790
235	25,455	277	12,478	319	8,505 361	9,790
236	25,414	278	12,161	320	8,555 362	9,790
237	25,374	279	11,732	321	8,606 363	9,790
238	25,339	280	11,298	322	8,656 364	9,790
239	24,935	281	10,870	323	8,707 365	9,790
240	24,164	282	10,436	324	8,757	
241	23,398	283	10,008	325	8,808	

Table 4.2.--Undepleted unregulated 100-year base snowmelt - Glen Canyon Dam

Duny			nyon Dui	<u> </u>					
_	Fle	OW	_	Flow		_	Flow	_	Flow
Day	(ft	°/s)	Day	(ft³/s)		Day	(ft³/s)	Day	(ft°/s)
0	0 sc	9,92710	0 24,17	' 9 150 '	164,1	95			
1	9,887 51	9,49310	01 24,76	64 151 ⁻	159,1	03			
2	9,967 52	29,06510)2 25,8 ⁻	8 152	154,0	06			
3	10,043	53 8,631	1 103 26	6,867 153	5 15	0,068			
4	10,124	54 8,268	3104 27	',920 154	14	6,126			
5	10,204	55 7,900	0105 28	8,969 155	i 14	2,183			
6	10,280	56 7,250	0106 30),018 156	ຳ 13	8,240			
7	10,360	57 6,690	0107 31	,071 157	' 13	5,210			
8	10,436	58 5,818	3108 32	2,120 158	3 13	2,180			
9	10,517	59 5,319	9109 33	8,174 159) 12	9,145			
10	0 10,597	60 5,924	110 34	,222 160) 12	6,115			
11	10,673	61 6,529	9 ill 35,27	'6 161 [·]	123,0	85			
12	2 10,754	62 7,134	112 36	6,915 162	2 12	0,050			
13	8 10,829	63 7,890)113 40	,000 163	3 11	7,020			
14	10,910	64 9,554	4114 43	8,156 164	11	3,990			
15	5 10,991	65 10,69	98 115	46,307	165	108,737			
16	6 11,066	66 11,16	67 116	48,425	166	105,803			
17	' 11,147	67 11,63	31 117	49,498	167	102,874			
18	3 11,223	68 12,10	00 118	50,577	168	99,945			
19	9 11,303	69 12,56	69 119	51,651	169	97,015			
20) 11,384	70 13,03	38 120	52,730	170	94,086			
21	11,460	71 13,53	32 121	53,809	171	91,399			
22	2 11,540	72 14,67	71 122	54,883	172	90,179			
23	3 11,636	73 16,07	78 123	55,962	173	89,206			
24	11,853	74 16,93	35 124	57,036	174	88,228			
25	5 12,090	75 17,25	57 125	58,114	175	87 , 250			
26	5 12,327	76 17,57	75 126	59,193 ⁻	176	86,272			

Daily inflow to Glen Canyon Dam

27 12,564	77 17,893	127	60,872	177	85,299
28 12,796	78 18,210	128	64,038	178	84,321
29 13,033	79 18,533	129	67,270	179	83,343
30 13,269	80 18,851	130	70,497	180	82,370
31 13,315	81 19,168	131	75,286	181	81,391
32 13,169	82 19,486	132	81,633	182	80,413
33 13,027	83 19,808	133	87,981	183	79,440
34 12,881	84 20,207	134	100,681	184	78,462
35 12,740	85 21,084	135	113,990	185	77,484
36 12,594	86 22,037	136	126,115	186	76,506
37 12,448	87 22,995	137	138,240	187	75,533
38 12,307	88 23,494	138	154,006	188	74,555
39 12,160	89 23,534	139	156,839	189	73,577
40 12,019	90 23,569	140	159,667	190	72, 604
41 11,873	91 23,610	.141	162,496	191	70,497
42 11,732	92 23,650	142	165,324	192	67,270
43 11,586	93 23,690	143	168,152	193	64,038
44 11,439	94 23,731	144	170,986	194	60,872
45 11,298	95 23,766	145	173,814	195	59,193
46 11,152	96 23,806	146	176,642	196	58,114
47 11,011	97 23,847	147	179,471	197	57,036
48 10,784	98 23,943	148	174,379	198	55,962
49 10,360	99 24,064	149	169,287	199	54,883

Table 4.2.--Undepleted unregulated 100-year base snowmelt - Glen Canyon Dam(continued)

	FI	ow			Flow		Flow		Flow
Day	<u>(ft</u>	: ³ /s)	Day		(ft ³ /s)	Day	(ft ³ /s)	Day	<u>(ft³/s)</u>
200	53,809	242	20,716	284	7,714 326	7,315			
201	52,730	243	20,076	285	7,557 327	7,376			
202	51,651	244	19,798	286	7,411 328	7,436			
203	50,577	245	19,536	287	7,265 329	7,502			
204	49,498	246	19,274	288	7,124 330	7,562			
205	48,425	247	19,007	289	6,978331	7,628			
206	46,307	248	18,745	290	6,831 332	7,688			
207	43,156	249	18,482	291	6,685333	7,754			
208	40,000	250	18,220	292	6,539334	7,814			
209	36,915	251	17,958	293	6,393335	7,880			
210	35,276	252	17,696	294	6,252336	7,941			
211	34,222	253	17,434	295	6,105337	7,986			
212	33,174	254	17,172	296	5,959338	8,006			
213	32,120	255	16,910	297	5,813339	8,026			
214	31,071	256	16,491	298	5,667 340	8,046			
215	30,018	257	15,916	299	5,526341	8,067			
216	28,969	258	15,342	300	5,379342	8,087			
217	27,920	259	14,767	301	5,233 343	8,112			
218	26,867	260	14,197	302	5,087 344	8,132			
219	25,818	261	13,668	303	5,107 345	8,152			
220	24,764	262	13,431	304	5,294 346	8,172			
221	24,200	263	13,239	305	5,480 347	8,193			
222	24,114	264	13,048	306	5,667 348	8,213			

Daily inflow to Glen Canyon Dam

223	24,028	265	12,856	307	5,853 34	19	8,238
224	23,943	266	12,664	308	6,040 35	50	8,258
225	23,862	267	12,473	309	6,22135	51	8,278
226	23,827	268	12,281	310	6,32235	52	8,298
227	23,801	269	12,090	311	6,38335	53	8,319
228	23,771	270	11,898	312	6,44335	54	8,339
229	23,741	271	11,707	313	6,504 35	55	8,364
230	23,716	272	11,515	314	6,56935	56	8,384
231	23,685	273	11,323	315	6,63035	57	8,404
232	23,655	274	11,132	316	6,690 35	58	8,404
233	23,630	275	10,940	317	6,75635	59	8,404
234	23,600	276	10,754	318	6,81636	60	8,404
235	23,574	277	10,562	319	6,877 36	51	8,404
236	23,544	278	10,245	320	6,94236	62	8,404
237	23,514	279	9,81132	217,	003 363	8,4	104
238	23,489	280	9,37232	227,	063 364	8,4	104
239	23,080	281	8,93932	237,	129 365	8,4	104
240	22,289	282	8,500 32	247,	189		
241	21,502	283	8,067 32	257,	250		

Table 4.3.--Undepleted unregulated 100-year base snowmelt - intervening areabetween Hoover and Glen Canyon Dams

Glen Canyon Dam to Hoover Dam intervening daily inflow

	Flow		Flow		Flow		Flow
Day	(ft ³ /s)						
•		•		•		•	

0	0 50	1,276 10	02,	107 150	2,2	238
1	1,023	51 1,306	6101	2,1231	51	2,168
2	1,023	52 1,336	6102	2,1071	52	2,097
3	1,023	53 1,366	6103	2,097 1	53	2,047
4	1,023	54 1,402	2104	2,0821	54	1,991
5	1,023	55 1,452	2105	2,067 1	55	1,936
6	1,023	56 1,558	3 1 0 6	2,057 1	56	1,886
7	1,023	57 1,659	9107	2,0421	57	1,840
8	1,023	58 1,825	5108	2,027 1	58	1,800
9	1,023	59 1,971	109	2,017 1	59	1,760
10	1,023	60 1,966	6110	2,0021	60	1,719
11	1,023	61 1,956	Sill 1,	991 161	1,6	679
12	1,023	62 1,951	112	1,9711	62	1,633
13	1,023	63 1,941	113	1,9311	63	1,593
14	1,023	64 1,926	6114	1,8911	64	1,553
15	1,023	65 1,916	6115	1,8501	65	1,533
16	1,023	66 1,926	6116	1,8401	66	1,598
17	1,023	67 1,931	117	1,8651	67	1,659
18	1,023	68 1,941	118	1,8861	68	1,724
19	1,023	69 1,946	6119	1,9061	69	1,785
20	1,023	70 1,956	6120	1,9311	70	1,850
21	1,023	71 1,961	121	1,9511	71	1,911
22	1,023	72 1,981	122	1,976 1	72	1,936
23	1,028	73 2,002	2123	1,996 1	73	1,956
24	1,028	74 2,012	2124	2,0171	74	1,976

25 1,028 75 2,002 125	2,042 175	1,996
26 1,028 76 1,996 126	2,062 176	2,022
27 1,028 77 1,986 127	2,097 177	2,042
28 1,028 78 1,976 128	2,163 178	2,062
29 1,028 79 1,971 129	2,228 179	2,082
30 1,028 80 1,961 130	2,294 180	2,102
31 1,034 81 1,956 131	2,259 181	2,123
32 1,044 82 1,946 132	2,117 182	2,148
33 1,054 83 1,936 133	1,981 183	2,168
34 1,064 84 1,931 134	1,709 184	2,188
35 1,074 85 1,906 135	1,553 185	2,208
36 1,084 86 1,881 136	1,719 186	2,228
37 1,099 87 1,860 137	1,886 187	2,254
38 1,109 88 1,855 138	2,097 188	2,274
39 1,119 89 1,865 139	2,138 189	2,294
40 1,129 90 1,881 140	2,178 190	2,314
41 1,139 91 1,896 141	2,213 191	2,294
42 1,149 92 1,911 142	2,254 192	2,228
43 1,160 93 1,926 143	2,289 193	2,163
44 1,170 94 1,941 144	2,329 194	2,097
45 1,180 95 1,956 145	2,370 195	2,062
46 1,190 96 1,971 146	2,405 196	2,042
47 1,200 97 1,986 147	2,445 197	2,017
48 1,215 98 2,022 148	2,375 198	1,996
49 1,245 99 2,062 149	2,309 199	1,976

Table 4.3.--Undepleted unregulated 100-year base snowmelt - intervening area between Hoover and Glen Canyon Dams (continued)

Glen Canyon Dam to Hoover Dam intervening daily inflow

	Flow		Flow	,		Flow		Flow
Day	(ft ³ /s) Day	(ft ³ /s) [Day	(ft ³ /s) Day	(ft ³ /s)
	· · · ·							· · ·
00 1,	,951242 1,	916284 1,	946 326 1,	543				
201	1,931 243	1,931 285	1,946 327	1,533				
202	1,906 244	1,941286	1,946 328	1,523				
203	1,886 245	1,946 287	1,951 329	1,512				
204	1,865246	1,951288	1,951 330	1,497				
205	1,840 247	1,956 289	1,951 331	1,492				
206	1,850 248	1,966 290	1,956 332	1,482				
207	1,891249	1,971291	1,956 333	1,472				
208	1,931 250	1,976 292	1,956 334	1,467				
209	1,971251	1,986 293	1,961 335	1,457				
210	1,991 252	1,991 294	1,961 336	1,447				
211	2,002 253	1,996 295	1,961 337	1,442				
212	2,017 254	2,007 296	1,966 338	1,437				
213	2,027 255	2,012 297	1,966 339	1,437				
214	2,042 256	2,012 298	1,966 340	1,432				
215	2,057 257	2,002 299	1,971341	1,432				
216	2,067 258	1,991 300	1,971342	1,427				
217	2,082 259	1,981 301	1,971343	1,427				
218	2,097 260	1,971 302	1,971 344	1,422				
219	2,107 261	1,966 303	1,956 345	1,417				

220	2,123262	1,961 304	1,921 346	1,417
221	2,112263	1,956 305	1,886 347	1,412
222	2,082264	1,956 306	1,850 348	1,412
223	2,052265	1,951 307	1,820 349	1,407
224	2,017 266	1,951 308	1,785 350	1,407
225	1,991 267	1,946 309	1,749 351	1,402
226	1,976 268	1,941 310	1,729 352	1,397
227	1,966 269	1,941 311	1,719353	1,397
228	1,956 270	1,936 312	1,709 354	1,391
229	1,946 271	1,936 313	1,694 355	1,391
230	1,936272	1,931 314	1,684 356	1,386
231	1,926273	1,926 315	1,674 357	1,386
232	1,916274	1,926316	1,659 358	1,386
233	1,906 275	1,921 317	1,649 359	1,386
234	1,891 276	1,916318	1,639 360	1,386
235	1,881 277	1,916319	1,628 361	1,386
236	1,870278	1,916 320	1,613 362	1,386
237	1,860279	1,921 321	1,603 363	1,386
238	1,850 280	1,926 322	1,593 364	1,386
239	1,855281	1,931 323	1,578 365	1,386
240	1,875282	1,936 324	1,568	
241	1,896283	1,941 325	1,558	

Table 4.4.--Summary of 100-year base snowmelt flood

	Volume (acre-feet)
Glen Canyon Dam Inflow Intervening Inflow	25,375,000 1,281,000
Hoover Dam Inflow	26,656,000

4.4 MONTHLY INFLOWS TO MAJOR UPPER BASIN RESERVOIRS

Snowmelt inflows to other reservoirs in the upper basin were also developed. A simplified approach was chosen for distributing a portion of the inflows to Glen Canyon to the upstream reservoirs. Base snowmelt flows were calculated using a ratio of the average annual runoff at the upstream point to the average annual runoff at Glen Canyon using 1906-1986 CRSS data. Snowmelt inflow hydrographs were developed for Blue Mesa, Crystal, Fontenelle, Flaming Gorge, and Navajo Reservoirs.

Natural flow data were compiled from the CRSS data base for the 1906-1983 period and from provisional CRSS data for the 1984-1986 period. The average monthly flows at the stations of concern in the Colorado River basin along with the monthly flow distribution percentages are shown in table 4.5. Table 4.6 shows the ratio of the average annual flows at the reservoirs of concern to the flows at Glen Canyon Dam. The ratios were applied to the 100-year base snowmelt flood into Glen Canyon to obtain the base snowmelt flood at each reservoir.

A comparison of 1906-1986 monthly flow distributions versus the 1984 actual CRSS monthly flow data indicated good agreement. Therefore, the 1906-1986 monthly distributions were used to calculate the monthly 100-year base snowmelt flood flows for the stations upstream from Glen Canyon. The results are presented in tables 4.7 and 4.8.

