NRCS Cove Reservoir Project

APPENDIX ESUPPORTING INFORMATION

Draft Plan-EA October 2020

NRCS Cove Reservoir Project

APPENDIX E-1

STANDARD BEST MANAGEMENT AND STANDARD OPERATING PROCEDURES

Draft Plan-EA October 2020

Standard Best Management Practices and Standard Operating Procedures

As part of standard operating procedures, standard best management practices (BMPs) would be implemented throughout the project in order to reduce potential adverse environmental impacts. Most of the impacts are short-term and generally occur during the construction period. Project design and implementation of site-specific or selectively recommended BMPs would minimize the effect of the project where the potential for long-term, adverse impacts may occur. These BMPs were taken from the Draft Cove Reservoir Plan of Development (POD) (Appendix E, Plan of Development for Cove Reservoir).

Standard BMPs

- 1. All construction vehicle movement outside of the ROW would be restricted to pre-designated access roads, contractor-acquired access roads, or public roads.
- 2. The limits of construction activities would be predetermined, with activity restricted to and confined within those limits. No paint or permanent discoloring agents would be applied to rocks or vegetation to indicate survey or construction activity limits. The ROW boundary would be flagged in environmentally sensitive areas, described in the POD, to alert construction personnel that those areas would be avoided.
- 3. In construction areas where re-contouring is not required, vegetation would be left in place wherever possible to avoid excessive root damage and allow for resprouting.
- 4. In construction areas where ground disturbance is significant or where recontouring is required, surface restoration would occur as required by the landowner or land management agency. The method of restoration typically would consist of returning disturbed areas to their natural contour (to the extent practical) and reseeding or revegetating with native plants. Seed viability would be tested and seed mixes would be certified to contain no noxious weeds.
- 5. Prior to construction, all construction personnel would be instructed on the protection of cultural, paleontological, and ecological resources. To assist in this effort, the construction contract would address (a) federal and state laws regarding antiquities, fossils, and plants and wildlife, including collection and removal; and (b) the importance of these resources and the purpose and necessity of protecting them.
- 6. An initial intensive cultural resource inventory survey would be conducted prior to construction. Impact avoidance and mitigation measures developed in consultation with appropriate land management and regulatory agencies and other interested parties would be implemented subsequent to the completion of the National Environmental Policy Act (NEPA) compliance document.
- 7. Any cultural and/or paleontological resource discovered during construction by the Kane County Water Conservancy District (KCWCD) or any person working on their behalf on public or federal land would be reported immediately to the authorized officer. The KCWCD would suspend operations in the area until an evaluation is completed to prevent the loss of cultural or scientific values.
- 8. All construction and maintenance activities would be conducted in a manner that would minimize disturbance to vegetation, drainage channels, and intermittent and perennial stream banks. In addition, dust-control measures would be utilized as necessary during construction in sensitive areas. Any used existing roads would be left in a condition equal to or better than their condition prior to construction.
- 9. All requirements of those entities having jurisdiction over air quality matters would be adhered to and any necessary permits for construction activities would be obtained. Open burning of construction trash (cleared trees, etc.) would not be allowed on Bureau of Land Management- (BLM) or U.S. Forest Service- (USFS) administered lands.
- 10. Fences and gates, if damaged or destroyed by construction activities, would be repaired or replaced to their original pre-disturbed condition as required by the landowner or the land management agency. Temporary gates would be installed only with the permission of the landowner or the land management agency.
- 11. Totally enclosed containment would be provided for all hazardous materials (if needed) and trash. All construction waste including trash, litter, garbage, other solid waste, petroleum products, and other potentially hazardous materials would be removed to a disposal facility authorized to accept such materials.
- 12. Third-party environmental contractors would be used throughout the construction effort, from clearing through rehabilitation.
- 13. The KCWCD would trim trees, in preference to cutting trees, and would cut trees, in preference to bulldozing them.
- 14. Construction holes left open overnight would be covered to prevent livestock or wildlife from harm.

Standard BMPs

15. The contractor would clean off-road equipment (power or high-pressure cleaning) of all mud, dirt, and plant parts prior to moving equipment onto public land.

Additional Stipulations

The following additional stipulations would be implemented throughout the construction and operation of the project and would be included as part of the standard operating procedures.

Stipulations - Standard Operating Procedures

- 1. KCWCD would construct, operate, and maintain the facilities, improvements, and structures within this ROW in strict conformity with the POD, as it is approved. Any relocation, additional construction, or use that is not in accord with the approved POD would not be initiated without the prior written approval of the authorized officer. A copy of the complete ROW grant or acknowledgment, including all stipulations and approved POD, would be made available on the ROW area during construction, operation, and maintenance to the authorized officer. Noncompliance with the above shall be grounds for an immediate temporary suspension of activities if it constitutes a threat to public health and safety or a material threat to the environment.
- 2. This POD describes in detail the construction, operation, maintenance of the ROW and its associated improvements and/or facilities. An approved POD may be referred to for interpretation of the ROW grant.
- 3. KCWCD would contact the authorized officer at least 10 days prior to the anticipated start of construction and/or any surface-disturbing activities. The authorized officer may require and schedule a preconstruction conference with the KCWCD prior to commencement of construction and/or surface disturbing activities on the ROW. The KCWCD, its contractor(s), or agents involved with the construction and/or surface disturbing activities on the ROW should attend this conference to review the stipulations of the grant and the POD.
- 4. KCWCD would designate a representative(s) who would have the authority to act upon and implement instructions from the authorized officer within a reasonable time when construction or other surface disturbing activities are underway.
- 5. KCWCD would protect all survey monuments found within the ROW. Survey monuments include but are not limited to General Land Office and BLM Cadastral Survey Corners, reference corners, witness points, U.S. Coastal and Geological Survey benchmarks and triangulation stations, military control monuments, and recognizable civil (both public and private) survey monuments. In the event of obliteration or disturbance of any of the above, the KCWCD would immediately report the incident, in writing, to the authorized officer and the respective installing authority, if known. Where General Land Office or BLM ROW monuments or references are obliterated during operations, KCWCD shall secure the services of a registered land surveyor or a BLM cadastral surveyor to restore the disturbed monuments and references using surveying procedures found in the *Manual of Surveying Instructions for the Survey of the Public Lands of the United States*, latest edition. KCWCD shall record such survey in the appropriate county and send a copy to the authorized officer. If the BLM cadastral surveyors or other federal surveyors are used to restore the disturbed survey monument, KCWCD would be responsible for the survey cost.
- 6. The KCWCD or the successor in interest shall comply with Title VI of the Civil Rights Act of 1964 (42 U.S.C. 2000d et. seq.) and the regulations of the Secretary of Interior issued pursuant hereto.
- 7. KCWCD would mark the exterior boundaries of the ROW with a stake and/or lath. The intervals may be varied at the time of staking at the discretion of the authorized officer. The tops of the stakes and/or laths would be painted and the laths flagged in a distinctive color as determined by the holder. The survey station numbers would be marked on the boundary stakes and/or laths at the entrance to and exit from public land. Holder would maintain all boundary stakes and/or laths in place until final cleanup and restoration are completed and approved by the authorized officer. The stakes and/or laths would then be removed at the direction of the authorized officer.
- 8. KCWCD would conduct all activities associated with the construction, operation, and maintenance of the ROW within the authorized limits of the ROW and approved POD.
- 9. KCWCD would survey and clearly mark the centerline and/or exterior limits of the ROW, as determined by the authorized officer.

Stipulations – Standard Operating Procedures

- 10. All design, material, and construction, operation, maintenance, and termination practices would be in accordance with safe and proven engineering practices.
- 11. KCWCD would inform the authorized officer within 48 hours of any accidents on federal lands that require reporting to the Department of Transportation as required by 49 CFR Part 195.
- 12. During conditions of extreme fire danger, operations may be suspended or limited in certain areas.
- 13. KCWCD would be liable for damage or injury to the United States to the extent provided by 43 CFR Sec. 2803.1-4. KCWCD would be held to a standard of strict liability for damage or injury to the United States resulting from fire or soil movement (including landslides and slumps as well as wind- and water-caused movement of particles) caused or substantially aggravated by any of the following within the ROW or permit area:
 - Activities of the holder including but not limited to construction, operation and maintenance of the facility.
 - Activities of other parties acting under color of authority from the KCWCD, including but not limited to:
 - o land clearing;
 - o earth-disturbing and earth-moving work; and
 - blasting.
- 14. Within 30 days of completion, KCWCD would submit to the authorized officer, as-built drawings and a certification of construction verifying that the facility has been constructed (and tested) in accordance with the design, plans, specifications, and applicable laws and regulations.
- 15. Construction sites would be maintained in a sanitary condition at all times. Waste materials at those sites would be disposed of promptly at an appropriate waste disposal site. "Waste" means all discarded matter including but not limited to human waste, debris, garbage, refuse, oil drums, petroleum products, ashes, and equipment.
- 16. Prior to preconstruction activities on the subject parcel, KCWCD would identify all noxious weeds present. A list of the weeds would be provided to the authorized officer. A determination would be made by the authorized officer of any noxious weeds that may require flagging for treatment. KCWCD shall treat the noxious weeds as required by the authorized officer.
- 17. KCWCD would clean off-road equipment (power or high-pressure cleaning) of all mud, dirt, and plant parts prior to moving equipment onto public land authorized under this lease.
- 18. Gravel and/or fill material to be placed in relatively weed-free areas must come from weed-free sources. Prior to obtaining gravel and/or fill material, the authorized officer would inspect the source for weeds and determine adequacy of site.
- 19. KCWCD would identify a road maintenance program, which would include monitoring for noxious weeds. If KCWCD identifies any noxious weeds, KCWCD would notify the authorized officer immediately. A treatment program would be identified and KCWCD would be responsible for weed abatement.

NRCS Cove Reservoir Project

APPENDIX E-2BIOLOGICAL EVALUATION

Draft Plan-EA October 2020

BIOLOGICAL EVALUATION

Kane County Water Conservancy District's Cove Reservoir Project Kane County, Utah

Prepared for:

Kane County Water Conservancy District 725 East Kaneplex Drive Kanab, Utah 84741 435-644-3997

For submittal to:

United States Department of Agriculture Natural Resources Conservation Service Wallace F. Bennett Federal Building 125 South State Street, Room 4010 Salt Lake City, Utah 84138-1100

And

Kane County Water Conservancy District 725 East Kaneplex Drive Kanab, Utah 84741 435-644-3997

Prepared by:

Transcon Environmental 444 South Main Street, Suite A6 Cedar City, Utah 84720 801-649-5141

February 2020

TABLE OF CONTENTS

Introduction	1				
Project Descri	ption				
Project Locati	on2				
Action Area	4				
Affected Envi	ronment4				
Vegetation	5				
Soils	5				
Water Reso	ources6				
Species Asses	sement6				
Federally-li	sted Species6				
	BLM and State Sensitive Species				
Migratory I	Migratory Birds				
Bald and G	Bald and Golden Eagles				
Applicant C	Committed Conservation Measures				
References	11				
LICTOF	FIGURES				
LIST OF	FIGURES				
Figure 1	Project Overview Map				
LIST OF	TABLES				
Table 1	Effect Determination of Special Status Species and Critical Habitat				
LIST OF	APPENDICES				
Appendix A	Project Area Photographs				
Appendix B	UNHP Letter and IPaC Letters				
Appendix C	Threatened and Endangered Species Table				
Appendix D	BLM and State Sensitive Species Table				

INTRODUCTION

The Natural Resources Conservation Service (NRCS), with assistance of the Kane County Water Conservancy District (KCWCD) as the project sponsor, has initiated a Watershed Plan-Environmental Assessment (Plan-EA) for proposed improvements to be developed within the East Fork Virgin River Watershed. Currently, the proposed improvements include: the construction of a new, approximately 6,032-acre-foot capacity reservoir (Cove Reservoir); the replacement of an approximately 1.7-mile section of existing pipeline; and relocation of the Glendale hydroelectric power plant. The NRCS, KCWCD, and Alpha Engineering contracted Transcon Environmental, Inc. (Transcon) to develop the Plan-EA and analyze the project for impacts to natural and human resources including federally-listed species protected under the Endangered Species Act (ESA), BLM and Utah state sensitive species, and avian species protected under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) (special status species). This Biological Evaluation was prepared to evaluate potential impacts the project may have on special status species.