Table 4.5.--Average monthly natural flows for 1906 through 1986 for major reservoirsin the upper basin

Month	Blue Mesa	Cryst	al Fo	ntenelle	Flaming Gorge	Navajo	Glen Canyon
Jan 23,000 2 00 2 08	28,000 28	,000	34,000 2 22	19,000	337,000		
Feb 21,000	25,000 27	,000	40,000	25,000	376,000		
Mar 33,000 2.86 3.05	41,000 49 3.55 4.77	,000 5.73	96,000 4.16	71,000	641,000		
Apr 86,000 7 47 8 10	109,000 10 7 31 8 80	1,000	177,000	180,000	1,219,000		
May 251,000 21 79 22 73	306,000 20	9,000	347,000	303,000	3,142,000		
June 339,000 29 43 29 27	394,000 40	0,000	575,000 27 63	298,000	4,250,000		
July 164,000	181,000 26	6,000	360,000	124,000	2,238,000		
Aug 87,000 7 55 7 00	94,000 12	1,000	154,000 7 04	67,000	1,079,000		
Sept 48,000 4 17 3 93	53,000 61 4 41 3 83	,000 4 36	77,000	54,000	656,000		
Oct 41,000	47,000 60	,000 3 95	64,000 3 72	49,000	574,000		
Nov 33,000	38,000 39	,000	52,000 3.00	29,000	460,000		
Dec 26,000 2.26 2.23	2.02 2.09 30,000 31 2.24 1.74	,000 1.61	35,000 2.38	20,000	360,000		
Total 1,152,00	0 1,346,00	0 1,3	382,000	2,011,00	0 1,239,000	'15,332,000)

Reservoir inflow in acre-feet / monthly percentage

Table 4.6 -- [?] reservoirs in the upper basin

	Ratio of average annual flow to avg. annual flow at Glen Canyon	Annual base snowmelt flood volume
Reservoir	(%)	(acre-feet)
Blue Mesa	7.51	1,906,600
Crystal	8.78	2,227,700
Fontenelle	9.01	2,287,300
Flaming Gorge	13.12	3,328,300
Navajo	8.08	2,050,600

Table 4.7.--100-year base snowmelt floods for Blue Mesa, Crystal, and Fontenelle reservoirs

100-year base snow	melt floods	
Blue Mesa (acre-feet)	Crystal (acre-feet)	Fontenelle (acre-feet)
46,300 46,400		
00 41,400 44,600		
67,900 81,200		
30,400 167,200		
06,400 345,800		
52,100 662,000		
99,400 440,300		
155,900 200,400		
00 87,600 100,900		
77,800 82,800		
00 62,800 64,500		
00 49,700 51,200		
227,700 2,287,300		
	100-year base snow Blue Mesa (acre-feet) 46,300 46,400 00 41,400 44,600 67,900 81,200 30,400 167,200 36,400 345,800 52,100 662,000 99,400 440,300 155,900 200,400 00 87,600 100,900 77,800 82,800 00 00 62,800 64,500 00 49,700 51,200 227,700 2,287,300	100-year base snowmelt floods Blue Mesa Crystal (acre-feet) 46,300 46,400 00 41,400 44,600 67,900 30,400 167,200 36,400 345,800 52,100 662,000 99,400 440,300 0 155,900 200,400 00 87,600 100,900 77,800 82,800 00 00 62,800 64,500 00 49,700 51,200 227,700 2,287,300 200

Table 4.8.--100-year base snowmelt floods for Flaming Gorge and Navajo reservoirs and Lake Powell

100-year base snowmelt floods

	Flaming Gorge	Navajo	Lake Powell
Month	(acre-feet)	(acre-feet)	(acre-feet)

January 56,200 31,400 691,400 February 66,200 41,400 581,100 March 158, 800117,500 978,200 April 292,900 298,000 1, 959,200 May 574,500 501, 6007,259,500 June 951,600 493,200 6,516,100 July 595,800 205,300 3,594,400 August 254, 900116,900 1,513,200 September 127,500 89,400 910,800 October 105,800 81,000 456,700 November 86,200 47, 900 408,400 December 57,900 33,000 506,000 Total 3,328,300 2,050, 600 25,375,000

5.0 DEPLETION ANALYSIS

5.1 BACKGROUND

Daily snowmelt inflow hydrographs for Glen Canyon (Lake Powell) and Hoover Dam (Lake

Mead) were calculated, along with the intervening inflow between Glen Canyon and Hoover Dams. The 100-year undepleted base snowmelt flood inflow into Hoover Dam has an annual volume of 26,656,000 acre-feet. This inflow hydrograph was separated into hydrographs for each major upstream reservoir to accommodate the modeling requirements for operation of the upstream facilities.

5.2 1985-LEVEL DEPLETIONS ABOVE GLEN CANYON

The 100-year base snowmelt floods are undepleted, unregulated natural flows. The depletions for the Colorado River basin above Glen Canyon Dam (Lake Powell) were obtained from the Upper Colorado Region of the Bureau of Reclamation. The preliminary data, which were used in this study and have since been revised, were used in developing the <u>Colorado River System</u> <u>Consumptive Uses and Losses Report, 1981-1985.</u> Annual depletions for the years 1981 through 1985 were as shown in table 5.1.

Table 5.1 - Annual depletions above Glen Canyon Dam

	Depletion
Year	(acre-feet)
1981	3,660,600
1982	3,732,800
1983	3,533,700
1984	3,432,100
1985	3,716,500
Total	184,075,700
Average	3,615,100

The 1985-level depletions represent present water resource development conditions in the basin. The 1985-level depletion above Glen Canyon, which is estimated as the 1981-1985 average annual depletion, is 3,615,100 acre-feet. The monthly distribution percentages were estimated by examining a typical irrigated area in the basin (e.g., the Grand Junction area). Data from the irrigation seasons of 1981, 1982, and 1983 were analyzed. The agricultural depletions were typically about 70 percent of the total depletion. Municipal and industrial (M&I) use accounted for the remaining depletions. Depletions for M&I use were distributed evenly throughout the year. Exports from the basin for irrigation and for M&I purposes were also included, and followed the same pattern as was used for the within-basin depletions. The resulting monthly distribution of the depletions was estimated as displayed in table 5.2. The depletions are expected to increase to 4,820,000 acre-feet above Glen Canyon by the year 2010, and to 313,000 acre-feet from Glen Canyon to Hoover, for a total of 5,133,000 acre-feet.

Table 5.2.--Monthly depletions above Glen Canyon Dam

Month	Percent	Depletion (acre-feet)
January	3	108,400
February	2	72,300
March	3	108,500
April	7	253,100
May	11	397,700
June	16	578,400

July	20	723,000
August	18	650,700
September	10	361,500
October	4	144,600
November	3	108,400
December	3	108,500
Total	100	3,615,100

5.3 DEPLETED MONTHLY ANTECEDENT FLOOD FLOW FOR GLEN CANYON

Daily data from the 100-year base snowmelt flood were summarized by month. Using the 1985-level depletions, the 1985-level depleted 100-year base snowmelt flood inflow to Glen Canyon Dam is 21,759,900 acre-feet. The monthly distribution is shown in table 5.3.

	100-year snowmelt flood	1985-level depletion	1985-level depleted flow
Month	<u>(acre-feet)</u>	(acre-feet)	(acre-feet)
January	691,400	108,400	583,000
February	581,100	72,300	508,800
March	978,200	108,500	869,700
April	1,959,200	253,100	1,706,100
May	7,259,500	397,700	6,861,800
June	6,516,100	578,400	5,937,700
July	3,594,400	723,000	2,871,400
August	1,513,200	650,700	862,500
September	910,800	361,500	549,300
October	456,700	144,600	312,100
November	408,400	108,400	300,000
December	506,000	108,500	397,500
Total	25,375,000	3,615,100	21,759,900

Table 5.3.--Monthly 1985-level depleted base snowmelt flood for Glen Canyon Dam

5.4 DAILY DEPLETIONS FOR GLEN CANYON DAM

The 100-year base snowmelt flood hydrograph consists of daily values. Therefore, accompanying 1985-level daily depletions were needed to determine the daily 100-year depleted base snowmelt flood for Glen Canyon. The computer program GENHS was developed to produce a balanced hydrograph from known volumes and their associated time periods (e.g., I-, 5-, 10-, 15-, 20-, 30-, 60-, 90-days, etc.). The monthly depletion data were plotted to show the basic hydrograph shape. These monthly volumes were used as input to the program, GENHS, to generate a daily hydrograph of depletions. The resulting hydrograph was adjusted manually to equalize the beginning (January) and ending (December) daily depletions and to smooth the data. The daily depletions were subtracted from the 100-year base snowmelt flood hydrograph to establish the depleted flow conditions. The resulting depleted daily flows and monthly volumes are presented in table 5.4. The 1985-level depleted 100-year base snowmelt flood

annual volume is 21,759,600 acre-feet. Monthly volumes, computed from the daily data, are slightly different from those computed from the monthly data because of the hydrograph shaping and smoothing process.

Table 5.4.--100-year inflow hydrograph for Glen Canyon Dam

1985	level depleted 100-year base snowmelt
	daily inflow to Glen Canyon Dam

_	Flow	_	Flow	_	Flow	_	Flow
Day	<u>(ft³/s)</u>	Day	<u>(ft³/s)</u>	Day	<u>(ft³/s)</u>	Day	<u>(ft³/s)</u>
0	0 50 8 586 100	20,509 1	50 156 173	3			
1	8.127 51 8.152	101 21.008	151 150.	890			
2	8.208 52 7.724	102 21.976	152 145.	667			
3	8,283 53 7,270	103 22,939	153 141,	679			
4	8,364 54 6,857	104 23,907	154 137,	681			
5	8,445 55 6,438	105 24,870	155 133,	688			
6	8,515 56 5,737	106 25,783	156 129,	690			
7	8,596 57 5,127 ⁻	107 26,751	157 126,	610			
8	8,672 58 4,230	108 27,663	158 123,	524			
9	8,752 59 3,706	109 28,515	159 120, [,]	439			
10) 8,833 60 4,250 ⁻	110 29,307	160 117,	353			
11	l 8,908614,845 i	II 30,103 1	61 114,273	3			
12	2 8,989 62 5,445 ⁻	112 31,485	162 111,	182			
13	3 9,065 63 6,196 ⁻	113 34,313	163 108,	072			
14	1 9,145 64 7,855 ⁻	114 37,368	164 104,	966			
15	5 9,226 65 8,989 ⁻	115 40,570	165 99,6	62			
16	3 9,302 66 9,453 ⁻	116 42,738	166 96,6	73			
17	7 9,382 67 9,912 ⁻	117 43,862	167 93,6	93			
18	39,4586810,376	5 118 44,9	91 168 9	0,729			
19	9,5396910,834	119 46,1	46 169 8	7,779			
20	9,6197011,298	3 120 47,3	76 170 84	4,795			
21	1 9,695 / 1 11,/8/	121 48,4	95 171 8	2,057			
22	2 9,7767212,922	2 122 49,5	03 172 8	0,781			
23	0 9,07 1 7 0 14,0 10 1 4 0 0 9 0 7 4 4 5 1	0 123 50,5 170 124 E	1/ 1/3 /3	9,700			
24	+ 10,000 74 10, 5 10 225 75 15 .	170 124 D 499 125 5	1,525 174	70,044			
20	10,523 75 15,4 10,562 76 15 1	+00 123 5. 800 126 5	2,550 175	76 370			
20	7 10 804 77 16	108 127 5	5,557 170	75,241			
28	10,004 77 10, 11 036 78 16	420 128 5	8 271 178	74 101			
20	0 11 273 79 16	738 129 6	1 437 179	72,967			
30) 11 510 80 17	046 130 6	4 598 180	71 833			
31		343 131 6	9 271 181	70 844			
32	2 11.505 82 17.0	646 132 7	5.553 182	69.866			
33	3 11.414 83 17.9	948 133 8	1.835 183	68,813			
34	11,318 84 18,	326 134 94	4,469 184	67,704			
35	5 11,228 85 19,	188 135 1	07,764 185	66,594			
36	6 11,132 86 20,0	071 136 1	19,824 186	65,490			
37	7 11,036 87 20,9	943 137 1	31,883 187	64,311			
38	8 10,945 88 21,	336 138 1 ₄	47,583 188	62,949			
39	9 10,819 89 21,2	220 139 1	50,350 189	61,780			
40	0 10,678 90 20,9	943 140 1	53,113 190	60,807			
41	l 10,532 91 20, ⁻	711 141 1	55,881 191	58,699			

42	10,39	91 9	92 2	0,66	5	142	2 1	58,6	644	192	55,4	417
43	10,24	5 9	93 2	0,62	20	143	31	61,4	407	193	52,	065
44	10,10	3 9	94 2	0,57	'5	144	1 1	64,1	134	194	48,	707
45	9,962	95 2	20,5	24	14	5	166	,771	19	54	6,836	6
46	9,816	96 2	20,4	79	146	3	169	,408	19	64	5,732	2
47	9,675	97 2	20,4	34	147	7	172	,039	19	74	4,628	3
48	9,443	98 2	20,4	44	148	3	166	,751	19	84	3,499)
49	9,019	99 2	20,4	79	149	9	161	,462	19	94	2,314	ł

Table 5.4.--100-year inflow hydrograph for Glen Canyon Dam (continued)

1985 level depleted 100-year base snowmelt daily inflow to Glen Canyon Dam

	FI	ow		Flow		Flow		Flow
Day	<u>(ft</u>	t³/s)	Day	<u>(ft³/s)</u>	Day	<u>(ft³/s)</u>	Day	<u>(ft³/s)</u>
200	<i>4</i> 1 105	242	10 108 2	284 5 304 30	26 5 546			
200	40 076	242	9 463 285	5 183 327	5 601			
201	30 037	240	9,405205	5,100,027	5,657			
202	38 000	245	10 120 2	0,002 020 087 4 036 30	3,007			
203	37 046	246	10,123 2	288 4 820 3	30 5 778			
205	36 310	240	10,134 2	200 4,02000	31 5 843			
206	34 424	248	10,280 2	290 4 573 3	32 5 899			
207	31 359	249	10,930 2	91 4 447 3	33 5 959			
208	28 203	250	10,986 2	92 4 326 3	34 6 020			
209	25,455	251	10.829	293 4.2053	35 6,166			
210	24.275	252	10,789 2	294 4.0843	36 6.226			
211	23,448	253	10,577 2	295 3,963 3	37 6,272			
212	22,627	254	10,517 2	296 3,837 3	38 6,292			
213	21,633	255	10,355 2	297 3,7163	39 6,312			
214	20,570	256	10,088 2	298 3,590 34	40 6,332			
215	19,506	257	9,715299	3,474 341	6,352			
216	18,447	258	9,241 300	3,348 342	6,373			
217	17,383	259	8,717 301	3,227 343	6,398			
218	16,340	260	8,349 302	3,106 344	6,418			
219	15,281	261	7,920 303	3,146 345	6,438			
220	14,243	262	7,835304	3,358 346	6,458			
221	13,673	263	7,744 305	3,615 347	6,478			
222	13,582	264	7,754 306	3,882 348	6,499			
223	13,496	265	7,663 307	4,114 349	6,524			
224	13,406	266	7,623 308	4,341 350	6,544			
225	13,320	267	7,532 309	4,537 351	6,564			
226	13,280	268	7,492310	4,628 352	6,584			
227	13,249	269	7,401311	4,679 353	6,604			
228	13,219	270	7,361 312	4,734 354	6,625			
229	13,184	271	7,270313	4,784 355	6,650			
230	13,154	272	7,225314	4,840 356	6,670			
231	13,118	273	7,134 315	4,895 357	6,690			
232	13,083	274	7,295316	4,951358	6,690			
233	13,058	275	7,255317	5,011 359	6,690			
234	13,022	276	7,220318	5,072360	6,690			
235	12,992	277	7,179319	5,127 361	6,695			
236	12,957	278	7,013 320	5,193 362	6,695			

237	12,927	279	6,731 321	5,248 363	6,695
238	12,896	280	6,408 322	5,304 364	6,695
239	12,483	281	6,110323	5,369 365	6,695
240	11,686	282	5,823 324	5,425	
241	10,895	283	5,475 325	5,480	

5.5 1985-LEVEL DEPLETIONS FOR RESERVOIRS UPSTREAM FROM GLEN CANYON

The annual depletion data for points upstream from Glen Canyon Dam were obtained from the Upper Colorado Region of the Bureau of Reclamation. These data were for the period 1981 through 1985. No depletion data were received for the area above Navajo Reservoir. There has been very little development, other than some minor transbasin diversions, upstream from this reservoir. Depletions for this area were assumed to be zero. Table 5.5 displays the annual depletions for the major reservoirs upstream from Glen Canyon Dam.

Table 5.5.--1981-1985 annual depletions to major reservoirs upstream from GlenCanyon Dam

Year	Above Blue Mesa (acre-feet)	Above Crystal (acre-feet)	Above Fontanelle (acre-feet)	Above Flaming Gorge (acre-feet)
1981	59,800	68,600	96,400	161,900
1982	60,900	69,900	85,100	152,600
1983	64,400	78,200	116,900	177,400
1984	56,900	66,900	83,800	148,800
1985	71,400	81,400	97,400	154,900
Total	312,900	364,700	479,600	795,600
Average	62,600	72,900	95,900	159,100

Annual depletions

The monthly depletion distribution for these areas was assumed to be similar to the distribution for the entire area above Glen Canyon. Using the same monthly depletion distribution percentages as were used for the depletions above Glen Canyon, the monthly 1985-level depletions for these points are as presented in table 5.6.

Table 5.6.--1985-level monthly depletions for the major reservoirs aboveGlen Canyon Dam

	1985-level monthly depletions									
Month		Mon	ithly cent	Above Blue Mesa (acre-feet)	Above Crystal (acre-feet)	Above Fontenelle (acre-feet)	Above Flaming Gorge <u>(acre-feet)</u>			
Jan 3 1,9 Feb 2 1,3 Mar 3 1,9		1,900 1,300 1,900	2,200 1,40 0 2,200	2,900 4,800 1,900 3,200 2,900 4,800						

Apr	7	4,400	5,100	6,700	11,1	00
May	11	6,900	8,000	10,500	17,5	00
June	16 1	10,000	11,700	15,300	25,4	00
July	20 1	12,500	14,600	19,200	31,8	00
Aug	18 1	11,300	13,100	17,300	28,6	00
Sept	10	6,200	7,300	9,600	15,9	00
Oct	4	2,500	2,900	3,800	6,40	0
Nov	3	1,800	2,200	2,900	4,80	0
Dec	3	1,900	2,200	2,900	4,80	0
Total	100	62,60	0 72,90	0 95,90	0 1	59,100

5.6 DEPLETED MONTHLY ANTECEDENT FLOOD INFLOWS FOR RESERVOIRS ABOVE GLEN CANYON

The 1985-level depleted 100-year base snowmelt inflows to Blue Mesa, Crystal, Fontenelle, Flaming Gorge, and Navajo Reservoirs are shown in table 5.7. Monthly depletions were subtracted from the base snowmelt floods to arrive at the 100-year depleted reservoir inflows.

Table 5.7.--1985-level depleted 100-year base snowmelt inflows to the
major reservoirs above Glen Canyon

Month	Blue I	Mesa	Crystal	Fo	ntenelle	Flaming Gorge	Navajo
MONUT	lacic			<u>, (a</u>			
Jan	36,200	44,100	43,500	51,400	31,400		
Feb	33,400	40,000	42,700	63,000	41,400		
Mar	52,600	65,700	78,300	154,000	117,500		
Apr	138,000	175,300	160,500	281,800	298,000		
May	408,600	498,400	335,300	557,000	501,600		
June	551,100	640,400	646,700	926,200	493,200		
July	259,000	284,800	421,100	564,000	205,300		
Aug	132,700	142,800	183,100	226,300	110,900		
Sept	73,300	80,300	91,300	111,600	89,400		
Oct	65,200	74,900	79,000	99,400	81,000		
Nov	52,700	60,600	61,600	81,400	47,900		
Dec	41,200	47,500	48,300	53,100	33,000		

1985-level depleted flow

Total 1,844,000 2,154,800 2,191,400 3,169,200 2,050,600

6.0 BASIN MODELING

6.1 "FHAR" - COMPUTER PROGRAM

Reclamation uses the Flood Hydrograph and Routing (FHAR) computer program to convert excess precipitation to runoff and generate the flood hydrograph for the particular storm event being studied. FHAR, which was developed by Reclamation, uses unitgraph theory. The program derives the flood hydrograph by applying the increments of excess precipitation to the unit hydrograph. The unit hydrograph is computed from the dimensionless graph, given the basin area, lag time, and unit time. The unit time is computed by dividing the lag time by 5.5.

The subbasin lag times are shown in table 3.1. The unit time selected for this study is one hour, based on the smallest unit times computed for all of the subbasins.

The Tatum method was used to route flood hydrographs from one subbasin to the next downstream subbasin, and to combine them with additional flood hydrographs as the floods move downstream. The Tatum method is a successive average lag procedure. It is commonly used to route hydrographs through channels which have no appreciable storage or large tributary inflow, or where costs of obtaining channel cross-section and other data needed for more sophisticated methods are prohibitive. The method uses the travel time of the flood hydrograph for each river reach, the hydrograph ordinates, and the unit time. Development of the travel time was discussed in a previous section of this report.

FHAR uses the modified Puls method to route floods through reservoirs or through short stream reaches in which the time of travel and wedge storage is negligible. When used to route floods through reservoirs, a fixed elevation-discharge-storage relationship is assumed. The change in storage is accounted for by a change in reservoir water surface elevation. The storage change is equal to the difference between average inflow and average outflow.

6.2 RESERVOIR OPERATING CRITERIA

The reservoirs in the Colorado River basin above Hoover Dam are operated as an integrated system. The system has a total flood control space requirement of 5,350,000 acre-feet, which must be evacuated from storage by January 1. At least 1,500,000 acre-feet of that space must be in Lake Mead, which is the only facility in the system with exclusive flood control space. One of the primary goals of the flood control operations for the Colorado River system is to keep the exclusive flood control storage at Hoover vacant year-round to regulate potential rain floods.

The 1982 field working agreement between the Bureau of Reclamation and Corps of Engineers for flood control operations of Hoover Dam and Lake Mead establishes the reservoir operating criteria. Two sets of operating rules are used to operate the system. During the space-building or drawdown season, which extends from August through December, the objective is to drawdown gradually the reservoir system to create space for next spring's snowmelt runoff. During the runoff forecast season, from January through July, the forecasted maximum inflow is routed through the reservoir using predetermined release rates, so that the reservoir system is full by July 1.

During the space-building season, the flood control regulations specify minimum monthly vacant storage requirements for Lake Mead. These requirements may be partially satisfied by considering available storage space in some of the other upstream reservoirs. The vacant storage space requirements in Lake Mead are as follows:

August 1 -		1,500,000	acre-feet
September 1	-	2,270,000	acre-feet
October 1		3,040,000	acre-feet
November 1		3,810,000	acre-feet
December 1		4,580,000	acre-feet
January 1		5,350,000	acre-feet

The regulations allow for Lake Powell, Flaming Gorge plus Fontenelle, Blue Mesa, and Navajo Reservoirs to provide a portion of these requirements. The maximum amount of space creditable to Lake Mead at each of these storage locations is 3,850,000; 1,507,200; 748,500; and 1,035,900 acre-feet, respectively. The system is operated to limit releases at Hoover Dam during the drawdown season to a maximum of 28,000 ft3/s unless modifications are approved by the Corps of Engineers to increase the release.

From January 1 to July 31, during the runoff forecast season, the minimum Lake Mead flood control release requirements are determined from the maximum forecasted inflow volume and the effective storage space in Lake Mead and Lake Powell. The required Hoover Dam flood control release during the current month (Rcm) in ft3/S can be determined from solution of the following algorithm:

FI=SSM+SSP+BS+EV - 1 500,000 + 59.5 (Rcm+Rrm+Nrm)

where, FI is the forecasted inflow volume to Lake Mead in acre-feet during the current month; SSM is the current storage space in Lake Mead in acre-feet below elevation 1229 feet; SSP is the current storage space in Lake Powell in acre-feet below elevation 3700 feet; the bank storage (BS) is equal to 0.065(SSM - 1,500,000); EV is the net evaporation loss to Lake Mead in acre-feet through August 1; Rrm is the Hoover Dam release rate in ft ³/ s during all remaining months through August 1; and N. is the number of remaining months until August 1, excluding the current month.

Lake Mead inflow forecasts are prepared by the Colorado River Forecasting Service and are adjusted to account for effective storage space in upstream reservoirs, flow depletions, and potential forecast errors. Flood control releases below Hoover are made for five discharge levels - 19,000, 28,000, 35,000, 40,000, and 73,000 ft³/s. The algorithm is solved iteratively to determine the release from Hoover Dam.

The runoff forecast error is computed using relationships derived from an analysis of past Colorado River forecasts and runoff data for the period 1947 to 1983. The data indicate that high runoff years are usually underforecast, and low runoff years are overforecast. In this investigation, the system was operated with a 1 in 20 forecast error, which is defined as a 1 in 20 chance of error or an error of 5 percent. The January forecast error is 5,000,000 acre-feet for Hoover Dam, which is reduced as the season progresses and additional snow depth data are collected. By July, the forecast error has decreased to 750,000 acre-feet. The forecast error is used as an adjustment to forecasted inflows to determine reservoir release rates.

If available flood control storage space diminishes at any time of the year to less than 1,500,000 ac-re-feet, the minimum flood control releases from Lake Mead are determined daily from table 6.1. These releases are determined using available flood control storage space in Lake Mead and inflow to Lake Mead. Some changes to this operating rule are permissible based on the current reservoir release rate, forecasted inflow, and available flood control storage space, as specified in the flood control working agreement.

The upper basin, above Glen Canyon Dam, is operated to avoid spills. It has creditable flood control space (joint use flood control and conservation storage) of about 3.2 million acre-feet in Blue Mesa, Flaming Gorge, Fontenelle, and Navajo Reservoirs. Changes in system operation have historically been made semimonthly in April, May, and June, but are made more frequently if needed.

D - I - - - -

	(feet)	(ft ³ /s)
-		
	1219.61 - 1221.40	Equal to inflow up to 28,000
	1221.40 - 1226.90	Equal to inflow up to 40,000
	1226.90 - 1229.00	Equal to inflow up to 65,000
	Above 1229.00	Maintain outflow equal to inflow

Table 6.1.--Minimum. flood control releases from Hoover Dam

Materia and a second second second second

Notes:

Elevation 1205.30 - Spillway crest elevation Elevation 1219.61 - Minimum required flood control pool Elevation 1221.40 - Top of spillway gates in raised position Elevation 1226.90 - Spillway discharge = 40,000 ft3/s Elevation 1229.00 - Top of flood control pool Elevation 1232.00 - Top of dam

6.3 RESERVOIR ROUTING OF 100-YEAR SNOWMELT FLOOD

Using the 100-year depleted snowmelt flood values, two routing studies were performed to simulate reservoir operations during the antecedent flood event. The studies were conducted by the Upper and Lower Colorado Regions using flow information provided by the Denver Office. The first analysis was a bimonthly routing of the flood through the upper and lower basin reservoirs. The second was a daily routing through Lake Powell and Lake Mead during the period of peak inflow.

Several spreadsheets were designed to simulate the monthly planning model, CRSS, used in Colorado River operations. This model is updated bimonthly in response to National Weather Service runoff forecasts. The Colorado River system operation was modeled bimonthly beginning January Ist to reflect proper operations during a forecasted 100-year snowmelt flood. Runoff forecast errors were subtracted from the actual inflows through July 31 in order to make operational decisions that reflect a reasonable degree of conservatism.

The spreadsheets include the operation of eight reservoirs. For each time period, the reservoir system was operated to fill each of the reservoirs by the end of the runoff period while preserving as much additional release capability as possible for later in the spring. All of the reservoirs had evaporation losses removed from storage. Lake Powell and Lake Mead operations accounted for changes in bank storage. Table 6.2 displays the initial storage conditions on January 1 which were used in this study.

The initial Lake Mead storage condition was chosen to achieve a total system space of approximately 5.35 million acre-feet, which represents a realistic starting point under full reservoir conditions. Initial storage conditions for Lakes Mohave and Havasu were taken from their respective operating rule curves.

Table 6.2.--January 1 reservoir storage capacities

	Storage
Reservoir	(acre-feet)
Fontenelle	200,000
Flaming Gorge	3,200,000
Blue Mesa	545,000
Navajo	1,550,000
Lake Powell	22,600,000
Lake Mead	24,550,000
Lake Mohave	1,582,000
Lake Havasu	539,100

Release decisions were based on the current operating philosophy of avoiding spills by incorporating changes in the forecasted runoff as soon as possible, thus preserving future operational flexibility.

The operating objectives were to limit releases from Lake Mead to a maximum of 40,000 ft³/s and to maintain as nearly as practicable, a non-fluctuating flow regime below Parker Dam. In the case of Glen Canyon Dam, an upper limit release of 31,500 ft³/s was observed until published forecasts indicated a high risk of bypass of the powerplant, at which time the release was increased to the powerplant capacity of 33,100 ft³/s. As in actual practice, bypasses were delayed when the possibility of not needing them existed.

This analysis showed that the 100-year snowmelt flood can be routed through Lake Mead without exceeding a release level of 40,000 ft³/s and without exceeding elevation 1,219.6 feet, the bottom of the exclusive flood control pool. Flood control releases of 29,500 ft³/s would be initiated on January 1 and gradually increase to a maximum of 40,000 ft³/s by July 1. The maximum release would continue through July 15, followed by a gradual reduction in release levels coinciding with the flood's recession. A maximum water surface elevation of 1,219.5 feet would occur on July 19 through July 21.

At Lake Powell the releases from the dam were $31,500 \text{ ft}^3/\text{s}$ from January 1 through April 30, 33,100 ft³/s from May 1 through June 7, 48,000 ft³/s from June 8 through June 14, and 60,000 ft³/s from June 15 through July 12. After this time, the releases gradually decreased as the flood passed. The maximum water surface elevation of 3,699.93 feet occurred on July 8.

Based on the results of the base snowmelt flood routings, beginning reservoir elevations were determined for all of the major reservoirs upstream from Hoover Dam for use in routing the flood caused by the ULDRS event. Table 6.3 presents the starting reservoir elevations for Lake Mead and Lake Powell based upon the starting date of the ULDRS event. The upstream reservoirs were considered at the top of conservation storage.

6.4 GLEN CANYON AND HOOVER PROBABLE MAXIMUM FLOODS

Determination of the probable maximum floods for Hoover and Glen Canyon Dams involved generating seasonal flood hydrographs by applying the results of the meteorological investigation. Numerous combinations of ULDRS centerings and storm separations were evaluated to determine the most critical seasonal hydrologic conditions for the dam. The ULDRS flood hydrographs were combined with the snowmelt antecedant flood to determine the most critical hydrologic condition at the dams. Results of these analyses produced PMFs for the critical May through August storm season.

Lake	ULDRS starting date	Reservoi elevation (feet)
Powell	May 15 June 15 July 15 August 15	3666.1 3698.6 3699.8 3699.1
Mead	May 15 June 15 July 15 August 15	1210.1 1211.3 1219.0 1217.5

Table 6.3.--Initial reservoir elevations for routing the ULDRS flood through Lake Mead and Lake Powell

reservoir routings. Many possible combinations were tried in order to arrive at the one which produced the highest reservoir elevation. The FHAR computer model was used to compute the flood hydrographs beginning the fifteenth day of May, June, July, and August for each storm combination. The following combinations of storm centerings were evaluated: (1) San Juan followed by Cedar Mountain, (2) San Juan followed by Boulder, (3) Boulder followed by San Juan, and (4) Cedar Mountain followed by San Juan. The Boulder and Cedar Mountain storm centerings were not examined in combination because their close proximity precluded them from occurring within 7 days of each other with magnitudes approaching ULDRS events.

The full ULDRS events, which could occur during the August through October time period, were adjusted downward to account for seasonal variations and separation time between storms. Adjustments were made for storms separated by 1, 3, 5, and 7 days. The first storm in the sequence always had the full ULDRS magnitude less the applicable seasonal adjustment, and the second storm was adjusted for both seasonal variation and days between storms. Individual ULDRS events were also centered over the basin to determine the flows at each dam. The numerous combinations of storm centers, storm separation times, and seasonal variations in rainfall magnitudes produced 76 possible flood events for evaluation and comparison.