PROJECT DESCRIPTION

The NRCS and KCWCD are proposing to construct the Cove Reservoir Project to provide irrigation and agriculture water to local users in the Orderville, Glendale, and Mt. Carmel areas during dry summer months. Construction of the project would include the following components:

- 6,032-acre-foot capacity reservoir
- Approximately 90-foot by 1,900-foot earthen and rock fill dam
- Primary and auxiliary spillways
- Replacement of approximately 1.7 miles of existing irrigation pipeline in the Glendale irrigation system
- Relocation of the existing Glendale hydroelectric power plant
- Access road circumnavigating the reservoir
- Recreational area and boat ramp at the reservoir
- Approximately 0.2 of mile powerline from the Glendale hydroelectric power plant to the existing infrastructure
- Approximately 1.7 miles of new pipeline to the new Glendale hydroelectric power plant

Implementation of the proposed project would require the use of up to four active borrow sites—the Elbow, Tait, Lamb, and Bald Knoll pits—for project-related construction needs. The development of an additional new borrow site, the Black Knoll pit, is also proposed. The existing Elbow and Bald Knoll pits and the new Black Knoll pit are located along Glendale Bench Road on Bureau of Land Management- (BLM) administered public lands. The Lamb, and Tait pits are located on private lands near Mt. Carmel and Mount Carmel Junction. Because three of the borrow sites are located on BLM-administered lands, BLM will need to authorize their use prior to any material removal. As the BLM is a cooperating agency for this effort, the Cove Reservoir Plan-EA serves as the BLM EA for borrow pit use. Use of the BLM administered borrow sites complies with the 2008 BLM Kanab Field Office Resource Management Plan.

The purpose of this project is to provide the Glendale, Mt. Caramel, and Orderville irrigation companies with additional water storage capacity to meet present and future irrigation water demands, add new recreational opportunities in the region, and potentially providing benefits to federally-listed endangered species downstream. Final design plans have not yet been developed; however, all temporary and permanent areas of disturbance associated with construction of the proposed project would be contained within the study area depicted in **Figure 1** and analyzed within this report and the Plan-EA.

Several Applicant-committed Environmental Protection Measures and Best Management Practices have been identified for the proposed project and will be implemented as part of the project development. Measures have been identified for soil, air quality, water resources, vegetation, noxious weeds and invasive plant species, wildlife, threatened and endangered species, migratory birds including bald and golden eagles, riparian areas, historic and cultural resources, and visual resources. Issues such as traffic, noise, hazardous materials and wastes, public health and vector control, and site rehabilitation have also been addressed. A comprehensive list of these measures is detailed in the Plan-EA for the project. Those measures applicable to the conservation of plant and wildlife resources are also highlighted within this BE under the *Applicant Committed Conservation Measures* section below.

PROJECT LOCATION

The proposed project area is located within Township 40 South, Range 5 West, Section 28; Township 40 South, Range 7 West, Sections 23, 26, and 27; and Township 41 South, Range 7 West, Sections 5, 6, 19, and 31, Salt Lake Baseline and Meridian on the Bald Knoll, Orderville, Glendale, and Mt. Carmel, Utah 7.5-minute U.S. Geological Survey topographic quadrangles.

The survey area surrounding all components of the proposed project as a whole measures approximately 805.6 acres and is generally located along U.S. Route 89 (US-89) west of the towns of Glendale and Orderville. Two existing borrow pits (Elbow and Bald Knoll) and one new pit (Black Knoll) are located along the Glendale Bench Road east of Glendale, Utah. The existing Tait and Lamb pits are located along US Highway 89 near Mt. Carmel and Mt. Carmel Junction. The proposed new pipeline parallels US-89 south from milepost (MP) 89.4 to MP 87.9; the proposed hydroelectric plant is located west of US-89 at MP 87.9. Access to the proposed Cove Reservoir is along Cove Road between MP 84.9 and MP 85.

The project area is located on land under the jurisdiction of the Bureau of Land Management Kanab Field Office and private ownership. **Figure 1** shows the proposed project features study area and land jurisdictions.

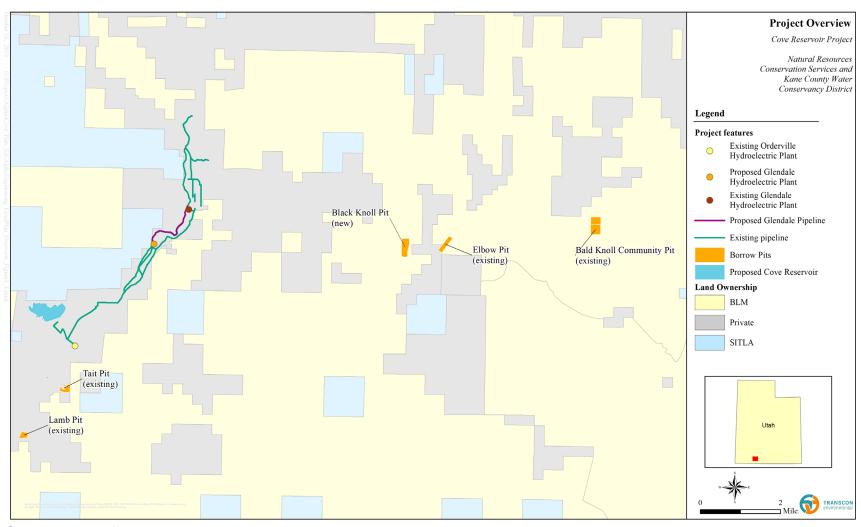


Figure 1. Project Overview Map

ACTION AREA

The action area is defined as the area that could be directly or indirectly affected by a federal action (50 CFR 402.02). The action area includes the project area—where all permanent and temporary areas of ground disturbance would occur—as well as species-specific buffers, which extend beyond the project area. Permanent ground disturbance would occur where the proposed reservoir, dam, primary and auxiliary spillways, hydroelectric plant, access roads, and recreational features (e.g., campsites, boat ramp, etc.) would be constructed. Permanent ground disturbance would also occur where existing borrow pit sites would be expanded, as well as where new borrow pits would be developed for project-related use. Temporary ground disturbance would occur during replacement of the existing pipeline and adjacent to where the permanent spillway would be constructed.

For the analysis of special status species, the action area has been extended to include species-specific buffers. These buffer distances are determined based on activities proposed to occur within the project footprint (i.e., the immediately impacted area) that may cause impacts extending beyond the footprint (e.g., noise, vibration, dust, etc.). Buffers include:

Avian species: 0.5-mile buffer
Plant species: 300-foot buffer
Aquatic species:0.25-mile buffer

Determination of action area buffer distances follows recommendations from the U.S. Fish and Wildlife Service (USFWS) guidelines for raptor protection (USFWS 2002). These buffers were determined based on anticipated levels of construction-related disturbance, including noise, dust, and ground vibrations produced by vehicles and heavy equipment. Construction-related impacts are not expected to extend beyond these buffers, considering that habitats within or adjacent to the project area are subjected to existing levels of anthropogenic disturbance.

AFFECTED ENVIRONMENT

The proposed project area is located within the Grand Staircase subdivision of the Colorado Plateau physiographic region of southwestern Utah, immediately south of the Basin and Range–Colorado Plateau Transition Zone (Stokes 1977). The Grand Staircase subdivision is characterized by a series of slopes, cliffs, and terraces that extend from the Grand Canyon in Arizona, culminating in the High Plateaus of southern Utah. This region is further characterized by many unique linear cliffs that are distinctly colored and display several different geologic ages (Stokes 1977). Major drainage systems in the project area include the East Fork Virgin River and Muddy Creek, as well as unnamed washes, springs, and dry washes.

The project area begins north of Mount Carmel Junction at the Lamb pit, encompasses a large area west of Orderville at the proposed reservoir site (**Appendix A**–Photos 1 and 2), extends along the East Fork Virgin River at the area of the proposed new pipeline, and terminates northeast of Glendale by the Bald Knoll pit. The topography of the project area is generally flat with rolling hills, particularly bordering the proposed reservoir site. Most of the project extends along the Sevier Fault; Triassic and Jurassic rock formations are exposed in the region across the anticline, including the Glen Canyon Group of Moenave Formation, Kayenta Formation, and Navajo Sandstone. There are also Cretaceous rock formations west of the Sevier Fault in the project area, including the Wahweap and Straight Cliffs formations, Dakota Sandstone and Cedar Mountain Formation, and the Jurassic Carmel Formation (Williams et al. 2014).

The proposed new pipeline section of the project area is located within Long Valley along the Mount Carmel Scenic Byway, which lies west of Glendale Bench and the White Cliffs. The proposed reservoir section of the project area is located west of the town of Orderville adjacent to Cove Canyon and Deer

Hollow, and the Bald Knoll and proposed Black Knoll pits are located just above the Skutumpah Terrace. Elevations in the project area range from 5,230 feet above sea level (asl) near Lamb's pit to 6,542 feet asl in the vicinity of Bald Knolls community pit. Elevations in the proposed new pipeline area range from 5,600 to 5,721 asl.

Lands within and immediately adjacent to the project area contain a mix of developed and undeveloped areas, with a few municipal and residential developments along US-89. Land use consists primarily of farming, livestock grazing, and recreational activities such as hiking and off-highway vehicle use.

Vegetation

Vegetation found in the project area consists of greasewood-salt scrub and transitions into sagebrush-perennial grassland habitat and eventually, into a pinyon-juniper woodland in the higher elevations (**Appendix A**–Photo 3). The Project would utilize up to four existing and active borrow pits (Elbow, Tait, Lamb, and Bald Knoll) and one new site (Black Knoll). Vegetation at these sites consists of a mix of pinyon-juniper woodland, sagebrush, and oak brush communities. The area of the proposed new pipeline and hydroelectric plant is found in proximity to the East Fork Virgin River, and portions of this section of the project cross though agricultural fields and along a riparian environment with tamarisk, Russian olive, and cottonwood trees (**Appendix A**–Photo 4).

According to the U.S. Geological Service's Gap Analysis Program (USGS 2011), dominant ecological systems in the study area include Inter-Mountain Basins Big Sagebrush, Colorado Plateau Pinyon-Juniper Woodland, Introduced Upland Vegetation-Shrub, Shrubland, Inter-Mountain Basins Greasewood Flat, Rocky Mountain Lower Montane Riparian Woodland and Shrubland, Mogollon Chaparral, Disturbed/Successional—Shrub Regeneration, and Pasture/Hay. Species observed within or adjacent to the proposed project during field visits were characteristic of those ecosystems and included native shrubs, bunchgrasses, and trees.

Common vegetation observed within the action area includes Great Basin sagebrush (Artemisia tridentata), Mormon tea (Ephedra viridis), blackbrush (Coleogyne ramosissima), saltbush (Atriplex spp.), rabbitbrush (Chrysothamnus spp.), narrowleaf willow (Salix exigua), cattail (Typha latifolia), bluebunch wheatgrass (Pseudoroegneria spicata), bottlebrush squirreltail (Elymus elimoides), Indian ricegrass (Oryzopsis hymenoides), purple three-awn (Aristida purpurea), needle-and-thread grass (Hesperostipa comata), two-needle pinyon pine (Pinus edulis), and Utah juniper (Juniperus osteosperma).

Common non-native vegetation observed within the action area includes cheatgrass (*Bromus tectorum*) and Russian thistle (*Salsola* spp.).