The San Juan storm centering followed by the Boulder storm produced the most critical flood condition at Glen Canyon Dam. Table 6.4 shows the results of this flood analysis. The maximum inflow, outflow, and reservoir elevation are presented for several storm separation intervals and starting dates. The most critical conditions based on the highest reservoir elevations are highlighted and represent the probable maximum floods for the dam. Tables 6.5 through 6.8 list the PMF hydrograph ordinates for each of the floods, and Figures 6.1 through 6.4 show the corresponding hydrographs.

Table 6.4.--Glen Canyon Dam routing results for San Juan storm followed by the Boulder storm

		Ν	/laximum	60-day	Maximum	Starting	Maximum
St	art	Lag	inflow	volume	outflow	reservoir	reservoir
<u>da</u>	te ((days)	(ft3/S)	(106 ac-ft)	(ft3/S)	elev (ft)	elev (ft)
May	15 1 54	7,000 15	.945 16	8,000 3666.	.1 3700.9		
3	547,000	16.048	170,000	3666.1 37	00.9		
5	547,000	16.485	180,000	3666.1 37	01.0		
7	5 5 51 (0	0 16.30	9 180,0	00 3666.1	3702		
June	15 1. 52	5 000 9.	.72618	0 000 3698.	.6 3708.9		
3	525,000	9.86018	0,000 36	98.6 3707.	.7		
5	544,000	10.026	180,000	3698.6 37	07.3		
7	610,000	10.196	180,000	3698.6 37	07.3		
July 1	51	560fOO	O 6.737	180,000 36	99.8 3709	.4	
3	612,000	6.92118	0,000	3699.8 37	07.5		
5	661,000	7.08218	0,000 36	99.8 3707.	.4		
7	726,000	7.284 18	0,000 36	99.8 3707.	.4		
Augu	st 15 1	697 000	180, 000	3699.0	3709.8		
3	724,000	5.86118	0,000 36	99.0 3707.	.1		
5	793,000	6.08318	0,000 36	99.0 3706.	.7		
7	869,000	6.31918	0,000 36	99.0 3706.	.7		

Table 6.5. -- Glen Canyon Dam probable maximum flood for May

Flow	F	low	Flow	Flow
<u>Hour (ft³/s)</u>	Hour (ft ³ /s) Hour	(ft ³ /s)	Hour (ft ³ /s)
0 113,990 300 43	33,196 600	126,115 900	90,179	
6 113,990 306 4 ²	11,812 606	126,115 906	90,179	
12 113,990 312 38	35,357 612	126,115 912	89,206	
18 113,990 318 28	36.470 618	126,115 918	89,206	
24 126,115 324 24	17.228 624	123.085 924	39.206	
30 126 115 330 23	32,723 630	123.085 930	89.206	
36 126 115 336 2	13 127 636	123,085 936	88 228	
42 126 115 342 10	0,127 600	123 085 942	88 228	
48 140 274 348 18	RG 400 648	120,000 948	88 228	
51 173 105 351 10	23 528 654		88 228	
	75 244 660	120,050 954	00,220	
	73,341 000	120,050 960 0	07,230	
00 407,744 300 17	73,402 000	120,050 900 0	37,250	
72496,877 372 17	(1,909 672	117,020 972 8	37,250	
78 526,525 378 17	10,842 678	117,020 978 8	37,250	
84 534,587 384 16	684	117,020 984 8	36,272	
90 543,669 390 16	64,817 690	117,020 990 8	36,272	
96 470,351 396 16	64,504 696 1	13,990 996 86,2	272	
102 363,295 402	164,234 702	113,990 1002 86,2	272	
108 291,899 408	158,904 708	113,990 1008 85,2	299	
114 252,854 414	158,717 714	113,990 1014 85,2	299	
120 234,241 420	158,530 720	108,737 1020 85,2	299	
126 220,636 426	157,726 726	108,737 1026 85,3	299	
132 210,877 432	151,489 732	108,737 1032 84,	321	
138 203,693 438	150,271 738	108,737 1038 84.3	321	
144 200,637 444	150,145,744	105,803 1044 84.3	321	
150 196 040 450	150 127 750	105 803 1050 84	321	
156 192 331 456	146 157 756	105 803 1056 83	343	
162 189 158 462	146 130 762		243	
168 189 223 468	146 126 768	102,000 1002 00,	243	
17/ 186 072 /7/	146 126 774	102,074 1000 00,	242	
100,972 474	140,120 774	102,074 1074 00,	0 4 0	
100 100,000 400	142,103 700	102,074 1000 02,	070	
100 103,207 400	142,103 700		070	
192 184,656 492	142,183 792	99,945 1092 8	32,370	
198 183,159 498	142,183 798	99,945 1098 8	32,370	
204 181,913 504	138,240 804	99,945 1104 8	31,391	
210 180,936 510	138,240 810	99,945 1110 8	31,391	
216 182,919 516	138,240 816	97,015 1116 8	31,391	
222 182,146 522	138,240 822	97,015 1122 8	31,391'	
228 181,555 528	135,210 828	97,015 1128 8	30,413	
234 181,017 534	135,210 834	97,015 1134 8	30,413	
240 182,612 540	135,210 840	94,086 1140 8	30,413	
246 178,028 546	135,210 846	94,086 1146 8	30,413	
252 174,293 552	132,180 852	94,086 1152	79,440	
258 173.821 558	132,180 858	94,086 1158	79,440	
264 176.642 564	132,180 864	91.399 1164	79,440	
270 176 642 570	132 180 870	91 399 1170	79 440	
276 176 642 576	129 145 876	91 399 1176	78 462	
282 176 642 582	120,145 882	Q1 300 1122 -	78 462	
202 110,0 1 2 302	120,170,002	01,000 TIOZ	0,702	

288	181,683 588	129,145 888	90,179	1188 78,462
294	554,330 594	129,145 894	90,179	1194 78,462

Table 6.5.--Glen Canyon Dam probable maximum flood for May (continued)

Fle	W	F	Flow		Flow	Flow
<u>Hour (ft</u>	³ /s)	<u> Hour (</u>	(ft ³ /s)	Hour	<u>(ft³/s)</u>	<u>Hour (ft³/s)</u>
1200 77,484	1260 75,533	3 1320 7	72,604	1380 67,270		
1206 77,484	1266 75,533	3 1326 7	72,604	1386 67,270		
1212 77,484	1272 74,55	5 1332 7	72,604	1392 64,038		
1218 77,484	1278 74,555	5 1338 7	72,604	1398 64,038		
1224 76,506	1284 74,555	5 1344 7	70,497	1404 64,038		
1230 76,506	1290 74,555	5 1350 7	70,497	1410 64,038		
1236 76,506	1296 73,577	' 1356 7	70,497	1416 60,872		
1242 76,506	1302 73,577	' 1362 7	70,497	1422 60,872		
1248 75,533	1308 73,577	' 1368 6	67,270	1428 60,872		
1254 75,53 3	1314 73,577	' 1374 6	67,270	1434 60,872		

Table 6.6.--Glen Canyon Dam probable maximum flood for June

Flow		Flow		Flow	Flow
<u>Hour (ft³/s)</u>	Hour	(ft ³ /s)	Hour	(ft ³ /s)	Hour (ft ³ /s)
0 105,803 300	84,378 600	70,497	900 50	577	
6 105,803 306	84,365 606	70,497	906 50	577	
12 105,803 312	83,366 612	70,497	912 49	,498	
18 105,803 318	83,346 618	70,497	918 49	,498	
24 102,874 324	83,343 624	67,270	924 49	,498	
30 102,874 330	83,343 630	67,270	930 49	,498	
36 102,874 336	82,370 636	67,270	936 48	425	
42 102,874 342	82,370 642	67,270	942 48	425	
48 102,170 348	82,370 648	64,038	948 48	,425	
54 466,490 354	82,370 654	64,038	954 48	425	
60 317,272 360	81,391 660	64,038	960 46	,307	
66 457,335 366	.81,391 666	64,038	966 46	,307	
72 470,227 372	81,391 672	60,872	972 46	,307	
78 502,472 378	81,391 678	60,872	978 46	,307	
84 511,278 384	80,413 684	60,872	984 43	,156	
90 521,546 390	80,413 690	60,872	990 43	156	
96 436,031 396	80,413 696	59,193	996 43	156	
102 319,239 4	02 80,413 70	02 59,193	1002	43,156	
108 242,765 4	08 79,440 70	08 59,193	1008	40,000	
114 201,190 4	14 79,440 7	14 59,193	1014	40,000	
120 173,338 42	20 79,440 72	20 58,114	1020	40,000	
126 157,652 42	26 79,440 72	26 58,114	1026	40,000	
132 146,938 43	32 78,462 73	32 58,114	1032	36,915	
138 139,105 43	38 78,462 73	38 58,114	1038	36,915	
144 133,390 44	44 78,462 74	44 57,036	1044	36,915	
150 450,209 4	50 78,462 7	50 57,036	1050	36,915	
156 341,023 4	56 77,484 7	56 57,036	1056	35,276	
162 315,878 4	62 77,484 70	62 57,036	1062	35,276	
168 293,205 4	68 77,484 70	68 55,962	1068	35,276	
174 203,145 4 ⁻	74 77,484 7 [.]	74 55,962	1074	35,276	

180	167,855	480	76,5	06 78	80 55	,962 1	080	34,222
186	154,632	486	76,5	06 78	86 55	,962 1	086	34,222
192	140,784	492	76,5	06 79	92 54	,883 1	092	34,222
198	128,334	498	76,5	06 79	8 54	,883 1	098	34,222
204	119,465	504	75,5	33 80)4 54	,883 1	104	33,174
210	113,662	510	75,5	33 81	0 54	,883 1	110	33,174
216	109,309	516	75,5	33 81	6 53	,809 1	116	33,174
222	106,970	522	75,5	33 82	2 53	,809 1	122	33,174
228	105,169	528	74,5	55 82	28 53	,809 1	128	32,120
234	103,749	534	74,5	55 83	84 53	,809 1	134	.32,120
240	101,060	540	74,5	55 84	0 52	,730 1	140	32,120
246	95,89) 5 54	6 74	4,555	846	52,730	1146	32,120
252	91,67	' 6 55	2 73	3,577	852	52,730	1152	
31,07	1							
258	90,75	54 55	8 73	3,577	858	52,730	1158	31,071
264	87,96	37 56	64 73	3,577	864	51,651	1164	
31,07	1							
270	85,95	52 57	0 73	3,577	870	51,651	1170	
31,07	1							
276	85,54	18 57	6 72	2,604	876	51,651	1176	
30,01	8							
282	85,49)2 58	2 72	2,604	882	51,651	1182	
30,01	8							
288	84,46	37 58	8 72	2,604	888	50,577	1188	
30,01	8							
294	84,40)8 59	4 72	2,604	894	50,577	1194	
30,01	8							

Table 6.6Glen Ca	nyon Dam	probable maximum	flood for June	(continued)
------------------	----------	------------------	----------------	-------------

		Flow			Flow			Flow		Flow
<u>Hc</u>	our	<u>(ft°/s)</u>	F	lour	<u>(ft°/s)</u>		Hour	(ft°/s)	Hour	(ft°/s)
1200	28.96	9 1260	26.867	1320	24.200	1380	24.028			
1206	28,969	9 1266	26,867	1326	24,200	1386	24,028			
1212	28,969	9 1272	. 25,818	1332	24,200	1392	23,943			
1218	28,969	9 1278	25,818	1338	24,200	1398	23,943			
1224	27,920) 1284	25,818	1344	24,114	1404	23,943			
1230	27,920) 1290	25,818	1350	24,114	1410	23,943			
1236	27,920) 1296	24,764	1356	24,114	1416	23,862			
1242	27,920) 1302	24,764	1362	24,114	1422	23,862			
1248	26,867	7 1308	24,764	1368	24,028	1428	23,862			
1254	26,867	7 1314	24,764	1374	24,028	1434	23,862			
		Flow			Flow			Flow		Flow

<u>Hour</u>	Flow (ft ³ /s)		Hour	FI (ft	ow ³ /s)	Hour	Flow (ft ³ /s)	Flow Hour (ft ³ /s)
0	58 114	300	44 451	600	24 200	900	23 630	
6	58,114	306	44,348	606	24,200	906	23,630	
12	58,114	312	40,940	612	24,200	912	23,600	
18 24	58,114 57 036	318 324	39,204 37 264	618 624	24,200 24 114	918 924	23,600	
30	57,036	330	36,923	630	24,114	930	23,600	

36	57,036 336	35,27	76 63	6 24	,114	930	6 23,574
42	57,036 342	35,27	76 64	2 24	,114	942	2 23,574
48	58,515 348	35,27	76 64	8 24	,028	948	8 23,574
54	476,820 354	35,27	76 65	4 24	,028	954	4 23,574
60	313,449 360	34,22	22 66	0 24	,028	960	0 23,544
66 46	63,032 366 3	34,222	666	24,02	28	966	23,544
72 48	32,973 372	34,222	672	23,94	3	972	23,544
79 5´	18,992 378 3	34,222	678	23,94	3	978	23,544
84 52	28,966 384 3	33,174	684	23,94	3	984	23,514
90 54	41,944 390	33,174	690	23,94	3	990	23,514
96 44	47,640 396	33,174	696	23,86	62	996	23,514
102	312,970 402	33,17	74 70	2 23	,862	1002	23,514
108	224,447 408	32,12	20 70	8 23	,862	1008	23,489
114	177,780 414	32,12	20 71	4 23	,862	1014	23,489
120	150,390 420	32,12	20 72	0 23	,827	1620	23,489
126	132,202 426	32,12	20 72	6 23	,827	1026	23,489
132	117,381 432	31,07	71 73	2 23	,827	1032	23,080
138	107,275 438	31,07	71 73	8 23	,827	1038	23,080
144	101,486 444	31,07	71 74	4 23	,801	1044	23,080
150	551,911 450	31,07	71 75	0 23	,801	1050	23,080
156	401,257 456	30,01	18 75	6 23	,801	1056	22,289
162	377,743 462	30,01	18 76	2 23	,801	1062	22,289
168	347,571 468	30,01	18 76	8 23	,771	1068	22,289
174	228,013 474	30,01	18 77	4 23	,771	1074	22,289
180	176,138 480	28,96	69 78	0 23	,771	1080	21,502
186	153,273 486	28,96	69 78	6 23	,771	1086	21,502
192	129,852 492	28,96	69 79	2 23	,741	1092	21,502
198	108,592 498	28,96	69 79	8 23	,741	1098	21,502
204	93,483	504 27	7,920	804	23,74	1 11(04 20,716
210	83,943	510 27	7,920	810	23,74	1 11 ⁻	10 20,716
216	77,350	516 27	7,920	816	23,71	6 11 ⁻	16 20,716
222	73,546	522 27	7,920	822	23,71	6 112	22 20,716
228	70,640	528 26	6,867	828	23,71	6 112	28 20,076
234	68,492 5	534 26	6,867	834	23,71	6 11:	34 20,076
240	64,649	540 26	6,867	840	23,68	5 114	40 20,076
246	60,176	546 26	6,867	846	23,68	5 114	46 20,076
252	54,065	552 25	5,818	852	23,68	5 11	52 19,798
258	52,308	558 25	5,818	858	23,68	5 11	58 19,798
264	48,761	564 25	5,818	864	23,65	5 110	64 19,798
270	48,489	570 25	5,818	870	23,65	5 11	70 19,798
276	48,269	576 24	1,764	876	23,65	5 11	76 19,536
282	48,092	582 24	1,764	882	23,65	5 118	82 19,536
288	44,770 \$	588 24	1,764	888	23,63	0 118	88 19,536
294	44,586	594 24	1,764	894	23,63	0 119	94 19,536

 Table 6.7.--Glen Canyon Dam probable maximum flood for July (continued)

<u>Hour</u>	Flow (ft ³ /s)	Но	ur	Flow (ft ³ /s)	Hour	Flow (ft ³ /s)	Hour	Flow (ft ³ /s)
1200 19,2 1206 19,2 1212 19,2	274 126 274 126 274 127	0 18,745 6 18,745 2 18,482	1320 1326 1332	17,958 17,958 17,958	1380 17,434 1386 17,434 1392 17,172			

19,274	1278	18,482	1338	17,958	1398	17,172
19,007	1284	18,482	1344	17,696	1404	17,172
19,007	1290	18,482	1350	17,696	1410	17,172
19,007	1296	18,220	1356	17,696	1416	16,910
19,007	1302	18,220	1362	17,696	1422	16,910
18,745	1308	18,220	1368	17,434	1428	16,910
18,745	1314	18,220	1374	17,434	1434	16,910
	19,274 19,007 19,007 19,007 19,007 18,745 18,745	19,274127819,007128419,007129019,007129619,007130218,745130818,7451314	19,274127818,48219,007128418,48219,007129018,48219,007129618,22019,007130218,22018,745130818,22018,745131418,220	19,274127818,482133819,007128418,482134419,007129018,482135019,007129618,220135619,007130218,220136218,745130818,220136818,745131418,2201374	19,274127818,482133817,95819,007128418,482134417,69619,007129018,482135017,69619,007129618,220135617,69619,007130218,220136217,69618,745130818,220136817,43418,745131418,220137417,434	19,274127818,482133817,958139819,007128418,482134417,696140419,007129018,482135017,696141019,007129618,220135617,696141619,007130218,220136217,696142218,745130818,220136817,434142818,745131418,220137417,4341434

Table 6.8 - Glen Canyon Dam probable maximum flood for August

Н	Flo our (ft ²	ow ³/s)	Н	our	Flow (ft ³ /s)	Ho	our	Flow (ft ³ /s)	Но	Flow ur (ft ³ /s)
<u></u>	<u>, (1</u>	,			(,)			(<u> ()</u>
0	23.801	300	32,786	600	17.696	900	13.0)48		
6	23.801	306	32.299	606	17.696	906	13.0)48		
12	2 23,801	312	31,034	612	17,696	912	12,8	356		
18	3 23.801	318	30,582	618	17.696	918	12.8	356		
24	23.771	324	.30.205	624	17,434	924	12.8	356		
30	23,771	330	29,881	630	17,434	930	12,8	356		
36	S 23,771	336	28,803	636	17,434	936	12,6	64		
42	2 23,771	342	28,526	642	17,434	942	12,6	64		
48	3 26,513	348	28,261	648	17,172	948	12,6	64		
54	480,826	354	28,012	654	17,172	954	12,6	64		
60	309,907	360	27,001	660	17,172	960	12,4	173		
66	6465,555	366	26,777	666	17,172	966	12,4	173		
72	2 489,845	372	26,108	672	16,910	972	12,4	173		
78	3 528,414	378	23,320	678	16,910	978	12,4	173		
84	\$ 539,262	384	20,373	684	16,910	984	12,2	281		
90) 555,572	390	20,080	690	16,910	990	12,2	281		
96	6456,691	396	20,076	696	16,491	996	12,2	281		
102	308,332	402	20,076	702	16,491	1002 12	2,281			
108	209,963	408	19,798	708	16,491	1008 12	2,090			
114	158,873	414	19,798	714	16,491	1014 12	2,090			
120	131,094	420	19,798	720	15,916	1020 12	2,090			
126	113,867	426	19,798	726	15,916	1026 12	2,090			
132	100,931	432	19,536	732	15,916	1032 11	,898			
138	89,031	438	19,536	738	15,916	1038 11	,898			
144	82,628	444	19,536	744	15,342	1044 11	,898			
150	679,374	450	19,536	750	15,342	1050 11	,898			
156	488,865	456	19,274	756	15,342	1056 11	,707			
162	467,433	462	19,274	762	15,342	1062 11	,707			
168	431,303	468	19,274	768	14,767	1068 11	,707			
174	281,224	474	19,274	774	14,767	1074 11	,707			
180	209,052	480	19,007	780	14,767	1080 11	,515			
186	1/4,386	486	19,007	786	14,767	1086 11	,515			
192	140,211	492	19,007	792	14,197	1092 11	,515			
198	107,763	498	19,007	798	14,197	1098 11	,515			
204	84,519	504	18,745	804	14,197	1104 11	,323			
210	69,847	510	18,745	810	14,197		,323			
210	61,130	516	18,745	816	13,668		,323			
222	55,091	522	10,/45	02Z	13,008		,3∠3 100			
∠∠ŏ	00,300 16 795	52ŏ	10,402	02≬ 024	13,000	1120 11	,132			
204	40,100 11 105	534	10,402	004 010	12,000	1104 11	, IJZ			
240	44,100 10 101	540	10,402	040 8/6	13,431	11/10 11	122			
2 4 0	+∠, IUI	040	10,402	040	10,401		, 102			

252	40,362	552	18,220	852	13,431	1152	10,940
258	38,943	558	18,220	858	13,431	1158	10,940
264	37,695	564	18,220	864	13,239	1164	10,940
270	36,713	570	18,220	870	13,239	1170	10,940
276	35,884	576	17,958	876	13,239	1176	10,754
282	35,140	582	17,958	882	13,239	1182	10,754
288	34,046	588	17,958	888	13,048	1188	10,754
294	33,365	594	17,958	894	13,048	1194	10,754

Table 6.8Glen Ca	nyon Dam probable	maximum flood for	August (continued)
------------------	-------------------	-------------------	--------------------

Hour	Flow	Hour	Flow		Hour	Flow	Flow Hour (ff ³ (s)
<u>11001</u>	(11/5)	Tiour	(11/5)		liuui	(11/5)	11001 (1175)
1200 10,5	562 1260	9,811 1320	8,500 1380	7,714			
1206 10,5	562 1266	9,811 1326	8,500 1386	7,714			
1212 10,5	562 1272	9,372 1332	8,500 1392	7,557			
1218 10,5	562 1278	9,372 1338	8,500 1398	7,557			
1224 10,2	245 1284	9,372 1344	8,067 1404	7,557			
1230 10,2	245 1290	9,372 1350	8,067 1410	7,557			
1236 10,2	245 1296	8,939 1356	8,067 1416	7,411			
1242 10,2	245 1302	8,939 1362	8,067 1422	7,411			
1248 9,87	111308 8,9	939 1368 7,7	714 1428 7,4	411			
1254 9,87	111314 8,9	939 1374 7,7	714 1434 7,4	411			

The most critical flood situation for Hoover Dam occurs when the San Juan storm is followed by the Cedar Mountain storm. The flood hydrographs developed for the upper basin were routed through Glen Canyon Dam, and combined with concurrent runoff and intervening base flow hydrographs for the area between Glen Canyon and Hoover Dams. Table 6.9 presents the results of this analysis for several storm separation times. Tables 6.10 through 6.13 list the hydrograph ordinates for the highlighted floods shown on table 6.9 and figures 6.5 through 6.8 present the corresponding hydrographs. These are the seasonal PMFs for Hoover Dam based upon the flood routings.

Start <u>date</u>	Lag (days)	Maximum inflow (ft ³ /s)	Total volume (106 ac-ft)	Maximum outflow (ft ³ /s)	Starting reservoir elev (ft)	Maximum reservoir elev (ft)
May 15	4	210.000	12 202	125 000	1010 1	1000 6
Iviay 15	1	310,000	13.392	125,000	1210.1	1229.0
	3	371,000	13.522	127,000	1210.1	1229.6
	5	445,000	13.692	130,000	1210.1	1229.6
	7	506,000	13.845	132,006	1210.1	1229.6
June 15	1	585,000	12.399	183,000	1211.3	1230.1
	3	650,000	12.559	189,000	1211.3	1230.1
	5	727,000	12.767	227,000	1211.3	1230.5
	7	805,000	12.999	302 000	1211.3	1231.1
July 15	1	763,000	10.440	240,000	1219.0	1230.6
	3	848,000	10.706	324,000	1219.0	1231.3
	5	919 000	10.945	401,000	1219.0	1232.4
	7	949,000	11.240	4011000	1219.0	1232.3

Table 6.9.-- Hoover Dam routing results for San Juan storm followedby the Cedar Mountain storm

August15	1	988,000	10.490	275,000	1217.5	1230.9
	3	1,049,000	10.715	352,000	1217.5	1231.6
	5	1,144,000	11.055	401,000	1217.5	1232.8
	7	1,130 000	11.384	402,000	1217.5	1233.0

Flow	/ F	low	Flow	Flow
Hour (ft ³ /s	s) Hour (†	ft ³ /s)	Hour (ft ³ /s)	Hour (ft ³ /s)
0 1.5533	00 152.678 600	135.539	900 95.231	
6 1.5533	06 138,632 606	134,516	906 94.687	
12 1,5593	12 122.061 612	133,639	912 94,227	
18 2.8593	18 131.080 618	132.988	918 93.693	
24 18.269	324 139.204 6	24 132.252	2 924 93.253	
30 33.513	330 130,962 6	30 131,274	930 92,931	
36 34.813	336 129,790 6	36 130,419	936 92.649	
42 34.819	342 144,708 6	42 129.779	942 92.280	
48 34,986	348 157,146 6	48 129.042	2 948 91,970	
54 34.986	354 165.690 6	54 128.069	954 91.742	
60 34.986	360 171.646 6	60 127.228	3 960 91.526	
66 34 987	366 174.643 6	66 126,597	7 966 91,205	
72 35.207	372 176,177 6	72 125.874	972 90.928	
.78 35.418	378 177.132	678 124.	909 978 90.724	
84 36.503	384 177.162 6	84 124.067	7 984 90.531	
90 37.608	390 176.249 6	90 123.428	3 990 90.222	
96 37.844	396 175,148 6	96 122.712	2 996 89,954	
102 36.9	77 402 174.195	702 121.	751 1002 89.756	
108 36.082	408 172,919	708 120.	913 1008 89.562	
114 35.694	414 171.138	714 120.2	297 1014 89.256	
120 35.543	420 169,518	720 119.	607 1020 88,990	
126 35,433	426 168,271	726 118,	646 1026 88,794	
132 35,370	432 166,866	732 117,	812 1032 88,601	
138 35,333	438 165,023	738 117,	187 1038 88,297	
144 35,343	444 163,402	744 116,4	410 1044 88,033	
150 35,323	450 162,161	750 114,	989 1050 87,838	
156 35,3	16 456 160,874	756 113,	659 1056 87,646	
162 35,316	462 -159,327	762 1	12,632 1062 87,341	
168 35,357	468 158,002	768 111,	806 1068 87,076	
174 35,357	474 156,977	774 110,	717 1074 86,881	
180 35,357	480 155,848	780 109,	798 1080 86,689	
186 35,357	486 154,427	786 109,	121 1086 86,384	
192 35,392	492 153,195	792 108,4	486 1092 86,119	
198 35,392	498 152,253	798 107,	526 1098 85,923	
204 35,392	504 151,208	804 106,0	699 1104 85,732	
210 35,392	510 149,844	810 106,0	090 1110 85,428	
216 35,432	516 148,654	816 105,4	498 1116 85,164	
222 35,432	522 147,757	822 104,	572 1122 84,969	
228 35,432	528 1,6,748	828 103,	770 1128 84,782	
234 35,432	534 145,418	834 103,	178 1134 94,478	
240 35,473	540 144,259	840 102,0	602 114.084,213	
246 35,473	546 143,384	846 101,0	686 1146 84,017	
252 35,473	552 142,476 852	100,889 1 ⁻	152 83,825	

258	35,473	558	141,360	858	100,302	1158	83,520
264	35,509	564	140,400	864	99,725	1164	83,255
270	35,509	570	139,683	870	98,811	1170	83,059
276	48,420	576	138,886	876	98,017	1176	82,867
282	466,167	582	137,860	882	97,431	1182	82,563
288	244,438	588	136,965	888	96,838	1188	82,299
294	202,695	594	136,297	894	95,976	1194	82,104

Table 6.11.-- Hoover Dam probable maximum flood for June

		Flow			F	low				Flow		Flow
	Hour	<u>(π°/S)</u>		Hour	(1	<u>t°/S)</u>		H	our	(ft°/S)	Hou	<u>(π°/s)</u>
	0	1,598 30	0 35	4,117 60	0 7	7,14	3	900	61	,709		
	6	1,59830	6 32	8,326 60	6 7	6,74	9	906	61	,117		
	12	1,60731	2 29	6,215 61	2 7	6,42	1	912	60	,472		
	18	3,584 31	8 28	9,643 61	8 7	6,16	9	918	59	,849		
	24	27,322	324	286,564	624	75	,761	92	24	59,261		
	30	53,437	330	266,435	630	75	,177	93	30	58,718		
	36	59,356	336	244,601	636	74	,646	93	36	58,171		
	42	62,170	342	230,892	642	74	,242	94	12	57,643		
	48	63,857	348	217,312	648	73	,783	94	18	57,143		
	54	65,216	354	195,467	654	73	,480	95	54	56,68O		
	60	66,510	360	170,066	660	73	,329	96	50	56,243		
	66	67,789	366	149,730	666	73	,186	96	56	55,784		
	72	72,201	372	134,556	672	72	,955	97	72	55,346		
	78	108,899	378	123,457	678	72	,741	97	78	54,941		
	84	167,600	384	115,138	684	72	,514	98	34	54,566		
	90 18	4,952	390	108,751	690	72	,277					
	990	54,091										
	96 18	5,973	396	103,838	696	72	,003					
	996	53,623										
	102	184,571	40	2 100,1	19 7	02	71,71	6				
	1002	53,189						_				
	108	183,170	40	8 97,19	97	80	71,419	9				
	1008	52,765						_				
	114	182,564	41	4 94,77	'1 7	14	71,13	6				
	1014	52,201						_				
	120	182,326	42	0 92,84	8 7	20	70,82	8				
	1020	51,637						_				
	126	182,154	42	6 91,38	84 7	26	70,51	2				
	1026	51,113										
13	32	182,055	43	2 90,17	27	32	70,20	1				
	1032	50,607				~ ~		-				
13	38	181,997	43	8 89,03	6 7	38	69,902	2				
	1038	49,966						_				
14	14	181,982	44	4 88,10)2 7	44	69,57	6				
	1044	49,332	. –									
	150	181,951	45	0 87,35	57	50	69,27	1				
	1050	48,744			-			_				
15	56	181,941	45	6 86,70)1 7	56	68,89	8				
	1056	48,160			-	~~		-				
16	52	181,940	46	2 86,00	01 7	62	68,48	Ś				
	1062	47,469										

168	181,960	468	85,415	768	68,171
1068	46,790				
174	181,960	474	84,923	774	67,877
1074	46,161				
180	181,960	480	84,458	780	67,587
1080	45,561	400	00.044	700	07.005
186	181,960	486	83,911	786	67,305
1086	44,926	400	02 4 4 0	700	67.004
192	101,900	492	03,440	192	67,004
1092	101 000	109	92 052	709	66 712
1008	101,900	490	03,0 <u>5</u> 2	190	00,713
204	43,750	504	82 600	804	66 125
110/	101,900	504	02,090	004	00,425
210	181 080	510	82 215	810	66 145
1110	101,900	510	02,215	010	00,143
216	181 000	516	81 796	816	65 841
1116	42 182	510	01,730	010	05,041
222	181 000	522	81 464	822	65 552
1122	41 709	022	01,404	022	00,002
228	181 000	528	81 137	828	65 266
1128	41 262	020	01,107	020	00,200
234	181 999	534	80 706	834	64 988
1134	40 795	001	00,100	001	01,000
240	182 025	540	80 327	840	64 691
1140	40.351	0.0	00,02.	0.0	01,001
246	182.025	546	80.019	846	64.404
1146	39.940		,		-,
252	182.025	552	79.723	852	64.119
1152	39,556		,		,
258	182,025	558	79,318	858	63,843
1158	39,143				,
264	182,045	564	78,961	864	63,543
1164	38,747				
270	182,044	570	78,684	870	63,257
1170	38,382				
276	198,827	576	78,410	876	62,974
1176	38,039				
282	765,356	582	78,032	882	62,699
1182	37,664				
288	463,560	586	77,696	888	62,405
1188	37,304				
294	416,190	594	77,437	894	62,113
1194	36,971				