Project activities associated with the construction of the pipeline and reservoir would result in the removal of plants and displacement of soil. Within the reservoir basin, dam, and spillways, vegetation would be permanently impacted once the dam and spillways are constructed and the reservoir filled. Long-term impacts would also occur where recreational features, the hydroelectric plant, and new access road around the reservoir would be constructed, including areas where cut and fill slopes would require the removal and burial of vegetation. Vegetation would also be temporarily impacted by replacement of the Glendale Pipeline and in areas surrounding the spillways. Outside of this ground disturbance, impacts would result from the transport and staging of vehicles, equipment, and materials; parking; and foot traffic.

Soils

The predominant soil types within the project area are classified under Map Unit Name UT642 as Upland Clay Loam, Sili-Sideshow-Gypsic Haplustepts complex (Upland Clay Loam), Zigzag family-Badland-

Quezcan complex (Upland Clay Loam), with smaller distributions of Quezcan (Upland Clay Loam), deep-Sideshow-Orderville complex, Catdraw-Quezcan-Vessilla complex, and Naplene-Teromote-Arboles-Oxyaquic Ustifluvents complex (NRCS 2016).

Water Resources

A review of the project area based upon a combination of aerial imagery, the USFWS Wetland Inventory Mapper (USFWS 2018a) and field surveys, identified potential jurisdictional Waters of the U.S., including two wetlands, six intermittent streams, and one perennial stream (East Fork Virgin River). One wetland is located south of the proposed reservoir and associated access road location and is an isolated, manmade pond. The second wetland is also an isolated, manmade pond located within the right-of-way (ROW) where the replacement of the existing irrigation pipeline would occur. Four of the intermittent streams are located within or in the vicinity of the proposed reservoir location, while the other two bisect the ROW for the pipeline replacement portion of the project. The East Fork Virgin River roughly parallels the alignment of the pipeline replacement ROW. The river bisects the project area where the proposed powerline from the Glendale hydroelectric power plant would be constructed; however, no construction activities would occur within the river or its bankfull width, and the river would not be affected by implementation of the proposed project. Detailed analysis of the water resources proximal to the project area are provided in a separate Preliminary Aquatic Resource Delineation Report for the project.

SPECIES ASSESSEMENT

This Biological Evaluation addresses special status species, including federally-listed species, BLM and Utah state sensitive species, and avian species protected under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) with potential to occur within the proposed project area. These species were identified using the USFWS Information for Planning and Conservation (IPaC) tool and the BLM and Utah state sensitive species lists (USWFS 2018b; UDWR 2017; BLM 2010; BLM 2011). The Utah Natural Heritage Program (UNHP) office was contacted to provide information on documented occurrences of sensitive species near the project area; a letter from the UNHP office is included as **Appendix B**.

A Transcon biologist conducted field visits of the project area between October 8 and 10, 2018, and on April 24 and September 20, 2019 to verify the desktop review, document vegetation, and assess habitat for potentially occurring special status species within the action area. The survey was requested by the NRCS and KCWCD to determine if any significant biological resources which could be affected by the project are present within the proposed project area. This BE evaluates potential impacts to species for which potential habitat, UNHP records of occurrence, or field observations exist in the project area.

Federally-listed Species

Desktop review using the USFWS IPaC site revealed that the following federally-listed species may occur within the proposed project area: California condor (*Gymnogyps californianus*), Mexican spotted owl (*Strix occidentalis lucida*), southwestern willow flycatcher (*Empidonax traillii extimus*), yellow-billed cuckoo (*Coccyzus americanus*), Virgin River chub (*Gila seminuda*), woundfin (*Plagopterus argentissimus*), and Jones cycladenia (*Cycladenia humilis* var. *jonesii*). Further analysis of habitat requirements and known ranges of these species determined that there is no suitable habitat within the project area for these species. This determination is supported by the letter provided by the UNHP noting a lack of any records of occurrence, recent or historical, for federally-listed species within 2 miles of the project area.

No designated critical habitat is located within or near the project area. However, three federally-listed species (woundfin, Virgin River chub and southwestern willow flycatcher), including their designated critical habitat, occur approximately 50 river miles downstream of the project area in Washington County

and are discussed below. No other listed species would be affected by development of the proposed project. **Appendix C** contains a habitat suitability assessment table for all federally-listed species which may occur within the project area as identified by the IPaC site.

Woundfin and Virgin River Chub

Listed woundfin and Virgin River chub designated critical habitat exists approximately 50 river miles downstream from the project area in Washington County beginning at La Verkin (Pah Tempe) Hot Springs. Planned releases from the proposed reservoir could provide additional and cooler water to augment this habitat. An agreement with Zion National Park would restrict these releases to not exceed 25 cfs over short periods of time and not over 15 cfs over a long period of time. Any additional contributed water would reduce the need to maintain habitat by actively pumping water from nearby Quail Creek Reservoir to La Verkin Hot Springs. This indirect effect would be minor due the controlled amount of water released from the proposed reservoir and the distance the water would need to travel before reaching woundfin and Virgin River chub habitat. Therefore, implementation of the proposed project *May Affect, but would Not Likely Adversely Affect* the woundfin and Virgin River chub and their designated critical habitat due to potential beneficial effects.

Southwestern Willow Flycatcher

In Utah, designated critical habitat for the southwestern willow flycatcher extends along the Virgin River from the Arizona state line northeast approximately 29.5 miles to Berry Springs near Quail Creek Reservoir. Potential habitat likely continues from that point along the Virgin River and East Fork Virgin River through Zion National Park. However, the southwestern willow flycatcher is not specifically identified in Zion National Park planning documents as occurring in the park (National Park Service 2019). Favorable habitat does not occur within the project area. Still, the flycatcher could use portions of the river as stop-over areas during migration. It is not anticipated that flycatchers use the Virgin or East Fork Virgin Rivers beyond the designated critical habitat for breeding, nesting, or being present on more than a transient basis. The increased water flows from the proposed reservoir through the Park and down the Virgin River as described above may help stabilize riparian vegetation to a minor amount. Therefore, implementation of the proposed project *May Affect*, but would Not Likely Adversely Affect the southwestern willow flycatcher or its designated critical habitat due to potential beneficial effects.

TABLE 1 EFFECT DETERMINATION OF SPECIAL STATUS SPECIES AND CRITICAL HABITAT					
Species	Species Effect Determination	Critical Habitat Effect Determination			
California condor	No effect	No effect			
Mexican spotted owl	No effect	No effect			
Southwestern willow flycatcher	May affect, but is not likely to adversely affect	May affect, but is not likely to adversely affect			
Yellow-billed cuckoo	No effect	Not applicable; critical habitat has been proposed; however, no final rule has been published.			

Woundfin	May affect, but is not likely to adversely affect	May affect, but is not likely to adversely affect
Virgin River chub	May affect, but is not likely to adversely affect	May affect, but is not likely to adversely affect
Jones cycladenia	No effect	Not applicable; critical habitat has not been designated for this species.

BLM and State Sensitive Species

Known ranges and habitat requirements for BLM and State sensitive plant and wildlife species, including Conservation Agreement species, that may occur within Kane County were examined to assess their potential to occur within the action area and the likelihood that each species would be impacted by project-related activities. Based on desktop and field review of the project area, UNHP records of occurrence and species' habitat requirements, including suitable geologic formations, soils, vegetation communities, and elevation, it was determined that suitable habitat which may contain the following BLM and/or State sensitive plant and wildlife species may be present or near to the project area: Gooseberry leaf globemallow (Sphaeralcea grossulariifolia), bald eagle (Haliaeetus leucocephalus), desert sucker (Catostomus clarkia), Arizona toad (Anaxyrus microscaphus), Great Plains toad (Anaxyrus cognatus), ferruginous hawk (Buteo regalis), and Greater sage-grouse (Centrocercus urophasianus).

The UNHP database contains records of recent occurrence of bald eagle within 0.5 mile of the project area (**Appendix B**) and historical records of occurrence for desert sucker and Arizona toad within a 2-mile radius. Greater sage-grouse habitat exists near the three BLM administered borrow sites.

A habitat assessment of the above BLM and State sensitive species is presented in **Appendix D**.

Migratory Birds

Migratory birds are protected under the MBTA of 1918, as amended (16 USC 703-712). The MBTA states that it is unlawful to take, kill, or possess migratory birds, their eggs, parts, and/or nests that are listed under its protection, unless authorized under a valid permit (50 CFR 21.11). USFWS (2018b) noted ten migratory birds of conservation concern (excluding federally-listed species) that could occur near the project area. As discussed in the *State-listed Species* section above, the UNHP database contains recent and historical records of migratory bird occurrence within 2 miles of the project area (**Appendix B**).

Suitable nesting habitat that could be utilized by a variety of migratory bird species was observed within and adjacent to the project area, including abundant pinyon-juniper woodland habitat. Corridors of suitable riparian nesting habitat containing large cottonwood, Russian olive, and oak trees also exists adjacent to two small streams which bisect the pipeline portion of the project area. A large expanse of sagebrush shrub habitat which may provide suitable nesting habitat for smaller avian species exists within the proposed reservoir basin. This sagebrush habitat may also serve as suitable foraging for raptors and other larger species. Suitable cliff nesting habitat for species such as golden eagles or peregrine falcons is located approximately 1.5 miles east of the proposed project area (**Appendix A**–Photo 5). No cliff nesting habitat was observed within the action area.

Avian species observed within and adjacent to the project area during the field visit between October 8 and 10, 2018 include red-tailed hawk (*Buteo jamaicensis*), common raven (*Corvus corax*), and turkey vulture (*Cathartes aura*). It should be noted that surveys were conducted during poor weather conditions and at a time of year when avian activity in the region is typically low.

No raptor nests were observed within 0.5 mile of the project area during the field survey. If construction occurs during raptor nesting season (January 1 through August 31), a pre-construction survey would be completed within 2 weeks prior to construction to ensure no raptors are nesting within 0.5 mile of the project area. If a nest is found, the Utah Department of Wildlife Resources and/or USFWS, as appropriate, would be notified. Project activities would not occur within recommended spatial and seasonal buffers for raptors, unless otherwise approved. If existing topography limits line of sight between an active nest and construction activities, spatial and seasonal buffers may be reduced.

If construction activities occur during the migratory bird nesting period (April 1 through August 15), a migratory bird nesting survey would be completed in areas proposed for disturbance during this time period. Should an active migratory bird nest be discovered, KCWCD and the appropriate agency biologist would be notified and an appropriate buffer would be established around the nest until the migratory bird nesting period ends or young have fledged.

It is anticipated that there will be project-related impacts to migratory bird habitat, including the permanent removal of suitable nesting and foraging habitat within the reservoir, dam, access road, and spillway locations. However; these impacts would be minimal and are not anticipated to have any long-term, detrimental impacts on migratory bird species of concern considering that extensive suitable nesting and foraging habitat surrounding the proposed project area and vicinity would remain unaffected by the implementation of the project. Following completion of the project, the reservoir would eventually provide a limited amount of additional migratory bird habitat as the riparian area surrounding the reservoir becomes established.

Bald and Golden Eagles

Bald and golden eagles are protected under the BGEPA, originally passed in 1940 and amended in 1962. The BGEPA prohibits the take, possession, sale, purchase, barter, offer to sell, transport, export, or import of any bald or golden eagle, alive or dead, including any part, nest, and/or egg, unless allowed by permit (16 U.S.C. 668[a]; 50 CFR 22). The definition of take includes both direct take of individuals and take due to disturbance.

No bald or golden eagles or potential nests were observed during the field surveys. The UNHP database contains records of recent bald eagle occurrence within 0.5 mile (**Appendix B**). Lands surrounding the proposed project area are likely to support a variety of prey species (e.g., rabbit, rodents) and high levels of roadkill carrion, and therefore may serve as suitable foraging habitat for golden eagles (*Aquila chrysaetos*) as well as migrating/wintering habitat for bald eagles. No suitable nesting habitat for bald or golden eagles was observed within the action area.