Table 6.11. - Hoover Dam probable maximum flood for June (continued)

Hour	Flow (ft ³ /s)	Hour	Flow (ft ³ /s)	Hour	Flow (ft ³ /s)	Flow Hour (ft ³ /s)
1200 36,65 1206 36.30	3 1458 5 1464	33,104 1716 33.104 1722	33,103 33,103	1974 33,103 1980 33,103		
1212 35,97 1218 35,66	0 1470 0 1476	33,104 1728 33,104 1734	33,103 33,103	1986 33,103 1992 33,103		

1224	35,386	1482	33,104	1740	33,103	1998	33,103
1230	35,211	1488	33,104	1746	33,103	2004	33,103
1236	35,186	1494	33,104	1752	33,103	2010	33,103
1242	35,186	1500	33,104	1758	33,103	2016	33,103
1248	35,201	1506	33,104	1764	33,103	2022	33,103
1254	35,201	1512	33,104	1770	33,103	2028	33,103
1260	35,201	1518	33,104	1776	33,103	2034	33,103
1266	35,201	1524	33,104	1782	33,103	2040	33,103
1272	35,211	1530	33,164	.1788	33,103	2046	33,103
1278	35,211	1536	33,104	1794	33,103	2052	33,103
1284	35,211	1542	33,104	1800	33,103	2058	33,103
1290	35,211	1548	33,104	1806	.3 3,103	2064	33,103
1296	35,227	1554	33,104	1812	33,103	2070	33,103
1302	35,227	1560	33,104	1818	33,103	2076	33,103
1308	35,227	1566	33,104	1824	33,103	2082	33,103
1314	35,227	1572	33,104	1830	33,103	2088	33,103
1320	35,216	1578	33,104	1836	33.103	2094	33,103
1326	35,216	1584	33,104	1842	33,103	2100	33,103
1332	35,216	1590	33,104	1848	33,103	2106	33,103
1338	35,216	1596	33,104	1854	33,103	2112	33,103
1344	35,186	1602	33,104	1860	33,103	2118	33,103
1350	35,186	1608	33,104	1866	33,103	2124	33,103
1356	35,186	1614	33,104	1872	33,103	2130	33,103
1362	35,186	1620	33,104	1878	33,103	2136	33,103
1368	35,156	1626	33,104	1884	33,103	2142	33,103
1374	35,156	1632	33,104	1890	33,103	2148	33,102
1380	35,156	1638	33,104	1896	33,103	2154	33,102
1386	35,156	1644	33,103	1902	33,103	2160	33,102
1392	35,121	1650	33,103	1908	33,103	2166	33,102
1398	35,121	1656	33,103	1914	33,103	2172	33,091
1404	35,121	1662	33,103	1920	33,103	2178	31,259
1410	35,121	1668	33,103	1926	33,103		
1416	35,095	1674	33,103	1932	33,103		
1422	35,095	1680	33,103	1938	33,103		
14.28	35,095	1686	33,103	1944	33,103		
1434	35,095	1692	33,103	1950	33,103		
1440	33,104	1698	33,103	1956	33,103		
1446	33,104	1704	33,103	1962	33,103		
1452	33,104	1710	33,103	1968	33,103		

Table 6.12.--Hoover Dam probable maximum flood for July

Hour	Flow		Hour	Flow		Hour	Flow	Flow
Hour	(11/S)		Hour	(IL /S)		Hour	(IL /S)	Hour (IL/S)
-								
0	2,042	2 300	229,321	600 35	5,924	900	35,010	
6	2,042	2 306	199,754	606 35	5,881	906	35,010	
12	2,054 31	12 10	64,186 612	2 35,85	52 9	12 34	,995	
is	4,74931	18 13	35,560 618	35,81	59	18 34	,995	
24	36,276	324	114,308	624 35	5,749	924	34,995	
30	67,635	330	98,89	3 630	35,719	93	0 34,995	
36	70,001	336	89,34	1 636	35,689	93	6 34,985	
42	69,688	342	85,48	3 642	35,642	94	2 34,985	
48	69,344	348	83,008	8 648	35,585	94	8 34,985	