Any impacts to bald and golden eagles would be minimal due to lack of suitable nesting habitat within 0.5 mile of the majority of the project area; however, if construction occurs during raptor nesting season (February 15 through August 31), a pre-construction raptor survey would be completed within 2 weeks prior to construction to ensure no bald eagle or golden eagle nests are located with 0.5 mile of the project area. If a bald or golden eagle nest is found, KCWCD would be notified. Project activities would not occur within recommended spatial and seasonal buffers for bald or golden eagles, unless otherwise approved. If existing topography limits line-of-sight between an active nest and construction activities, spatial and seasonal buffers may be reduced.

Following completion of the project, the reservoir would eventually provide a limited amount of additional bald and golden eagle habitat as the riparian area surrounding the reservoir becomes established, especially

should larger trees become established. Fish stocked in the reservoir may also provide additional foraging for bald eagles during winter roosting.

Applicant Committed Conservation Measures

The following applicant committed conservation measures relative to listed, sensitive, or other plant and animal species would be implemented as part of the project. Construction activities will be limited to the smallest extent practicable within the project area.

- During construction activities, vehicle parking and material stockpiles will be located within designated staging areas.
- Upon completion of construction activities, the disturbed areas will be recontoured in order to: minimize erosion and compaction, restore natural ground cover, reestablish plant growth, and allow natural surface drainage.
- Silt fences, straw bales, and/or other appropriate Best Management Practices (BMPs) will be used to minimize erosion of disturbed areas if needed. Construction and staging areas will be assessed to determine the feasibility of straw bales, silt fences, and other appropriate sediment control BMPs will be implemented to prevent entry of sediment and other contaminants into downstream drainages.
- To ensure that accidental spills do not enter waters, the storage of petroleum-based fuels in addition to other hazardous materials as well as the refueling of construction machinery will be restricted to approved, designated staging/batch plant areas.
- Federal and state water quality standards and toxic effluent standards will be implemented to minimize potential adverse effects from discharges into WOTUS.
- Fueling of vehicles and equipment will be prohibited within 100 feet of any riparian area.
- Established cottonwood trees in riparian areas would be left in place for fish and wildlife habitat.
- Any unexpected encounters with a protected species will be immediately reported to UDWR, USFWS, and NRCS.
- Coordination will be maintained with WCWCD regarding construction activities and potential impacts to downstream Virgin River habitat.
- To prevent entrapment of wildlife during construction, all open pits or trenches will be monitored throughout the construction day.
- Excavated holes more than 2 feet deep will be covered at the close of each day or provided with one or more escape ramps. Alternatively, fencing may be erected around open pits or trenches. Before pits or trenches are filled, they will be inspected for trapped animals. If any animals are found, they will be moved out of harm's way by a qualified biologist approved by the UDWR or and NRCS.
- No rodenticides will be used on the project site.
- Where possible, construction activities, including habitat alteration and noise, will be conducted outside of Utah's migratory bird primary nesting season (April 1–July 15). In Utah, the migratory bird nesting season can extend from January 1–August 31 (especially for raptors). Therefore, for construction activities occurring after January 1 or prior to August 31, a preconstruction survey for nesting birds will be conducted by a qualified biologist approved by UDWR and NRCS no more than five days prior to when on-site work actually begins. After such surveys are performed and disturbance occurs, no additional disturbance during the avian breeding season will occur without first conducting another avian survey. If an active nest is identified, a no-activity buffer as approved by UDWR and NRCS will be established around the nest site and will remain in place until the young have fledged and/or the nest becomes non-active. Follow-up surveys, to confirm that all

- young have successfully fledged, will be conducted by a qualified biologist prior to construction in that area.
- The transmission line will be designed and constructed according to raptor-safe design standards, which meet or exceed the Suggested Practices for the Protection of Raptors on Power Lines: The State of the Art in 2006 (Avian Power Line Interaction Committee 2006).
- Where seeding is required for rehabilitation, the applicant will use a NRCS-approved, weed-free seed mix.
- Vegetation and soil removal will be kept to the minimum amount necessary.
- The proposed reservoir site would be smoothed and cleaned of debris and trash prior to filling with water.
- Borrow sites would be cleaned, and any debris removed, per instructions of the owner.
- All equipment will be cleaned of soils, seeds, vegetation matter, and other debris prior to entering or reentering the project area.
- NRCS requires that contractors comply with all federal, state, and local laws/regulations pertaining to pollution and contamination of the environment to prevent pollution of surface water, groundwater, soil, and air with any hazardous materials.
- Construction sites, staging areas, and access roads will be kept orderly during construction.

REFERENCES

- Avian Power Line Interaction Committee. 2006. Suggested Practices for Avian Protection on Power Lines: The State of the Art in 2006. Pier Final Project Report CEC-500-2006-022.
- Bureau of Land Management (BLM). 2010. Utah BLM Sensitive Fish and Wildlife Species List. December 20, 2010. https://www.blm.gov/programs/fish-and-wildlife/threatened-and-endangered/state-te-data/utah. Accessed: December 5, 2019.
- . 2011. INTERIM Bureau of Land Management Sensitive Plant Species List for Utah. February 2011. https://www.blm.gov/programs/fish-and-wildlife/threatened-and-endangered/state-te-data/utah. Accessed: December 5, 2019.
- National Park Service (NPS). 2019. National Park Service, Zion National Park, Utah. Birds. https://www.nps.gov/zion/learn/nature/birds.htm
- Natural Resources Conservation Service (NRCS). 2016. Web Soil Survey. URL: http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx.
- Stokes, W. L. 1977. Physiographic Subdivisions of Utah. *Utah Geology* Vol. 4(1). Utah Geological and Mineral Survey, Salt Lake City.
- Tilley, D., L. St. John, and D. Ogle. 2010. Plant Guide for Jones' waxy dogbane (*Cycladenia humilis* var. *jonesii*). USDA-Natural Resources Conservation Service, Idaho Plant Materials Center. Aberdeen, Idaho.
- U.S. Fish and Wildlife Service (USFWS). 1996. Endangered and Threatened Wildlife and Plants: Establishment of a Nonessential Experimental Population of California Condors in Northern Arizona; Final Rule. Federal Register, 10 16, 1996: 54044-54060.

2002. Utah Field Office Guidelines for Raptor Protection from Human and Land Use
Disturbances. U.S. Fish and Wildlife Service, Utah Field Office.
. 2007. National Bald Eagle Management Guidelines. U.S. Fish and Wildlife Service. URL
https://www.fws.gov/southdakotafieldoffice/NationalBaldEagleManagementGuidelines.pdf
2018a. National Wetlands Inventory (NWI), Wetlands Mapper. URL: https://www.fws
gov/wetlands/data/mapper.html
. 2018b. U.S. Fish and Wildlife Service Information, Planning, and Conservation System
(IPaC). Environmental Conservation Online System (ECOS). URL: http://ecos.fws.gov/ipac/location/index

- U.S. Geological Service (USGS). 2011. Gap Analysis Program, 20160513, GAP/LANDFIRE National Terrestrial Ecosystems: U.S. Geological Survey. URL: https://doi.org/10.5066/F7ZS2TM0
- Utah Division of Wildlife Resources (UDWR). 2017. Utah Sensitive Species List URL: http://dwrcdc.nr.utah.gov/ucdc/viewreports/sslist.htm
- Williams, Felicie, Lucy Chronic, and Halka Chronic. 2014. *Roadside Geology of Utah, Second Edition*. Mountain Press Publishing Company, Missoula, Montana.

APPENDIX A

PROJECT AREA PHOTOGRAPHS

Photo 1. Project overview looking west where the proposed dam (left) and Cove Reservoir would be constructed (middle/right).

Photo 2. Project overview looking northeast across proposed dam site from the southwest end of dam.

Photo 3. View facing southeast from the northwest portion of the reservoir showing typical sagebrush habitat surrounded pinyon/juniper habitat where the proposed reservoir would be constructed.

Photo 4. View facing south where a small, intermittent stream crosses the pipeline replacement portion of the project area showing agricultural fields (left) and riparian habitat that exists within and adjacent to the project area.

Photo 5. View of typical sagebrush scrub habitat within the proposed reservoir basin. The nearest area of suitable cliff nesting habitat located outside of the action area is depicted in the far background of the photo.

Photo 6. View facing north of the Bald Knoll Borrow Pit.

Photo 7. View facing west of Bald Knoll expansion pit.

Photo 8. View facing north of the Lamb borrow pit.

Photo 9. View facing northwest of the proposed Black Knoll borrow pit.

Photo 10. View facing northeast of the Tait borrow pit.

Photo 11. View facing north of the Elbow borrow pit showing existing stockpiles that would be utilized for construction of the dam.

APPENDIX B

UNHP AND IPAC LETTERS

State of Utah

DEPARTMENT OF NATURAL RESOURCES

MICHAEL R. STYLER
Executive Director

Division of Wildlife Resources

MICHAL D. FOWLKS

Division Director

October 1, 2018

Brian Parker Transcon Environmental 1745 South Alma School Road, Suite 220 Phoenix, AZ 85210

Subject: Species of Concern Near the Reservoir and Watershed Improvement Project

Dear Brian Parker:

I am writing in response to your email dated September 25, 2018 regarding information on species of special concern proximal to the proposed reservoir and watershed improvement project located in Sections 23, 26 and 27 of Township 40 South, Range 7 West, and Sections 5 and 6 of Township 41 South, Range 7 West, SLB&M near Orderville in Kane County, Utah.

Within a ½-mile radius of the project area noted above, the Utah Division of Wildlife Resources (UDWR) has recent records of occurrence for bald eagle, and historical records of occurrence for desert sucker. In addition, within a two-mile radius there historical records of occurrence for Arizona toad. All of the aforementioned species are included on the Utah Sensitive Species List.

The information provided in this letter is based on data existing in the Utah Division of Wildlife Resources' central database at the time of the request. It should not be regarded as a final statement on the occurrence of any species on or near the designated site, nor should it be considered a substitute for on-the-ground biological surveys. Moreover, because the Utah Division of Wildlife Resources' central database is continually updated, and because data requests are evaluated for the specific type of proposed action, any given response is only appropriate for its respective request.

In addition to the information you requested, other significant wildlife values might also be present on the designated site. Please contact UDWR's assistant habitat manager for the southern region, Rhett Boswell, at (435) 865-6112 if you have any questions.

Please contact our office at (801) 538-4759 if you require further assistance.

Sincerely,

Sarah Lindsey Information Manager

Utah Natural Heritage Program

cc: Rhett Boswell Gary Bezzant

1594 West North Temple, Suite 2110, PO Box 146301, Salt Lake City, UT 84114-6301 telephone (801) 538-4700 • facsimile (801) 538-4709 • TTY (801) 538-7458 • www.wildlife.utah.gov

United States Department of the Interior

FISH AND WILDLIFE SERVICE
Utah Ecological Services Field Office
2369 West Orton Circle, Suite 50
West Valley City, UT 84119-7603
Phone: (801) 975-3330 Fax: (801) 975-3331

http://www.fws.gov http://www.fws.gov/utahfieldoffice/

December 13, 2018

In Reply Refer To:

Consultation Code: 06E23000-2019-SLI-0111

Event Code: 06E23000-2019-E-00292

Project Name: Kane County Water Conservancy District Cove Reservoir Project

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- Official Species List
- USFWS National Wildlife Refuges and Fish Hatcheries
- Migratory Birds

4

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

Utah Ecological Services Field Office 2369 West Orton Circle, Suite 50 West Valley City, UT 84119-7603 (801) 975-3330

Project Summary

Consultation Code: 06E23000-2019-SLI-0111

Event Code: 06E23000-2019-E-00292

Project Name: Kane County Water Conservancy District Cove Reservoir Project

Project Type: DAM

Project Description: The survey was requested by the Natural Resource Conservation Service

(NRCS) and Kane County Water Conservancy District (KCWCD) to determine if any significant biological resources, which could be affected by the proposed Kane County Water Conservancy District's Cove Reservoir Project (Project), are present within the Project area.

The NRCS and KCWCD are proposing to construct the new Cove Reservoir within the existing Glendale, Mount Caramel, and Orderville irrigation systems. This proposed reservoir would be located immediately southwest of Orderville, Utah, off Cove Road. Additional improvements would include the construction of approximately 1.5 miles of new pipeline, the Glendale hydroelectric plant, and 0.2 mile of new power line; these improvements would be located west of U.S. Highway 89 (US-89) and the East Fork of the Virgin River in Glendale, Utah. The Project also proposes the use of three previously disturbed borrow pits—Lambs Pit, County Pit, and Bald Knolls Community Pit—for Project-related construction needs; no disturbance outside the previously disturbed areas is proposed at these borrow pit locations.

The KCWCD contracted Transcon Environmental, Inc. (Transcon) to analyze the project for impacts to natural resources, including species protected under the Endangered Species Act (ESA) and state sensitive species (hereinafter referred to as special status species). This Biological Summary Report was prepared to evaluate potential impacts the project may have on special status species.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/37.27455088563657N112.66267260970987W

Endangered Species Act Species

There is a total of 7 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

NOAA Fisheries, also known as the National Marine Fisheries Service (NMFS), is an
office of the National Oceanic and Atmospheric Administration within the Department of
Commerce.

Birds

NAME	STATUS
California Condor Gymnogyps californianus Population: U.S.A. (specific portions of Arizona, Nevada, and Utah) There is proposed critical habitat for this species. The location of the critical habitat is not available. Species profile: https://ecos.fws.gov/ecp/species/8193	Experimental Population, Non- Essential
Mexican Spotted Owl <i>Strix occidentalis lucida</i> There is final critical habitat for this species. Your location is outside the critical habitat. Species profile: https://ecos.fws.gov/ecp/species/8196	Threatened
Southwestern Willow Flycatcher <i>Empidonax traillii extimus</i> There is final critical habitat for this species. Your location is outside the critical habitat. Species profile: https://ecos.fws.gov/ecp/species/6749	Endangered
Yellow-billed Cuckoo <i>Coccyzus americanus</i> Population: Western U.S. DPS There is proposed critical habitat for this species. Your location is outside the critical habitat. Species profile: https://ecos.fws.gov/ecp/species/3911	Threatened

Fishes

NAME STATUS

Virgin River Chub Gila seminuda (=robusta)

Endangered

There is **final** critical habitat for this species. Your location is outside the critical habitat.

Species profile: https://ecos.fws.gov/ecp/species/1772

Endangered

Woundfin Plagopterus argentissimus

Population: Wherever found, except where listed as an experimental population

There is final critical habitat for this species. Your location is outside the critical habitat.

Species profile: https://ecos.fws.gov/ecp/species/49

Flowering Plants

NAME STATUS

Jones Cycladenia Cycladenia humilis var. jonesii

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/3336

Threatened

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

USFWS National Wildlife Refuge Lands And Fish Hatcheries

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS OR FISH HATCHERIES WITHIN YOUR PROJECT AREA.

1

Migratory Birds

Certain birds are protected under the Migratory Bird Treaty $Act^{\underline{1}}$ and the Bald and Golden Eagle Protection $Act^{\underline{2}}$.

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described below.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.
- 3. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

The birds listed below are birds of particular concern either because they occur on the <u>USFWS</u> <u>Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found below.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME	BREEDING SEASON
Bald Eagle Haliaeetus leucocephalus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/1626	Breeds Dec 1 to Aug 31
Brewer's Sparrow Spizella breweri This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA https://ecos.fws.gov/ecp/species/9291	Breeds May 15 to Aug 10

BREEDING NAME SEASON Golden Eagle Aquila chrysaetos Breeds Jan 1 to This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions Aug 31 (BCRs) in the continental USA https://ecos.fws.gov/ecp/species/1680 Grace's Warbler Dendroica graciae Breeds May 20 This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions to Jul 20 (BCRs) in the continental USA Breeds May 10 Gray Vireo Vireo vicinior This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA to Aug 20 and Alaska https://ecos.fws.gov/ecp/species/8680 Lewis's Woodpecker Melanerpes lewis Breeds Apr 20 This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA to Sep 30 and Alaska https://ecos.fws.gov/ecp/species/9408 Breeds Mar 1 to Long-eared Owl asio otus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA Jul 15 and Alaska https://ecos.fws.gov/ecp/species/3631 Pinyon Jay Gymnorhinus cyanocephalus Breeds Feb 15 This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA to Jul 15 and Alaska https://ecos.fws.gov/ecp/species/9420 Breeds Rufous Hummingbird selasphorus rufus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA elsewhere https://ecos.fws.gov/ecp/species/8002 Virginia's Warbler Vermivora virginiae Breeds May 1 to

Probability Of Presence Summary

https://ecos.fws.gov/ecp/species/9441

and Alaska

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- The relative probability of presence calculated in the previous step undergoes a statistical
 conversion so that all possible values fall between 0 and 10, inclusive. This is the
 probability of presence score.

Breeding Season (

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (|)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

No Data (-)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

Migratory Birds FAQ

Rufous Hummingbird BCC Rangewide (CON) Virginia's Warbler BCC Rangewide (CON)

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or

permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern</u> (<u>BCC</u>) and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the Avian Knowledge Network (AKN). The AKN data is based on a growing collection of survey, banding, and citizen science datasets and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (Eagle Act requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>E-bird Explore Data Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, and <u>citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the Northeast Ocean Data Portal. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to obtain a permit to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In

contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

APPENDIX C

THREATENED AND ENDANGERED SPECIES TABLE

HABITAT SUITABILITY ASSESSMENT FOR FEDERALLY-LISTED SPECIES IN KANE COUNTY					
Species	Status*	Known to Occur Within 2 Miles of the Project Area Habitat Suitability Assessment and Determination of Effect			
			This species roosts in snags; tall, open-branched trees; and on cliffs It nests in scrubby chaparral or forested montane regions. An experimental population inhabits an area near Zion National Park approximately 14 miles west of the proposed project area. Rare sightings have also been documented near Bryce Canyon National Park, located approximately 34 miles northeast of the proposed project. All individuals within this population are closely monitored by biologists working on the species recovery.		
California condor (Gymnogyps californianus)	E, EX	No	California condors are designated by federal regulation (61 FR 54044, October 16, 1996) as a 10(j) non-essential experimental population with no designated habitat in southern Utah and northern Arizona. California condors from the experimental population area frequently forage away from the Vermillion Cliffs of Arizona into southwestern Utah, though most California condors occur west of the project area near Zion National Park; no nests, roosts, or other special use areas for condors have been identified in the action area. Under the requirements of the National Environmental Policy Act (NEPA), when a proposed action may potentially affect the California condor 10(j) non-essential experimental population, the 10(j) population should be addressed (and their status defined) and the proposed action then not carried forward for further analysis within the NEPA document.		
			No suitable nesting habitat occurs within the project area. Potentially suitable foraging habitat does exist within the project area; however, the condor's foraging range can be upwards of 100 miles a day, and construction of the proposed project would not significantly affect available foraging opportunity for the condor. No Effect		
			In Utah, this species inhabits steep-walled canyons that provide an abundant prey base and caves or crevices for nesting and roosting.		
Mexican spotted owl (Strix occidentalis lucida)	Т	No	No suitable nesting or foraging habitat occurs within the project area.		
			No Effect		

Species	Status*	Known to Occur Within 2 Miles of the Project Area	Habitat Suitability Assessment and Determination of Effect
Southwestern willow			This species breeds in relatively dense tracts of cottonwood, willow, and tamarisk in riparian and shrub communities below approximately 8,500 feet in elevation.
flycatcher (Empidonax traillii extimus)	Е	No	No suitable habitat occurs within the action area and species would not be expected to inhabit the project area, Suitable habitat Increased water flows from the proposed reservoir through the Park and down the Virgin River as described above may help stabilize riparian vegetation to a minor amount.
			May Affect, but is Not Likely to Adversely Affect (See further analysis above)
			This species inhabits large tracts (generally greater than 200 acres) of riparian habitat with dense shrubs and a developed canopy. The canopy is often composed of cottonwood, willow, and sycamore trees. It is considered an extremely rare breeder in Utah but has been known to nest in riparian areas between 2,500 and 6,000 feet in elevation throughout the state.
Yellow-billed cuckoo (Coccyzus americanus)	Т	No	No suitable habitat occurs within the project area. Small patches of riparian habitat do exist along the banks of the East Fork Virgin River; however, these patches are too small to be considered suitable for nesting and too distant from suitable nesting habitat to be considered suitable foraging or migratory habitat. Critical habitat has been proposed but has not yet been designated for this species.
			No Effect

HABITAT SUITABILITY ASSESSMENT FOR FEDERALLY-LISTED SPECIES IN KANE COUNTY				
Species	Status*	Known to Occur Within 2 Miles of the Project Area	Habitat Suitability Assessment and Determination of Effect	
			This small (4 inches), rare species of minnow is restricted to the Virgin River system from La Verkin Hot Springs near the lower portion of La Verkin Creek and the Virgin River confluence, downstream to Lake Mead, Nevada. It inhabits shallow, turbid, fast-flowing water with warm temperatures.	
Woundfin (Plagopterus argentissimus)	Е	No	No suitable habitat exists within the action area. Appropriate sediment and erosion control best management practices (BMPs) would be implemented during construction to prevent project-related impacts to the East Fork Virgin River, which is tributary to the mainstem Virgin River, and suitable habitat found approximately 50 miles downstream. Project activities are not anticipated to negatively impact aquatic species or habitat. However, releases from the dam may provide benefits to suitable habitat downstream by providing cooler water and maintaining instream flows during periods of low flow.	
			May Affect, but is Not Likely to Adversely Affect (See further analysis above)	
			This rare species of minnow only occurs in the mainstream Virgin River system of southwestern Utah from La Verkin Hot Springs near the lower portion of La Verkin Creek and the Virgin River confluence, downstream to the Mesquite Diversion in northwest Arizona. It inhabits deeper, fast-flowing water with temperatures below 86 degrees Fahrenheit.	
Virgin River chub (Gila seminuda)	E	No	No suitable habitat exists within the action area. Appropriate sediment and erosion control BMPs would be implemented during construction to prevent project-related impacts to the East Fork Virgin River, which is tributary to the mainstem Virgin River, and suitable habitat found approximately 50 miles downstream. Project activities are not anticipated to negatively impact aquatic species or habitat. However, releases from the dam may provide benefits to suitable habitat downstream by providing cooler water and maintaining instream flows during periods of low flow.	
			May Affect, but is Not Likely to Adversely Affect (See further analysis above)	

HABITAT SUITABILITY ASSESSMENT FOR FEDERALLY-LISTED SPECIES IN KANE COUNTY					
Species	Habitat Suitability Assessment and Determination of Effect				
Jones cycladenia (Cycladenia humilis var. jonesii)	Т	No	This small member of the Dogbane family (growing 4 to 6 inches tall) is a long-lived herbaceous perennial found in mixed desert scrub, juniper, or wild buckwheat-Mormon tea plant communities. It has wide, oval or elliptical leaves and produces pink or rose-colored trumpet flowers that bloom from mid-April through early June. It occurs solely on gypsiferous, saline soils of Cutler, Summerville, and Chinle geologic formations within elevations ranging from 4,390 feet up to 6,000 feet asl. In Utah, Jones cycladenia is known to occur in Emery, Grand, and Garfield counties. No suitable soils or habitat exist within the proposed project area, and this species is not known to currently occur within Kane County, Utah. No critical habitat has been designated for this species.		