120 $183,085$ 420 $60,814$ 720 $35,080$ 1020 $34,954$ 126 $183,009$ 426 $58,858$ 726 $35,080$ 1026 $34,954$ 132 $182,725$ 432 $57,037$ 732 $35,080$ 1026 $34,954$ 138 $182,379$ 438 $55,302$ 738 $35,080$ 1026 $34,954$ 138 $182,379$ 438 $55,302$ 738 $35,070$ 1044 $34,959$ 144 $182,136$ 444 $53,702$ 744 $35,070$ 1065 $34,959$ 150 $182,021$ 450 $52,220$ 750 $35,070$ 1056 $34,979$ 162 $181,975$ 456 $50,849$ 756 $35,070$ 1062 $34,979$ 162 $181,975$ 456 $50,849$ 756 $35,070$ 1062 $34,979$ 168 $181,924$ 468 $48,271$ 768 $35,060$ 1080 $35,000$ 174 $181,979$ 480 $46,058$ 780 $35,060$ 1080 $35,000$ 186 $181,904$ 486 $45,011$ 786 $35,050$ 1092 $35,000$ 192 $181,876$ 498 $43,124$ 798 $35,050$ 1092 $35,020$ $25,020$ 210 $181,874$ 504 $42,280$ 804 $35,050$ 1104 $35,030$ 1140 $35,035$ $23,923$ 822 $35,040$ 1122 216 $181,845$ 516 $40,$	54 60 72 78 84 90 96 102 108 114	69,011 68,684 68,429 70,898 101,258 162,392 187,030 188,870 186,484 184,192 183,316	354 360 366 372 378 384 390 396 402 408 414	80,79 78,71 76,75 74,94 73,30 71,77 70,30 68,91 67,34 65,19 62,91	90 6 17 6 56 6 55 6 09 6 76 6 01 6 71 6 746 7 98 7 16 7	54 60 72 78 84 90 96 02 08 14	35,560 35,536 35,468 35,468 35,444 35,425 35,410 35,366 35,355 35,261 35,111	954 960 972 918 984 990 996 1002 34 1008 34 1014 34	34,985 34,974 34,974 34,974 34,974 34,964 34,964 4,964 4,964 4,954
126183,009426 $58,858$ 726 $35,080$ 1026 $34,954$ 132 $182,725$ 432 $57,037$ 732 $35,080$ 1032 $34,959$ 138 $182,379$ 438 $55,302$ 738 $35,080$ 1038 $34,959$ 144 $182,136$ 444 $53,702$ 744 $35,070$ 1044 $34,959$ 150 $182,021$ 450 $52,220$ 750 $35,070$ 1056 $34,979$ 156 $181,975$ 456 $50,849$ 756 $35,070$ 1062 $34,979$ 162 $181,956$ 462 $49,514$ 762 $35,070$ 1062 $34,979$ 163 $181,975$ 456 $40,514$ 762 $35,060$ 1068 $34,979$ 174 $181,915$ 474 $47,131$ 774 $35,060$ 1080 $35,000$ 186 $181,904$ 486 $45,011$ 786 $35,050$ 1092 $35,000$ 192 $181,879$ 492 $44,034$ 792 $35,050$ 1092 $35,000$ 198 $181,874$ 504 $42,280$ 804 $35,050$ 1104 $35,020$ 210 $181,872$ 516 $40,648$ 816 $35,040$ 1116 $35,020$ 222 $181,844$ 522 $39,923$ 822 $35,040$ 1122 $35,035$ 234 $80,565$ 534 $38,558$ 834 $35,040$ 1122 $35,035$ 234 $80,565$ 534 <t< td=""><td>120</td><td>183,085</td><td>420</td><td>60,81</td><td>14 7</td><td>20</td><td>35,080</td><td>1020 34</td><td>,954</td></t<>	120	183,085	420	60,81	14 7	20	35,080	1020 34	,954
132182,72543257,03773235,080 1032 34,95943855,30273835,080 1038 34,95944453,70274435,070 1044 34,95975035,070 1050 34,95975635,070 1050 34,95975635,070 1050 34,97976235,070 1056 34,97976835,070 1062 34,97976835,060 1062 34,97977476835,060 1063 34,97977447,13177435,060 1074 34,97978035,000108035,000 1074 34,97978035,060108035,000 1074 34,9797978035,0501080 1080 181,90948046,05878035,060 1080 35,00079235,050108035,000 192 181,87649843,12479835,050 1092 35,000702700700700 1103 35,020700700700700 210 181,87450442,28080435,050 1104 35,020700700700 221 18,84452239,92382235,040 1110 35,03573438,55883435,040 1112 35,03573438,55883435,030 224 <	126	183,009	426	58,85	58 7	26	35,080	1026 34	4,954
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132 1	82,725	432	57,037	732	35	,080		
138182,37943855,30273835,080103834,959144182,13644453,70274435,070104434,959150182,02145052,22075035,070105034,959156181,97545650,84975635,070105634,979162181,95646249,51476235,070106234,979168181,92446848,27176835,060106834,979174181,91547447,13177435,060107434,979180181,90948046,05878035,060108635,000108035,000108035,000192181,87949244,03479235,050109235,000181,87450442,28080435,050110435,020210181,87251041,43881035,050110435,020222181,84452239,92382235,040111635,020222181,84452239,24282835,040112835,035234880,56553438,55883435,030240521,09654037,90984035,030114035,035246469,55054637,31384635,030	103	2 34.959		,			,		
144182,136444 $53,702$ 744 $35,070$ 1044 $34,959$ 150 $182,021$ 450 $52,220$ 750 $35,070$ 1050 $34,959$ 156 $50,849$ 756 $35,070$ 1056 $34,979$ 162 $181,956$ 462 $49,514$ 762 $35,070$ 1062 $34,979$ 168 $181,924$ 468 $48,271$ 768 $35,060$ 1068 $34,979$ 174 $181,915$ 474 $47,131$ 774 $35,060$ 1074 $34,979$ 180 $181,904$ 486 $45,011$ 786 $35,060$ 1074 $34,979$ 180 $48,071$ 786 $35,060$ 1074 $34,979$ 180 $46,058$ 780 $35,060$ 1074 $34,979$ 480 $46,058$ 780 $35,060$ 1086 $35,000$ 1080 $35,000$ 1080 $35,000$ 192 $181,879$ 492 $44,034$ 792 $35,050$ 1092 $35,000$ 181,874 504 $42,280$ 804 $35,050$ 1098 $35,000$ 1104 $35,020$ 210 $181,874$ 522 $39,923$ 822 $35,040$ 1116 $35,020$ 222 $181,844$ 522 $39,242$ 828 $35,040$ 1122 $35,035$ 234 $880,565$ 534 $38,558$ 834 $35,030$ 1140 $35,035$ 240 $521,096$ 540 $37,909$ 840 $35,030$ 1140 <td< td=""><td>138 1 103</td><td>82,379 8 34 959</td><td>438</td><td>55,302</td><td>738</td><td>35</td><td>,080</td><td></td><td></td></td<>	138 1 103	82,379 8 34 959	438	55,302	738	35	,080		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111 1	82 136	ллл	53 702	711	35	070		
150 + 32, 935 $150 - 182, 021$ $450 - 52, 220 - 750 - 35, 070$ $1050 - 34, 959$ $156 - 181, 975 - 456 - 50, 849 - 756 - 35, 070$ $1056 - 34, 979$ $162 - 181, 956 - 462 - 49, 514 - 762 - 35, 070$ $1062 - 34, 979$ $168 - 181, 924 - 468 - 48, 271 - 768 - 35, 060$ $1068 - 34, 979$ $174 - 181, 915 - 474 - 47, 131 - 774 - 35, 060$ $1074 - 34, 979$ $180 - 181, 909 - 480 - 46, 058 - 780 - 35, 060$ $1074 - 34, 979$ $180 - 181, 909 - 480 - 46, 058 - 780 - 35, 060$ $1086 - 35, 000$ $192 - 181, 879 - 492 - 44, 034 - 792 - 35, 050$ $1092 - 35, 000$ $198 - 181, 876 - 498 - 43, 124 - 798 - 35, 050$ $1098 - 35, 000$ $198 - 181, 876 - 498 - 43, 124 - 798 - 35, 050$ $1098 - 35, 000$ $181, 874 - 504 - 42, 280 - 804 - 35, 050$ $1104 - 35, 020$ $210 - 181, 872 - 510 - 41, 438 - 810 - 35, 050$ $1110 - 35, 020$ $216 - 181, 845 - 516 - 40, 648 - 816 - 35, 040$ $1116 - 35, 020$ $222 - 181, 844 - 522 - 39, 923 - 822 - 35, 040$ $1122 - 35, 020$ $222 - 181, 844 - 522 - 39, 923 - 822 - 35, 040$ $1122 - 35, 035 - 234 - 880, 565 - 534 - 38, 558 - 834 - 35, 030$ $240 - 521, 096 - 540 - 37, 909 - 840 - 35, 030$ $1140 - 35, 035 - 246 - 469, 550 - 546 - 37, 313 - 846 - 35, 030$	101	1 31 050		55,702	177	00	,070		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150 1	+ 34,939 00 001	450	E2 220	750	25	070		
1050 $34,959$ 156 $181,975$ 456 $50,849$ 756 $35,070$ 1056 $34,979$ 162 $181,956$ 462 $49,514$ 762 $35,070$ 1062 $34,979$ 168 $181,924$ 468 $48,271$ 768 $35,060$ 1068 $34,979$ 174 $181,915$ 474 $47,131$ 774 $35,060$ 1074 $34,979$ 180 $181,909$ 480 $46,058$ 780 $35,060$ 1074 $34,979$ 180 $181,909$ 480 $46,058$ 780 $35,060$ 1080 $35,000$ 1080 $35,000$ 1080 $35,000$ 192 $181,879$ 492 $44,034$ 792 $35,050$ 1092 $35,000$ 1098 $35,000$ 1104 $35,020$ 1104 $35,020$ $35,020$ 1104 $35,020$ 210 $181,872$ 516 $40,648$ 816 $35,040$ 1110 $35,020$ $25,020$ 222 $181,844$ 522 $39,923$ 822 $35,040$ 1122 $35,035$ 234 $880,565$ 534 $38,558$ 834 $35,030$ 234 $880,565$ 546 $37,313$ 846 $35,030$ 1140 $35,035$ 246 $469,550$ 546 $37,313$ 846 $35,030$	150 1	02,021	450	52,220	750	30	,070		
156 $181,975$ 456 $50,849$ 756 $35,070$ 1056 $34,979$ 462 $49,514$ 762 $35,070$ 1062 $34,979$ 168 $181,924$ 468 $48,271$ 768 $35,060$ 1068 $34,979$ 174 $181,915$ 474 $47,131$ 774 $35,060$ 1074 $34,979$ 180 $181,909$ 480 $46,058$ 780 $35,060$ 1074 $34,979$ 180 $181,904$ 486 $45,011$ 786 $35,060$ 1080 $35,000$ 1080 $35,000$ 1086 $35,000$ 192 $181,879$ 492 $44,034$ 792 $35,050$ 1092 $35,000$ 1098 $35,000$ 1098 $35,000$ 1104 $35,020$ 1104 $35,020$ $35,050$ 216 $181,874$ 504 $42,280$ 804 $35,050$ 1110 $35,020$ 222 $181,845$ 516 $40,648$ 816 $35,040$ 1116 $35,020$ 222 $181,844$ 522 $39,923$ 822 $35,040$ 1128 $35,035$ 34 $38,558$ 834 $35,040$ 1128 $35,035$ 34 $38,558$ 834 $35,030$ 240 $521,096$ 540 $37,909$ 840 $35,030$ 1140 $35,035$ 346 $35,030$	1050	34,959					– .		
1056 $34,979$ 162 $181,956$ 462 $49,514$ 762 $35,070$ 1062 $34,979$ 168 $181,924$ 468 $48,271$ 768 $35,060$ 1068 $34,979$ 174 $181,915$ 474 $47,131$ 774 $35,060$ 1074 $34,979$ 180 $181,909$ 480 $46,058$ 780 $35,060$ 1074 $34,979$ 180 $181,909$ 480 $46,058$ 780 $35,060$ 1080 $35,000$ 1080 $35,000$ 1080 $35,050$ 1092 $35,000$ 1092 $35,000$ 1092 $35,000$ 198 $181,876$ 498 $43,124$ 798 $35,050$ 1098 $35,000$ 1104 $35,020$ 210 $181,872$ 510 $41,438$ 810 $35,050$ 1104 $35,020$ 25000 222 $181,845$ 516 $40,648$ 816 $35,040$ 1110 $35,020$ 222 $181,844$ 522 $39,923$ 822 $35,040$ 1122 $35,035$ 234 $880,565$ 534 $38,558$ 834 $35,030$ 234 $880,565$ 546 $37,313$ 846 $35,030$ 1140 $35,035$ 246 $469,550$ 546 $37,313$ 846 $35,030$	156 1	81,975	456	50,849	756	35	,070		
162 $181,956$ 462 $49,514$ 762 $35,070$ 1062 $34,979$ 168 $181,924$ 468 $48,271$ 768 $35,060$ 1068 $34,979$ 174 $181,915$ 474 $47,131$ 774 $35,060$ 1074 $34,979$ 180 $181,909$ 480 $46,058$ 780 $35,060$ 1074 $34,979$ 180 $181,909$ 480 $46,058$ 780 $35,060$ 1074 $34,979$ 180 $181,909$ 480 $46,058$ 780 $35,060$ 1086 $35,000$ 1086 $35,000$ 1092 $35,000$ 192 $181,874$ 498 $43,124$ 798 $35,050$ 1098 $35,000$ 1104 $35,020$ 210 $181,874$ 504 $42,280$ 804 $35,050$ 110 $35,020$ 216 $181,845$ 516 $40,648$ 816 $35,040$ 1116 $35,020$ 222 $181,844$ 522 $39,923$ 822 $35,040$ 1122 $35,035$ 234 $880,565$ 534 $38,558$ 834 $35,040$ 1128 $35,035$ $37,909$ 840 $35,030$ 1140 $35,035$ 240 $521,096$ 546 $37,313$ 846 $35,030$	1050	5 34,979							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	162 1	81,956	462	49,514	762	35	,070		
168 $181,924$ 468 $48,271$ 768 $35,060$ 1068 $34,979$ 174 $181,915$ 474 $47,131$ 774 $35,060$ 1074 $34,979$ 180 $181,909$ 480 $46,058$ 780 $35,060$ 186 $181,904$ 486 $45,011$ 786 $35,060$ 1086 $35,000$ 1086 $35,000$ 192 $181,879$ 492 $44,034$ 792 $35,050$ 1092 $35,000$ 1092 $35,000$ 198 $181,876$ 498 $43,124$ 798 $35,050$ 1098 $35,000$ $181,874$ 504 $42,280$ 804 $35,050$ 1104 $35,020$ 210 $181,872$ 510 $41,438$ 810 $35,050$ 1104 $35,020$ 222 $181,844$ 522 $39,923$ 822 $35,040$ 1116 $35,020$ 228 $201,551$ 528 $39,242$ 828 $35,040$ 1122 $35,035$ 234 $880,565$ 534 $38,558$ 834 $35,030$ 240 $521,096$ 540 $37,909$ 840 $35,030$ 1140 $35,035$ 246 $469,550$ 546 $37,313$ 846 $35,030$	106	2 34.979							
1068 $34,979$ 106 $165,111$ 106 $05,000$ 174 $181,915$ 474 $47,131$ 774 $35,060$ 1074 $34,979$ 180 $181,909$ 480 $46,058$ 780 $35,060$ 1080 $35,000$ 1080 $35,000$ 1086 $35,000$ 192 $181,879$ 492 $44,034$ 792 $35,050$ 1092 $35,000$ 1092 $35,000$ 198 $181,876$ 498 $43,124$ 798 $35,050$ 1098 $35,000$ $181,876$ 498 $43,124$ 798 $35,050$ 1098 $35,000$ $181,876$ 498 $43,124$ 798 $35,050$ 1104 $35,020$ 210 $181,872$ 510 $41,438$ 810 $35,050$ 1110 $35,020$ 222 $181,844$ 522 $39,923$ 822 $35,040$ 1122 $35,020$ 228 $201,551$ 528 $39,242$ 828 $35,040$ 1128 $35,035$ 34 $38,558$ 834 $35,030$ 240 $521,096$ 540 $37,909$ 840 $35,030$ 1140 $35,035$ 246 $469,550$ 546 $37,313$ 846 $35,030$	168 1	81 924	468	48 271	768	35	060		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106	8 3 <u>4 9</u> 79		,			,000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	174 1	01 015	171	17 101	774	25	060		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/4 1	01,915	4/4	47,131	//4	30	,000		
180 $181,909$ 480 $46,058$ 780 $35,060$ 1080 $35,000$ 186 $181,904$ 486 $45,011$ 786 $35,060$ 102 $181,879$ 492 $44,034$ 792 $35,050$ 1092 $35,000$ 1092 $35,000$ 198 $181,876$ 498 $43,124$ 798 $35,050$ 1098 $35,000$ $181,874$ 504 $42,280$ 804 $35,050$ 1104 $35,020$ 210 $181,872$ 510 $41,438$ 810 $35,050$ 1110 $35,020$ 216 $181,845$ 516 $40,648$ 816 $35,040$ 1116 $35,020$ 222 $181,844$ 522 $39,923$ 822 $35,040$ 1122 $35,035$ 234 $880,565$ 534 $38,558$ 834 $35,040$ 1134 $35,035$ 240 $521,096$ 540 $37,909$ 840 $35,030$ 246 $469,550$ 546 $37,313$ 846 $35,030$	1074	4 34,979							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	180 1	81,909	480	46,058	780	35	,060		
186 $181,904$ 486 $45,011$ 786 $35,060$ 192 $181,879$ 492 $44,034$ 792 $35,050$ 1092 $35,000$ 1092 $35,000$ 1098 $35,000$ 1098 $35,000$ $181,876$ 498 $43,124$ 798 $35,050$ 1098 $35,000$ $181,876$ 498 $42,280$ 804 $35,050$ 1104 $35,020$ 210 $181,872$ 510 $41,438$ 810 $35,050$ 210 $181,872$ 510 $41,438$ 810 $35,050$ 1110 $35,020$ 222 $181,845$ 516 $40,648$ 816 $35,040$ 1116 $35,020$ 222 $181,844$ 522 $39,923$ 822 $35,040$ 1122 $35,020$ 228 $201,551$ 528 $39,242$ 828 $35,040$ 1128 $35,035$ 34 $38,558$ 834 $35,040$ 1134 $35,035$ $37,909$ 840 $35,030$ 240 $521,096$ 540 $37,313$ 846 $35,030$ 140 $35,035$ 546 $37,313$ 846 $35,030$				10	080 3	5,00	00		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	186 1	81,904	486	45,011	786	35	,060		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1080	6 35,000							
1092 35,000 198 181,876 498 43,124 798 35,050 1098 35,000 181,874 504 42,280 804 35,050 1104 35,020 210 181,872 510 41,438 810 35,050 210 181,872 510 41,438 810 35,050 1110 35,020 216 181,845 516 40,648 816 35,040 1116 35,020 222 181,844 522 39,923 822 35,040 1122 35,020 228 201,551 528 39,242 828 35,040 1128 35,035 234 880,565 534 38,558 834 35,040 1134 35,035 240 521,096 540 37,909 840 35,030 1140 35,035 246 469,550 546 37,313 846 35,030	192 1	81.879	492	44.034	792	35	050		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109	2 35 000		,•••			,		
130 101,010 430 43,124 130 33,030 1098 35,000 181,874 504 42,280 804 35,050 210 181,872 510 41,438 810 35,050 210 181,872 510 41,438 810 35,050 210 181,872 510 41,438 810 35,050 216 181,845 516 40,648 816 35,040 1116 35,020 222 181,844 522 39,923 822 35,040 1122 35,020 228 201,551 528 39,242 828 35,040 1128 35,035 234 880,565 534 38,558 834 35,040 1134 35,035 240 521,096 540 37,909 840 35,030 240 521,096 546 37,313 846 35,030 246 469,550 546 37,313 846 35,030	108 1	81 876	108	13 121	708	35	050		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	100	01,070 9 25 000	730	70,127	130	00	,000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1090	3 35,000	50	40.00	<u>, </u>	04	25 050		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	440	101,014	50	4 42,20	0 0	04	35,050		
210 181,872 510 41,438 810 35,050 1110 35,020 216 181,845 516 40,648 816 35,040 1116 35,020 222 181,844 522 39,923 822 35,040 1122 35,020 228 201,551 528 39,242 828 35,040 1128 35,035 234 880,565 534 38,558 834 35,040 1134 35,035 240 521,096 540 37,909 840 35,030 246 469,550 546 37,313 846 35,030	1104	4 35,020	- 10						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210 1	81,872	510	41,438	810	35	,050		
216 181,845 516 40,648 816 35,040 1116 35,020 222 181,844 522 39,923 822 35,040 1122 35,020 228 201,551 528 39,242 828 35,040 1128 35,035 234 880,565 534 38,558 834 35,040 1134 35,035 240 521,096 540 37,909 840 35,030 246 469,550 546 37,313 846 35,030	1110	0 35,020							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	216 1	81,845	516	40,648	816	35	,040		
222 181,844 522 39,923 822 35,040 1122 35,020 228 201,551 528 39,242 828 35,040 1128 35,035 234 880,565 534 38,558 834 35,040 1134 35,035 240 521,096 540 37,909 840 35,030 246 469,550 546 37,313 846 35,030	1110	5 35,020							
1122 35,020 228 201,551 528 39,242 828 35,040 1128 35,035 38,558 834 35,040 1134 35,035 38,558 834 35,040 1134 35,035 37,909 840 35,030 240 521,096 540 37,909 840 35,030 1140 35,035 546 37,313 846 35,030	222 1	81.844	522	39,923	822	35	.040		
228 201,551 528 39,242 828 35,040 1128 35,035 234 880,565 534 38,558 834 35,040 1134 35,035 240 521,096 540 37,909 840 35,030 1140 35,035 246 469,550 546 37,313 846 35,030	112	2 35 020		,			,		
1128 35,035 234 880,565 534 38,558 834 35,040 1134 35,035 240 521,096 540 37,909 840 35,030 1140 35,035 246 469,550 546 37,313 846 35,030	228 2	01 551	528	39 242	828	35	040		
234 880,565 534 38,558 834 35,040 1134 35,035 240 521,096 540 37,909 840 35,030 1140 35,035 246 469,550 546 37,313 846 35,030	110	8 35 035	020	00,212	020	00	,010		
234 880,585 534 38,558 834 35,040 1134 35,035 240 521,096 540 37,909 840 35,030 1140 35,035 246 469,550 546 37,313 846 35,030	224 0	00 EEE	524	20 550	021	25	040		
1134 35,035 240 521,096 540 37,909 840 35,030 1140 35,035 246 469,550 546 37,313 846 35,030	234 0	<i>60,505</i>	534	30,000	034	30	,040		
240 521,096 540 37,909 840 35,030 1140 35,035 246 469,550 546 37,313 846 35,030	1134	4 35,035							
1140 35,035 246 469,550 546 37,313 846 35,030	240 5	21,096	540	37,909	840	35	,030		
246 469,550 546 37,313 846 35,030	1140	0 35,035							
	246 4	69,550	546	37,313	846	35	,030		
1146 35,035	1140	5 35,035							
252 399,448 552 36.766 852 35.030	252	399.448	55	36.76	6 8	52	35.030		
	115	2 35,045					-		
	115	2 35,045							

258 36	6,407	558	36,	,355	85	8	35,	,030
1158	35,045							
264	327,503	56	4	36,22	28	864	4	35,020
1164	35,045							
270 31	7,132	570	36,	,165	87	0	35,	,020
1170	35,045							
276	311,927	57	6	36,12	9	876	6	35,020
1176	35,050							
282	288,000	58	2	36,08	80	882	2	35,020
1182	35,050							
288	262,947	58	8	36,03	2	888	3	35,010
1188	35,050							
294	247,088	59	4	35,98	33	894	4	35,010
1194	35,050							

Table 6.12.-- Hoover Dam probable maximum flood for July (continued)

FI	ow		Flow			Flow	Flov	N
<u>Hour (fl</u>	t ³ /s) He	our	(ft ³ /s)		Hour	(ft ³ /s)	Hour (ft ³ /	<u>s)</u>
Hour (ft3/s)H	our (ft3/s)Hour	(ft3/s)Hour (ft	3/s)				
1200 35,055	1458 33,103	1716	33,103	1974	33,	102		
1206 35,055	1464 33,103	1722	33,103	1980	33,	102		
1212 35,055	1470 33,103	1728	33,103	1986	33,	102		
1218 35,055	1476 33,103	1734	33,103	1992	33,	102		
1224 35,060	1482 33,103	1740	33,103	1998	33,	102		
1230 35,060	1488 33,103	1746	33,103	2004	33,	102		
1236 35,060	1494 33,103	1752	33,103	2010	33,	102		
1242 35,060	1500 33,103	1758	33,103	2016	33,	102		
1248 35,070	1506 33,103	1764	33,103	2022	33,	102		
1254 35,070	1512 33,103	1770	-33,103	2028	33,	102		
1260 35,070	1518 33,103	1776	33,103	2034	33,	102		
1266 35,070	1524 313,103	1782	33,103	2040	33,	102		
1272 35,075	1530 33,103	1788	33,103	2046	33,	102		
1278 35,075	1536 33,103	1794	33,103	2052	33,	102		
1284 35,075	1542 33,103	1800	33,103	2058	33,	102		
1290 35,075	1548 33,103	1806	33,103	2064	33,	102		
1296 35,080	1554 33,103	1812	33,103	2070	33,	102		
1302 35,079	1560 33,103	1818	33,103	2076	33,	102		
1308 35,079	1566 33,103	1824	33,103	2082	33,	102		
1314 35,079	1572 33,103	1830	33,103	2088	33,	102		
1320 35,089	1578 33,103	1836	33,103	2094	33,	102		
1326 35,089	1584 33,103	1842	33,103	2100	33,	102		
1332 35,089	1590 33,103	1848	33,103	2106	33,102	2		
1338 35,089	1596 33,103	1854	33,103	2112	33,102	2		
1344 35,094	1602 33,103	1860	33,103	2118	33,	102		
1350 35,094	1608 33,103	1866	33,103	2124	33,102	2		
1356 35,094	1614 33,103	1872	33,103	2130	33,102	2		
1362 35,094	1620 33,103	1878	33,103	2136	33,102	2		
1368 35,099	1626 33,103	1884	33,103	2142	33,102	2		
1374 35,099	1632 33,103	1890	33,103	2148	33,102	2		
1380 35,099	1638 33,103	1896	33,102	2154	33,102	2		
1386 35,099	1644 33,103	1902	33,102	2160	33,102	2		
1392 35,110	1650 33,103	1908	33,102	2166	33,102	2		

1398	35,110	1656	33,103	1914	33,102	2172	33,090
1404	35,110	1662	33,103	1920	33,102	2178	31,258
1410	35,110	1668	33,103	1926	33,102		
1416	35,115	1674	33,103	1932	33,102		
1422	35,115	1680	33,103	1938	33,102		
1428	35,115	1686	33,103	1944	33,102		
1434	35,115	1692	33,103	1950	33,102		
1440	33,103	1698	33,103	1956	33,102		
1446	33,103	1704	33,103	1962	33,102		
1452	33,103	1710	33,103	1968	33,102		