^{*}Note: USFWS categories: **Endangered** (**E**)—Taxa in danger of extinction throughout all or a significant portion of its range; **Threatened** (**T**)/**Proposed Threatened** (**PT**)—Taxa likely to become endangered within the foreseeable future throughout all or a significant portion of its range; **Experimental** (**EX**)—Species considered to be experimental and non-essential in its designated use areas.

Sources: Tilley et al. 2010, USFWS 1996, 2018b

APPENDIX D

BLM AND STATE SENSITIVE SPECIES TABLE

HABITAT SUITABILITY ASSESSMENT FOR BLM and STATE SENSITIVE SPECIES **Known Occurrence BLM** State **Species Description** Within 2 Miles of the **Habitat Suitability Assessment Impact Assessment** Status **Status Project Area** No direct or indirect impacts to this species are anticipated to occur as a result of implementation of the project. No species were observed during field assessments and none have been documented Found on dry, open or brushy, alkaline within 2 miles of the project area and this species was not indicated valleys and foothills, and disturbed on the BLM ID Team Checklist as a species of concern. However, areas. Typically in dry, often volcanic Gooseberry leaf Suitable habitat for this species is found within the project area. should individuals be discovered within the footprint of the project or alkaline soils between 3,000 to globemallow However, none were observed during field habitat assessments area, direct impacts could include mortality due to vegetation and SS 7,600 ft. Sometimes found on mesas N/A No (Sphaeralcea conducted and occurrence of the species is not known within 2 soil removal associated with construction of the dam/reservoir, and slopes, often in pinyon-juniper grossulariifolia) miles of the project area. access roads, installation of the pipeline and the utilization and woodlands, sometimes descending expansion of borrow pits. Indirect impacts to species should they along streams to lower elevations. be located outside of the project area but within 300 feet, could Flowers from April-October. include reduced reproductive fecundity and/or reduced photosynthetic ability due to dust resulting from project-related ground disturbance. Native to parts of the Colorado River system. Limited distribution occurs No direct or indirect impacts to species or suitable habitat are only in the Virgin River system in anticipated to occur as result of implementation of the project. The Suitable habitat is found within the East Fork Virgin River, which Historical records of East Fork Virgin River where suitable habitat exists, including all Desert sucker southwestern Utah. They are bottom SS SPC occurrence within 0.5 mile of bisects the proposed powerline component of the proposed project (Catostomus clarkii) dwellers (benthic); primarily eat algae, tributaries within the project area, would be protected from the project area. area. and occasionally insects and other increased erosion and sedimentation by the appropriate use of invertebrates. Spawning occurs in BMPs. riffles during winter and spring. Found only in the southwestern portion of Utah. Common to streams. No direct or indirect impacts to species are anticipated to occur as washes, irrigated crop lands, Suitable habitat exists within the proposed project area. This habitat result of implementation of the project and species have not been reservoirs, and uplands adjacent to is found within numerous washes within the Cove Reservoir portion documented within 0.5 mile of the project and are not anticipated to Historical records of Arizona toad water. Inactive in cold weather, adults of the project area and along two small, slow-moving intermittent occur. Some potentially suitable habitat found adjacent to SPC SS occurrence within a 2-mile (Anaxyrus are known to be primarily nocturnal; streams which bisect the Glendale Pipeline portion of the project intermittent streams would be impacted as result of construction of microscaphus) radius of the project area. however, young are active during area. Uplands within the project area adjacent to these aquatic the dam and inundation of the reservoir. However, this habitat is daylight hours. Eggs are laid on the features may also provide suitable habitat. marginal and ample suitable habitat exist outside of the footprint of bottoms of shallow, slow-moving the project area. streams. Occurs in scattered areas throughout No direct or indirect impacts to species are anticipated to occur as result of implementation of the project and species have not been the state, where they prefer desert, grassland, and agricultural habitats. In documented within 0.5 mile of the project and are not anticipated to Suitable habitat associated with wetlands, streams and agricultural cold winter months, they burrow occur. Some potentially suitable habitat found adjacent to Great Plains toad SS SPC No areas is found within and near to the project area; however, no underground and become inactive. agricultural areas would be temporarily impacted as result of (Anaxyrus *cognatus*) suitable habitat is located on BLM-managed lands. construction Glendale pipeline. However, this habitat is marginal They breed in shallow water after and ample suitable habitat exist outside of the footprint of the rains during spring and summer months. project area. Nests near coastlines, rivers, large No direct or indirect impacts to this species are anticipated to occur lakes, or streams that support an Suitable foraging habitat located within and adjacent to the as a result of implementation of the project. Species occurrence adequate food supply. Nesting proposed project area supports a variety of raptors, potentially

including bald eagles. Bald eagles do occasionally nest in southern

Utah but are typically present during their winter migration. Bald

eagles may utilize trees adjacent to the East Fork Virgin River for

winter roosting and stopover habitat during migration periods.

Records exist of recent

the project area.

occurrence within 0.5 mile of

substrates often include mature or old-

promontories, on the ground (rarely),

and on human-made structures (more

growth trees, snags, cliffs, rock

frequently).

SS

SPC

Bald eagle

(Haliaeetus

leucocephalus)

has been documented within 0.5-mile of the project area; however,

would likely only inhabit the area during the winter. Construction

no species were observed during field assessments. Bald eagles

of the dam may provide additional wintering habitat and food

sources (stocked fish).

HABITAT SUITABILITY ASSESSMENT FOR BLM and STATE SENSITIVE SPECIES **Known Occurrence BLM** State **Species** Description Within 2 Miles of the **Habitat Suitability Assessment Impact Assessment** Status Status **Project Area** Can be found in most counties in Utah. Prefers to winter in grasslands No direct or indirect impacts to this species are anticipated to occur and shrub steppes in the Western and as a result of implementation of the project. No species were central US. In Utah, they eat mostly observed during field assessments and none have been documented prairie dogs. During breeding, flat and within 2 miles of the project area and this species was not indicated Suitable habitat near agricultural lands adjacent to pinyon-juniper rolling terrain in grassland or shrub on the BLM ID Team Checklist as a species of concern. However, woodland exists within the project area, particularly where the steppe is most often used. They avoid Glendale Pipeline and Cove Reservoir components of the project suitable nesting and foraging habitat does exist within and adjacent high elevations, forests, and narrow Ferruginous hawk SS SPC would be constructed. However, prairie dogs are not commonly to the project area and occurrence of individuals is a possible. To No canyons, choosing to live in (Buteo regalis) found near to the project area and as this is the species' primary reduce project-related impacts, preconstruction avian nest clearance grasslands, agriculture lands, food source, occurrence of the ferruginous hawks would be surveys would be conducted to locate and identify all nesting sagebrush/slatbush/greasewood shrub species of birds. Should an occupied or active nest be discovered, a expected to be very low and likely only migratory in nature. lands, and at the periphery of pinyonspecies-specific no-activity buffer would be applied during juniper forests. They prefer elevated construction and would remain in place until young have nest sites like cliffs, buttes, and creek successfully fledged. banks. In winter they prefer open areas like farmlands, grasslands, or deserts. Greater sage-grouse inhabit sagebrush The Panguitch Greater sage-grouse Priority Habitat Management plains, foothills, and mountain valleys. Area (PHMA) extends into Kane County near the three BLM The species is an herbivore and

No

borrow pit locations. The existing Elbow borrow site is located

within the PHMA. The existing Bald Knoll and proposed Black

remainder of the project area including the proposed reservoir,

pipeline, access road, and Glendale and Orderville hydroelectric

power plants are not located near sage grouse habitat.

Knoll sites are located outside of, but adjacent to, the PHMA. The

Sources: UDWR 2017; UDWR Conservation Data Center (http://dwrcdc.nr.utah.gov/ucdc/default.asp); BLM 2010; BLM 2011.

Key: SS = BLM Sensitive Species; CN = Candidate Species; CA/CS = Conservation Agreement Species; SPC = Wildlife Species of Concern (State)

insectivore, and is associated with

both tall and short sagebrush types.

Sagebrush habitat, with an understory

optimum habitat. Sage-grouse use the same breeding ground or leks for several consecutive breeding seasons.

of grasses and forbs, and associated

wet meadow areas are essential for

CN

SPC

Greater sage-grouse

(Centrocercus

urophasianus)

No direct or indirect impacts are anticipated to occur to sage grouse

footprint of the project and no records of occurrence for sage grouse

species or suitable habitat. No suitable habitat exists within the

exists within 2 miles of the project area.

NRCS Cove Reservoir Project

APPENDIX E-3

AQUATIC RESOURCE DELINATION REPORT

Draft Plan-EA October 2020

REQUEST FOR AQUATIC RESOURCES DELINEATION VERIFICATION

OR JURISDICTIONAL DETERMINATION

A separate jurisdictional determination (JD) is not necessary to process a permit. An Approved Jurisdictional Determination (AJD) is required to definitively determine the extent of waters of the U.S. and is generally used to disclaim jurisdiction over aquatic resources that are not waters of the U.S., in cases where the review area contains no aquatic resources, and in cases when the recipient wishes to challenge the water of the U.S. determination on appeal. Either an Aquatic Resources Delineation Verification or a Preliminary Jurisdictional Determination (PJD) may be used when the recipient wishes to assume that aquatic resources are waters of the U.S. for the purposes of permitting. In some circumstances an AJD may require more information, a greater level of effort, and more time to produce. If you are unsure which product to request, please speak with your project manager or call the Sacramento District's general information line at (916) 557-5250.

I am requesting the product indicated below from the U.S. Army Corps of Engineers, Sacramento District, for the review area located at:

Street Address: U.S. Highway 89 (see attached maps for project sizes)	City: Ordenville and Glendale, Ulah County: Kane County
State: Ulah Zip: 84758 Section: Township:	
	al degrees): -112 662825"
The approximate size of the review area for the JD is 264.6	acres. (Please attach location map)
Choose one:	Choose one product:
O I own the review area	OI am requesting an Aquatic Resources Delineation Verification
Of hold an easement or development rights over the review area	I am requesting an Approved JD
OI lease the review area	OI am requesting a Preliminary JD
plan to purchase the review area	OI am requesting additional information to inform my decision
OI am an agent/consultant acting on behalf of the requestor	about which product to request
O Other:	
Reason for request: (check all that apply)	
laneed information concerning aquatic resources within the review	
I intend to construct/develop a project or perform activities in thi	s review area which would be designed to avoid all aquatic
resources.	
I intend to construct/develop a project or perform activities in thi	s review area which would be designed to avoid those aquatic
resources determined to be waters of the U.S.	
	s review area which may require authorization from the Corps; this
request is accompanied by my permit application.	
	navigable water of the U.S. which is included on the district's list of
navigable waters under Section 10 of the Rivers and Harbors	
My lender, insurer, investors, local unit of government, etc. has	indicated that an aquatic resources delineation verification is
inadequate and is requiring a jurisdictional determination.	and sequent the Course confirm that there are the recovery
I intend to contest jurisdiction over particular aquatic resources are not waters of the U.S.	and request the Corps confirm that these aquatic resources are or
I haliava that the ravious area may be comprised artisals of day l	and
Other: Total to several and the state of the	and need the corps determination on what is jurbdich
Attached Information:	The the corps deliciting//on on moss ing
Maps depicting the general location and aquatic resources within	n the soulous area consistent with Man and Denvise Standards for
the South Pacific Division Regulatory Program (Public Notice	February 2016
	otices-and-References/Article/651327/updated-map-and-drawing-
standards/)	Suces-and-Neierences/Anicie/001327/updated-map-and-drawing-
Aquatic Resources Delineation Report, if available, consistent w	rith the Sacramento District's Minimum Standards for Acceptance
(Public Notice January 2016, http://1.usa.gov/1V68IYa)	and the Sacramento District's Minimum Standards for Acceptance
By signing below, you are indicating that you have the authority, o	r are acting as the duly authorized agent of a person or entity with
such authority, to and do hereby grant Corps personnel right of en	
affirmation that you possess the requisite property rights for this re	
- Mil Hen A	
*Signature: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ite: 11/12/2020
Name: MICHAEL E. NOEL Compar	by name: Kane Count Water Conservon Distrect
Address: 725 E. Kaneplex Drive	
Kaneb, Utah 84741	
Telephone: Email:	

Authorities: Rivers and Harbors Act, Section 10, 33 USC 403, Clean Water Act, Section 404, 33 USC 1344, Marine Protection, Research, and Sanctuaries Act, Section 103, 33 USC 1413, Regulatory Program of the U.S. Army Corps of Engineers, Final Rule for 33 CFR Parts 320-332.

Principal Purpose: The information that you provide will be used in evaluating your request to determine whether there are any aquatic resources within the project area subject to federal jurisdiction

under the regulatory authorities referenced above.

Routine Uses: This information may be shared with the Department of Justice and other federal, state, and local government agencies, and the public, and may be made available as part of a public notice as required by federal law. Your name and property location where federal jurisdiction is to be determined will be included in the approved jurisdictional determination (AJD), which will be made available to the public on the District's website and on the Headquarters USACE website.

Disclosure: Submission of requested information is voluntary; however, if information is not provided, the request for an AJD cannot be evaluated nor can an AJD be issued.

PRELIMINARY AQUATIC RESOURCE DELINEATION REPORT

Cove Reservoir Project Kane County, Utah

Prepared for:

Kane County Water Conservancy District 725 East Kaneplex Drive Kanab, Utah 84741

and

United States Department of Agriculture Natural Resource Conservation Service Wallace F. Bennett Federal Building 125 South State Street, Room 4010 Salt Lake City, Utah 84138-1100

For submittal to:

United States Army Corps of Engineers Intermountain Regulatory Branch Sacramento District – Bountiful Field Office 533 West 2600 South, Suite 150 Bountiful, Utah 84010

Prepared by:

Transcon Environmental, Inc. 444 South Main Street, Suite A6 Cedar City, Utah 84720

November 2019 *Revised October 2020

EXECUTIVE SUMMARY

An aquatic resource delineation study has been conducted for the Cove Reservoir Project in accordance with the 1987 U.S. Army Corps of Engineers (USACE) Wetland Delineation Manual, and Interim Regional Supplement to the USACE Wetland Delineation Manual: Arid West Region (USACE 2008).

Transcon Environmental, Inc. conducted an aquatic impact assessment within the proposed project area to identify potential impacts to jurisdictional Waters of the United States (WOTUS), pursuant to Section 404 of the Clean Water Act. The survey encompassed approximately 805.6 acres along areas near U.S. Highway 89 (US-89) and Glendale Bench Road in the vicinity of the towns of Glendale and Orderville, both in Kane County, Utah. Fieldwork was conducted between October 8, 2018 and October 10, 2018 with supplementary surveys conducted on April 24 and September 20, 2019. Within this report, the term "project area" refers specifically to the project footprint where construction activities would occur; "study area" refers to the project footprint plus all adjacent areas and waters that were investigated for their potential to be directly impacted by construction of the proposed project. This delineation is based on site conditions and information available at the time of the site visits. The results of this delineation are preliminary until verified by the USACE.

One scientist performed wetland and ordinary high watermark delineations, recorded site information, and photographed site conditions. Within the 805.6-acre study area, the proposed project area totals approximately 264.6 acres. Within the project area approximately 2.97 acres (9,716 linear feet) were identified as potentially jurisdictional intermittent or ephemeral streams. One perennial feature, the East Fork Virgin River, also crosses a portion of the study area. Additionally, man-made wetlands were discovered within the overall study area, but these wetlands were isolated, man-made features and are not considered jurisdictional WOTUS.

The proposed Cove Reservoir Project is anticipated to impact approximately 2.97 acres of potentially jurisdictional WOTUS consisting of approximately 9,716 linear feet of streams. Approximately 2.96 acres (9,646 linear feet) of these streams occur within the footprint of the reservoir and adjacent project components; 0.01 acres (70 linear feet) of these streams occur within the pipeline portion of the project. No impacts to wetlands or the East Fork Virgin River are anticipated.

TABLE OF CONTENTS

Section 1: Intro	oduction	1
1.1 Cont	act Information	1
1.2 Purpo	ose of Assessment	1
1.3 Proje	ct Description and Location	1
1.4 Inters	state of Foreign Commerce Connection	3
Section 2: Aqu	atic Resource Location And Access	3
Section 3: Stud	y Methods	6
3.1 Delir	neation Survey Methods	6
3.2 Area	s Outside of Section 404 Jurisdiction	10
Section 4: Exis	ting Conditions	10
4.1 Exist	ing Field Conditions, Land Use, and Landscape Setting	10
4.2 Aqua	tic Resources Within the Study Area	13
	clusion	
References		19
LIST OF FIG	GURES	
Figure 1	Project Overview Map	5
LIST OF TA	BLES	
Table 1	NWI Feature Types Within and Near the Study Area	12
Table 2	Native Soil Types in the Study Area	12
Table 3	Delineated Wetland Features	16
Table 4	Potentially Jurisdictional Aquatic Features Within the Study Area	16
Table 5	Impacts to Potentially Jurisdictional Wetlands and Other WOTUS	18
LIST OF AP	PENDICES	
Appendix A	Aquatic Resource Delineation Maps	
Appendix B	Wetland Delineation Forms and OHWM Data Sheets	
Appendix C	NRCS Custom Soil Reports	
Appendix D	Project Photographs	

SECTION 1 INTRODUCTION

1.1 Contact Information

Kane County Water Conservancy District 725 East Kaneplex Drive Kanab, Utah 84741

1.2 Purpose of Assessment

The U.S. Department of Agriculture Natural Resources Conservation Service (NRCS), with assistance of the Kane County Water Conservancy District (KCWCD) as the project sponsor, is considering proposed improvements within the East Fork Virgin River Watershed. Currently, the proposed improvements include: the construction of a new, approximately 6,032-acre-foot capacity reservoir (Cove Reservoir); the replacement of an approximately 1.7-mile section of existing pipeline; and relocation of the Glendale Hydroelectric Plant. These new facilities would provide the Glendale, Mt. Carmel, and Orderville irrigation companies with additional water storage capacity to meet present and future irrigation water demands. Future improvements within the existing Glendale, Mt. Carmel, and Orderville irrigation systems within the East Fork Virgin River Watershed are also anticipated; however, those improvements have not been identified at this time and are not analyzed within this report. Alpha Engineers contracted Transcon Environmental, Inc. (Transcon) to analyze the project for potential impacts to wetlands and potentially jurisdictional Waters of the United States (WOTUS).

In October 2018, Transcon conducted an aquatic resource impact assessment within the proposed project area to identify potential impacts to wetlands and other potentially jurisdictional WOTUS, pursuant to Section 404 of the Clean Water Act (CWA). Supplementary visits were also conducted on April 24 and September 20, 2019

Section 404 of the CWA gives the U.S. Environmental Protection Agency and the USACE regulatory and permitting authority regarding discharge of dredged or filled material into "navigable waters of the United States." Section 502(7) of the CWA defines navigable waters as "waters of the United States, including territorial seas." Section 328 of Chapter 33 in the Code of Federal Regulations (CFR) defines WOTUS as they apply to the jurisdictional limits of USACE authority under the CWA. A summary of this definition in 33 CFR 328.3 includes: 1) waters used for commerce; 2) interstate waters and wetlands; 3) "Other waters of the United States" (other waters) such as intrastate lakes, rivers, streams, and wetlands; 4) impoundments of waters; 5) tributaries to the above waters; 6) territorial seas; and 7) wetlands adjacent to waters. For the purposes of determining USACE jurisdiction under the CWA, "navigable waters," as defined in the CWA, are the same as "waters of the United States" as defined in the CFR above. The limits of USACE jurisdiction under Section 404, as given in 33 CFR Section 328.4, are as follows: a) territorial seas—3 nautical miles in a seaward direction from the baseline; b) tidal WOTUS—high tide line or to the limit of adjacent non-tidal waters; c) non-tidal WOTUS—ordinary high watermark (OHWM) or to the limit of adjacent wetlands; d) wetlands—to the limit of the wetland.

1.3 Project Description and Location

KCWCD proposes to construct the Cove Reservoir and other improvements within the existing Glendale, Mt. Carmel, and Orderville irrigation systems. Other improvements would include the replacement of approximately 1.7 miles of irrigation pipeline, relocation of the Glendale Hydroelectric Plant, and construction of approximately 0.2 mile of new, overhead electric transmission line to tie into the relocated hydroelectric plant. All improvements are located west of U.S. Highway 89 (US-89) and the East Fork Virgin River in Orderville and Glendale. The project also proposes the use of up to four previously disturbed borrow pits for project-related construction needs: Elbow pit, Tait pit, Lamb pit, and Bald Knoll community

pit. No disturbance outside of the previously disturbed areas is proposed at the Elbow pit location. The use of one new borrow pit, Black Knoll, is proposed.

The primary purpose of the proposed Cove Reservoir is to provide critical water storage capacity in Kane County and to provide reliable irrigation water delivery to agricultural users in rural areas specifically near the communities of Glendale, Mt. Carmel, and Orderville. Local users continue to experience a water shortage for irrigation and agricultural uses in the late summer months after spring runoff has passed. Irrigation water demand during the summer months cannot be met by current systems as existing irrigation facilities have limited capabilities to divert water from the East Fork Virgin River and store water during high flows. There is currently no capacity for storage during non-use and high-flow periods with the existing irrigation systems. As such, rural producers throughout Kane County are unable to get full production from their fields. The proposed project would increase water availability by collecting and storing water during non-use periods and providing flows during the irrigation season.

The Cove Reservoir would also improve irrigation efficiency by providing a more consistent, reliable flow for existing, pressurized irrigation systems. The relocation and improvement of the Glendale hydroelectric power plant would provide additional green energy for local communities whose populations are expected to continue to increase in the near future. The existing Orderville hydroelectric power plant currently only generates power during the winter months. With the implementation of the proposed project, additional water would be available to the plant during the summer months. This would allow the plant to maintain a more consistent energy output.

Another purpose of the proposed project would be to provide for additional recreation opportunities in the area. Recreation activities are in high demand in Kane County. Water-based recreation facilities currently located in this portion of Kane County are limited. The proposed project would respond to this need by providing boating, fishing, and camping facilities that are currently not available. It is anticipated that use of the reservoir would provide economic opportunities to the area and provide an important additional recreation site during busy summer months.

Water from the proposed reservoir would be released to supplement Virgin River flows in Washington County. This additional water would improve habitat for two federally-listed fish species, the Virgin River chub and woundfin. This would particularly apply to the area around La Verkin Hot Springs (also known as Pah Tempe Hot Springs) where the water temperature is higher than in other parts of the river. The Washington County Water Conservancy District currently pipes water upstream from Quail Creek Reservoir to the area in order to decrease the water temperature and improve fish habitat. Water coming from the proposed Cove Reservoir would help this effort.

Water resulting from occasional flash floods in the Cove Reservoir drainage reaches the East Fork Virgin River, resulting in short-term, high-sediment loads as well as increased (sometimes very high) water flows. Many flood control sediment ponds located above the proposed reservoir site are small and have limited functionality. Therefore, the proposed reservoir could play a role in flood control and the maintenance of water quality in the Virgin River.