 Table 6.13.-- Hoover Dam probable maximum flood for August

	Flow				Flow				Flow		Flow
Hour	(ft°/S)		Hour		(ft°/S)		H	our	(ft°/S)	Hour	(ft°/S)
0 1.96	6300 42	27,974	600	36.	937	90	00 3	5.060)		
6 1,96	6306 38	34,314	606	36.	781	90	06 3	5,060)		
12 1.97	6312 36	68.365	612	36.	660	9	12 3	5.055			
is 4.30	7318 37	79.850	618	36.	564	9	18 3	5.055			
24 31.2	89 324	385.9	8562	4	36.488	3	924	35.0)55		
30 56.7	20 330	355.1	91 63	0	36.413	3	930	35.0)55		
36 56.4	54 336	312.4	99 63	6	36.338	3	936	35.0)55		
42 54.0	23 342	274.3	36 64	2	36.264	ļ	942	35.0)55		
48 51.7	65 348	226.9	06 64	8	36.200)	948	35.0)55		
54 49.6	95 354	180.0	16 65	4	36,135	5	954	35.0)55		
-60 4	7 789 36	SU 14	5 813	660	36	088	9	60,0	35 049		
66 46 1	57 366	121.3	64 66	6	36 033	3	966	35 ()49		
72 47 6	91 372	106.7	10 67	2	35,982	, ,	972	35 ()49		
78 60 8	92 378	99.85	3 67	8	35 936	-	978	35 (149		
84 90 6	82 384	00,00 04 03	0 07 4 68	4	35 888	, X	984	35 (144		
Q0 153	732 390	90,00	4 00 8 69	- 0	35 820))		35 ()44		
06 188	431 306	87 18	6 60 6 60	6	35 776	, ;	900	35 ()44		
102 1	88 038 40	12 83	0 03 005	0 701	2 35	, 738	1002) (U),(U	277 25 044		
102 1	85 001 10	18 80	865	702	2 35, 2 35,	701	1002		25 044		
100 1	83 071 1'	10 00	,000	700	3 33 1 35 1	676	1000		25 044		
120 1	84 006 43	0 75	,030 110	720	+ 33, 1 35,	630	1014		25 044		
120 1	94,000 42 97 119 7'	20 73	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	720	3 35, 3 35,	803 003	1020		25 044		
120 1	04,110 42	20 72	,554	720	3 33,	574	1020		25 020		
102 1	00,002 40	22 00	,192 120	720	2 33,	551	1032		5,059		
1020	25 020	00 00	,430	100	5 55,	551					
1050	00,009	14 62	206	71	1 25	512					
. 4 I 1044	25 020	++ 02	,590	144	+ 55,	515					
1044 30 1	82 162 11	50 50	617	750	1 25	186					
1050	25 020	0 59	,017	750	5 55,4	+00					
1000	00.000	56 E7	061	750	2 25	01E					
1056	02,007 40	50 57	,001	100	5 35,	545					
0001	30,039	о <i>с</i> л	<u>eee</u>	701	2 25	105					
1000	82,022 40	DZ 54	,655	104	2 35,	135					
1062	35,039		254	700		007					
1000	01,978 40	52	,351	100	5 35,	001					
1068	35,039	74 50	000			005					
4 1	01,95/ 4/	4 50	,080	114	4 35,	082					
1074	35,039	NO 47	047	70/		005					
su 1	01,940 48	50 47	,917	180	5 35,	082					
080	35,034		004								
36 1	81,928 48	36 45	,904	786	o 35,	085					

1086	35,034					
192	181,909 492	44,06	63 792	2 35,07	'5	
1092	35,034					
198	181,903 498	42,36	60 798	3 35,07	'5	
1098	35,034					
204	181,898 504	40,83	31 804	4 35,07	'5	
1104	35,029					
210	181,893 510	39,78	34 810) 35,07	'5	
1110	35,029					
216	181,877 516	39,38	36 816	35,07	0	
1116	35,029					
222	181,873 522	39,13	38 822	2 35,07	0	
1122	35,029					
228	181,868 528	38,90)1 828	3 35,07	0	
1128	35,029					
234	181,245 534	38,67	72 834	4 35,07	0	
1134	35,029					
240	170,201 540	38,46	63 840) 35,06	5	
1140	35,029					
246	140,175 546	38,25	58 846	35,06	5	
1146	35,0219					
252	111,795 552	38,07	72 852	2 35,06	5	
1152	35,024					
258	91,035 558	37,88	39 858	3 35,06	5	
1158	35,024					
264	77,226 564	37,72	21 864	4 35,06	0	
1164	35,024				_	
270	72,279 570	37,56	69 870) 35,06	60	
1170	35,024				_	
276	104,896 576	37,43	81 876	5 35,06	60	
1176	35,019					
282 1 09	5 589 582	37 297	882	35 060	1182	35 019
288 59	7.857 588 3	37.167	888	35.060	1188	35.019
	.,	. ,	200	, • • •		
294 51	6,538 594 3	37,050	894	35,060	1194	35,019

Table 6.13.-- Hoover Dam probable maximum flood for August (continued)

Flow			Flow		Flow	Flow
Hour	<u>(ft³/s)</u>	Hour	<u>(ft³/s)</u>	Hour	<u>(ft³/s)</u>	Hour (ft ³ /s)
1200 35,	019 1458	33,103	1716 33,102	1974	33,102	
1206 35,0	019 1464	33,103	1722 33,102	1980	33,102	
1212 35,0	019 1470	33,103	1728 33,102	1986	33,102	
1218 35,	019 1476	33,103	1734 33,102	1992	33,102	
1224 35,	019 1482	33,103	1740 33,102	1998	33,102	
1230 35,	019 1488	33,103	1746 33,102	2004	33,102	
1236 35,	019 1494	33,103	1752 33,102	2010	33,102	
1242 35,0	019 1500	33,103	1758 33,102	2016	33,102	
1248 35,0	024 1506	33,103	1764 33,102	2022	33,102	
1254 35,	024 1512	33,103	1770 33,102	2028	33,102	
1260 35,	024 1518	33,103	1776 33,102	2034	33,102	
1266 35,	024 1524	33,103	1782 33,102	2040	33,102	

1272 35,0	29 1530	33,103	178	38 3	3,10	2 204	46 🗧	33,1	02	
1278 35,0	29 1536	33,103	179	94 3	3,10	2 20	52 3	33,1	02	
1284 35,0	29 1542	33,103	180	00 3	3,10	2 20	58 3	33,1	02	
1290 35,0	29 1548	33,103	180	06 33	3,10	2 20	64 3	33,1	02	
1296 35,0	34 1554	33,103	181	12 3	3,10	2 20	70 :	33,1	02	
1302 35,0	1560 34	33,103	181	18 3	3,10	2 20	76 3	33,1	02	
1308 35,0	1566 34	33,103	182	24 3	3,10	2 208	32 3	33,1	02	
1314 35,0	34 1572	33,103	183	30 33	3,10	2 12	388	3	3,102	•
1320 35,0	39 1578	33,103	183	36 3	3,10	2 209	94 :	33,1	02	
1326 35,0	39 1584	33,103	184	12 3	3,10	2 21)O (33,1	02	
1332 35,0	39 1590	33,103	184	18 3	3,10	2 21	D6 (33,1	02	
1338 35,0	39 1596	33,103	185	54 3	3,10	2 21	12 :	33,1	02	
1344 35,0	44 1602	33,103	186	50 3	3,10	2 21	18 3	33,1	02	
1350 35,0	44 1608	33,103	186	6 3 3	3,10	2 212	24 :	33,1	02	
1356 35,0	44 1614	33,103	187	72 3	3,10	2 213	30 3	33,1	02	
1362 35,0	44 1620	33,102	187	78 3	3,10	2 21	36 3	33,1	02	
1368 35,0	49 1626	33,102	188	34 3	3,10	2 214	42 3	33,1	02	
1374 35,0	49 1632	33,102	189	90 3	3,10	2 214	48 3	33,1	02	
1380 35,0	49 1638	33,102	189	96 3	3,10	2 21	54 3	33,1	02	
1386 35,0	49 1644	33,102	190)2 3	3,10	2 21	50 ÷	33,1	01	
1392 35, ,	,049 1650	API 102	1908	33, I	102	2166	33,	101		
1398 35,0	49 1656	33,102	1914 3	33,1	02	2172	33,090)		
1404 35,0	49 1662	33,102	1920 3	33,1	02	2178	31,258	3		
1410 35,0	49 1668	33,102	1926	33,1	02					
1416 35,0	49 1674	33,102	1932 3	33,1	02					
1422 35,0	49 1680	33,102	1938	33,1	02					
1428 35,0	49 1686	33,102	1944 3	33,1	02					
1434 35,0	49 1692	33,102	1950	33,1	02					
1440 33,1	03 1698	33,102	1956	33,1	02					
'1446 33,1	03 1.704	33,102	1962 3	33,1	02					
1452 33,1	03 1710	33,102	1968	33,1	02					

The Hoover and Glen Canyon PMFs were routed through Lakes Mead and Powell, respectively, to determine whether or not either dam would be overtopped. The results of the reservoir routings for the August PMFs, which represent the most critical conditions at each dam, are shown on figure 6.9 for Glen Canyon Dam and figure 6.10 for Hoover Dam. Neither facility is overtopped. In fact, Glen Canyon Dam has more that five feet of freeboard remaining below the dam crest, and Hoover Dam still has three feet below the parapet wall. At Hoover Dam, the water surface rose one foot higher than the dam crest elevation.

The PMF reservoir routings used simplified spillway rating curves for both Hoover and Glen Canyon Dams. The spillways were assumed to operate at full capacity, 400,000 and 180,000 ft³/s at Hoover and Glen Canyon, respectively, as soon as the reservoirs reached uncontrollable levels (elevation 1,226.9 feet at Hoover and elevation 3,700 feet at Glen Canyon). The spillways were allowed to maintain these high discharges for as long as necessary without regard to downstream consequences until the lakes fell below uncontrollable levels. These assumptions were necessary to have a consistent set of routing rules by which all PMF scenarios could be compared. These preliminary routings were used to evaluate the many possible combinations of events available and select the most critical events based on the maximum reservoir elevations.

6.5 PEAK DISCHARGE ENVELOPE CURVE

The envelope curve presented as figure 6.11 is based on peak discharges from all of the gages

in the Colorado River basin with drainage areas larger than 100 square miles. A WATSTORE data retrieval was used in developing the information for the curve. The maximum peak flows were plotted along with the corresponding drainage area for the gages. Then the envelope curve was constructed by enclosing the data with a curve. The PMFs for Hoover and Glen Canyon Dams have peak discharges which are more than 100 and 50 percent larger, respectively, than the flows indicated by the curve for similar sized watersheds.

7.0 ACKNOWLEDGMENTS

This report was written by Robert E. Swain, Hydraulic Engineer, Flood Section, Surface Water Branch, at Reclamation's Denver Office. Considerable assistance was provided by Kenneth L. Bullard, Rodney L. Carson, John Dooley, William L. Lane, and Louis C. Schreiner, all of the Denver Office, who were responsible for contributing portions of the manuscript and conducting the technical analysis. Arthur G. Cudworth was instrumental in establishing the study. Additional information was developed by Paul Davidson and Randy Peterson, of the Upper Colorado Region, and Ann Ball, Robert Barton, Alden Briggs, and Tom Myers of the Lower Colorado Region. Administrative support and guidance during the studies were provided by David L. Sveum, Head of the Flood Section, and Jim L. Thomas, Chief of the Surface Water Branch at the Denver Office.

8.0 **REFERENCES**

[1] <u>Boulder Canyon Project Final Reports</u>, Part IV - Design and Construction, Bulletin 3 - Diversion, Outlet, and Spillway Structures, Boulder Canyon Project - Final Report, Bureau of Reclamation, 1946.

[2] Cudworth, A.G., <u>Flood Hydrology Manual</u>, Bureau of Reclamation, U.S. Department of the Interior, Denver CO, 1989.

[3] Debler, E.B., <u>Hydrology of the Boulder Canyon Reservoir</u>, Bureau of Reclamation, 1930.

[4] Gering, A.M., Inflow Design Flood Study, Glen Canyon Dam Site, Colorado River above Lees Ferry, Arizona, Bureau of Reclamation, 1954.

[5] <u>Guidelines for Determining Flood Flow Frequency</u>, Bulletin 17B, Interagency Committee on Water Data, Geological Survey, U.S. Department of the Interior, Reston VA, revised 1981.

[6] Hansen, E.M., D.D. Fenn, L.C. Schreiner, R.T. Stodt and J.F. Miller, "Probable Maximum Precipitation Estimates - United States Between the Continental Divide and the 103rd Meridian",

<u>Hydrometeorological Re-port No. 55A,</u> National Weather Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce and Bureau of Reclamation, U.S. Department of the Interior, Silver Spring MD, 1988.

[7] Hansen, E.M., F.K. Schwarz, and J.T. Riedel, "Probable Maximum Precipitation Estimates - Colorado River and Great Basin Drainages", <u>Hydrometeorological Report No. 49</u>, National Weather Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, Silver Spring MD, 1977.

(8]"Manual for Depth-Area-Duration Analysis of Storm Precipitation", Cooperative Studies, <u>Technical Paper No. 1</u>, Weather Bureau, U.S. Department of Commerce, and Bureau of

Reclamation, U.S. Department of the Interior, Washington DC, 1946.

[9]<u>Manual for Depth-Area-Duration Analysis of Storm Precipitation</u>, World Meteorological Organization, WMO No. 237, TP 129, Geneva, Switzerland, 1969.

[10] "Maximum Possible Flood-Producing Meteorological Conditions: (1) Colorado River Basin above Glen Canyon Dam Site, (2) Colorado River Basin above Bridge Canyon Dam Site, (3) San Juan River above Bluff Dam Site, and (4) Little Colorado River above Coconino Dam Site", <u>Cooperative Studies Re-port No. 9</u>, Weather Bureau, 1949.

[11] Mead, D.W., <u>The Colorado River and Its Proposed Development</u> -<u>The Boulder Canyon Prolect</u>, 1929.

[12] Miller, D.L., <u>Review of Inflow Design Flood Study - Glen Canyon Dam Site</u>, Colorado River Storage Project, Bureau of Reclamation, Denver CO, 1955.

[13] Miller, J.F., R.H. Frederick, and R.J. Tracey, "Precipitation Frequency Atlas of the Western United States", NOAA <u>Atlas 2</u>, Vol. 2 Wyoming, Vol. 3 - Colorado, Vol. 4 - New Mexico, Vol. 6 - Utah, Vol. 7 - Nevada, Vol. 8 - Arizona, Vol. 9 - California, National Weather Service, Department of Commerce, Silver Spring MD, 1973.

[14] Miller, J.F. and F.K. Schwarz, <u>Hydrologic-Design Data Acquisition -Determination of an Upper Limit Design Rainstorm</u> for <u>the Colorado River Above</u> Hoover <u>Dam</u>, Morrison-Knudsen Engineers, Inc., for Bureau of Reclamation under Contract No. 5-CA-30-02880, Denver CO, 1989.

[15] <u>Review of Flood Control Regulation - Colorado River Basin</u> - Hoover Dam, U.S. Army Corps of Engineers and Bureau of Reclamation, 1982.

[16] Ridgely, O.B., <u>Frequency Study</u>, <u>August through October Flows Colorado River at Lees</u> <u>Ferry</u>, Colorado River Storage Project, Bureau of Reclamation, Denver CO, 1961.

[17] Schuster, R.J. <u>Colorado River Simulation System Documentation - System Overview</u>, Bureau of Reclamation, Denver CO, revised 1987.

[18] Slater, W.R., <u>Spillway Design Flood Studies (Preliminary to Glen Canyon) - Bridge</u> <u>Canyon, Colorado River Storage (Glen Canyon Unit), and Coconino Projects,</u> Bureau of Reclamation, Boulder City NV, 1951.