Construction of the proposed Cove Reservoir Project is expected to include the following activities:

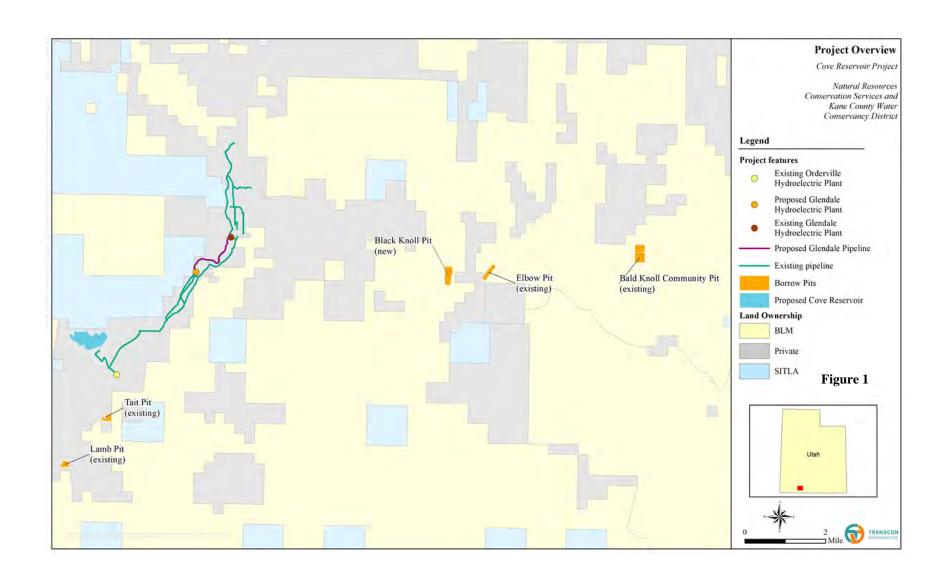
- Construction of an approximately 6,032-acre-foot capacity reservoir
- Construction of an earthen and rock fill dam
- Installation of primary and auxiliary spillways
- Development of access roads, including construction of segments of new access road and improvements to existing access roads which would circumnavigate the reservoir

- Construction of recreational features such as parking areas, camping, and boat ramps (design yet to be determined)
- Extension of existing feeder pipeline to proposed reservoir location
- Replacement of approximately 1.7 miles of existing irrigation pipeline in the Glendale Irrigation System
- Relocation of the existing Glendale Hydroelectric Plant south near the existing Orderville Diversion Dam
- Construction of approximately 0.2 mile of electric transmission collector line from the new hydroelectric plant

Within the study area, permanent ground disturbance is anticipated to occur where: the reservoir, dam, new reservoir access road, borrow pit expansion, recreational features and primary/auxiliary spillways, electric transmission collector line, and hydroelectric plant would be constructed. Temporary disturbance is anticipated for all pipeline installation/replacement and road improvement activities. Construction of the electric transmission line would cross the East Fork Virgin River; however, no disturbance within the OHWM of the river is anticipated. All temporary staging areas would be located within the reservoir basin and would not require additional disturbance outside of permanently impacted areas.

1.4 Interstate of Foreign Commerce Connection

The water bodies in the study area are not directly connected to interstate or foreign commerce, and are not used for the transportation of goods.


SECTION 2 AQUATIC RESOURCE LOCATION AND ACCESS

A total of six potentially jurisdictional, intermittent stream systems and two isolated wetlands are found within the overall study area. Four of the intermittent streams and one wetland are located within the study area associated with the reservoir. The remaining two intermittent streams and one wetland are found within the study area associated with the Glendale Hydroelectric Plant and pipeline. Neither of the two wetlands are considered jurisdictional because they are isolated, likely defunct agricultural water storage ponds. No intermittent streams or wetlands were observed within or near the six borrow pit locations. One perennial stream, the East Fork Virgin River, crosses the project area where the proposed electric transmission collector line would be installed. However, no project activities would occur within the OHWM of the East Fork Virgin River.

The proposed project area is located near the towns of Glendale and Orderville, both in Kane County, Utah. The total survey area for all project components is approximately 805.6 acres in area and is located within Township 40 South, Range 7 West, Sections 23, 26, and 27; Township 41 South, Range 7 West, Sections 5, 6, 19, and 31; Township 40 South, Range 5 West, Section 28 of the Salt Lake Baseline and Meridian on the Bald Knoll, Orderville, Glendale, and Mt. Carmel, Utah 7.5-minute U.S. Geological Survey (USGS) topographic quadrangles (**Figure 1**).

The proposed project area, where construction of the dam, reservoir, and other improvements would occur, is located west of US-89 and the East Fork Virgin River near Glendale and Orderville. Of the four existing borrow pits, as well as one new pit that will be utilized for construction material (e.g., rip rap, gravel, etc.), two borrow pits (Tait and Lamb) are located east of US-89 on private land and three borrow pits (Black Knoll, Elbow, and Bald Knoll) are located east of US-89 along Glendale Bench Road on Bureau of Land Management- (BLM) administered public land. The proposed Cove Reservoir can be accessed from Cove Road off of US-89 between milepost (MP) 84.9 and MP 85, and the Glendale Hydroelectric Plant and pipeline can be accessed via a number of private roads west of US-89 between MP 87.9 and MP 89.4. The

Lamb Pit is accessed east of US-89 from a dirt road at MP 81.4. The Tait borrow pit can be accessed, east of Mt. Carmel and US-89, via Tait Lane. The potential Black Knoll borrow pit site in addition to the existing Elbow pit and Bald Knoll pits are accessed from Glendale Bench Road on Kane County Road. Access to Glendale Bench Road is located east of US-89 at MP 90. Access to all aquatic features is located on land under the jurisdiction of the BLM Kanab Field Office, Utah School and Institutional Trust Lands Administration, or private ownership.

SECTION 3 STUDY METHODS

3.1 Delineation Survey Methods

A focused evaluation of WOTUS located within the study area was performed between October 8, 2018 and October 10, 2018 and follow-up field visits to evaluate additional borrow pits were conducted on April 24 and September 20, 2019. The methods used to delineate potentially jurisdictional WOTUS and locate any other potential aquatic features (including wetlands) within the study area were based on the USACE Jurisdictional Determination Form Instructional Guidebook (USACE 2007); A Field Guide to the Identification of the Ordinary High Water Mark in the Arid West Region of the Western United States (Lichvar and McColley 2008); USACE Wetland Delineation Manual (USACE 1987); and the Interim Regional Supplement to the USACE Wetland Delineation Manual: Arid West Region. A site survey was also conducted to verify the presence of suitable habitat.

Transcon used two methods to identify wetlands and waters:

- 1) Locations with previously mapped wetlands and waters were identified in the field and investigated.
- 2) The study area was traversed and inspected for signs of wetlands and waters (e.g., changes in vegetation, depressions holding water, or channels), and investigated.

Methods for evaluating the presence of wetlands and other waters employed during the routine determination are described in detail below.

3.1.1 Existing Data

Existing data were reviewed before conducting a field assessment. Information reviewed included:

- Recent aerial photography
- U.S. Fish and Wildlife Service (USFWS) National Water Inventory (NWI) (USFWS 2018)
- U.S. Department of Agriculture (USDA) Natural Resource Conservation Service (NRCS) soil maps (NRCS 2018)

3.1.2 Clean Water Act (CWA) Wetlands Definition

The study area was evaluated for the presence or absence of indicators of the 3 wetland parameters described in the USACE Manual (USACE 1987) and the Arid West Regional Supplement (USACE 2008): the presence of 1) hydrophytic vegetation, 2) wetland hydrology, and 3) hydric soils.

Section 328.3 of the Federal CFR defines wetlands as:

"Those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas."

According to the USACE Manual, for areas not considered "problem areas" or "atypical situations":

"....evidence of a minimum of one positive wetland indicator from each parameter (hydrology, soil, and vegetation) must be found in order to make a positive wetland determination."

Data on vegetation, hydrology, and soils collected at sample points during the site visit was reported on Wetland Determination Data Form-Arid West Region forms (**Appendix B**). Once an area was determined to be a potential jurisdictional wetland, its boundaries were delineated using a GPS and mapped on a

topographic, aerial map. Indicators described in the Arid West Regional Supplement were used to make wetland determinations at each sample point in the study area and are summarized below.

Vegetation

This report discusses botanical species with both their scientific and common names. Plant species identified within the study area were assigned a wetland status according to the USFWS list of plant species that occur in wetlands (Lichvar et al 2016). This wetland classification system is based on the expected frequency of species occurrence in wetlands as follows:

OBL	Occur almost always in wetlands under natural conditions	>99% frequency
FACW	Usually occur in wetlands	67–99%
FAC	Equally likely to occur in wetlands or non-wetlands	34–66%
FACU	Usually occur in non-wetlands	1–33%
UPL	Occur almost always in non-wetlands under natural conditions	<1%

The Arid West Regional Supplement requires a three-step process to determine if hydrophytic vegetation is present. The procedure first requires the delineator to apply the 50/20 Rule (Indicator 1) described in the manual. To apply the 50/20 Rule, dominant species are chosen independently from each stratum of the community including four strata: tree, sapling/shrub, herbaceous, and woody vine¹. In general, dominant species are determined for each vegetation stratum from a sampling plot of an appropriate size surrounding the sample point. Dominant species are generally the most abundant species that individually or collectively account for more than 50 percent of total vegetative cover in the stratum, plus any other species that, by itself, accounts for at least 20 percent of the total cover. If greater than 50 percent of the dominant species has an OBL, FACW, or FAC status, the sample point meets the hydrophytic vegetation criterion.

If the sample point fails the application of Indicator 1, and both hydric soils and wetland hydrology are absent, then the sample point does not meet the hydrophytic vegetation criterion, unless the site is a problematic wetland situation. However, if the sample point fails Indicator 1 but hydric soils and wetland hydrology are both present, the delineator must apply Indicator 2.

Indicator 2 is the Prevalence Index, which is a weighted average of the wetland indicator status for all plant species within the sampling plot. Each indicator status is given a numeric code: OBL=1, FACW=2, FAC=3, FACU=4, and UPL=5. Application of Indicator 2 requires the delineator to estimate the percent cover of each species in every stratum of the community and sum the cover estimates for any species that are present in more than one stratum. The delineator must then organize all species into groups according to their wetland indicator status and calculate the Prevalence Index using the following formula, where "A" equals total percent cover.

$$PI = \frac{A_{OBL} + 2A_{FACW} + 3A_{FAC} + 4A_{FACU} + 5A_{UPL}}{A_{OBL} + A_{FACW} + A_{FAC} + A_{FACU} + A_{UPL}}$$

The Prevalence Index will yield a number between one and five. If the Prevalence Index is equal to or less than three, the sample point meets the hydrophytic vegetation criterion. However, if the community is greater than three, the delineator must proceed to Indicator 3.

Cove Reservoir Project Preliminary Aquatic Resource Delineation Report

¹ The tree stratum includes woody plants, excluding woody vines, approximately 20 feet or more in height and 3 inches or larger in diameter at breast height (DBH). The sapling/shrub stratum includes woody plants, excluding woody vines, less than 3 inches DBH, regardless of height. The herb stratum includes all herbaceous (non-woody) plants, including herbaceous vines regardless of size, and woody plants, except woody vines, less than approximately 3 feet in height. The woody vine stratum includes all woody vines regardless of height (USACE 2008).

Application of Indicator 3 assesses presence of morphological adaptations. If more than 50 percent of the individuals of a FACU species have morphological adaptations for life in wetlands, that species is considered to be a hydrophyte and its indicator status should be reassigned to FAC. If such observations are made, the delineator must recalculate Indicators 1 and 2 using a FAC indicator status for this species. The sample point meets the hydrophytic vegetation criterion if either test is satisfied.

This three-step process was utilized to determine if sample points within the project met the hydrophytic vegetation criterion.

Hydrology

The USACE jurisdictional wetland hydrology criterion is satisfied if an area is inundated or saturated long enough to create anoxic soil conditions during the growing season (i.e., a minimum of 14 days in the Arid West Region). Evidence of wetland hydrology can include primary indicators, such as visible inundation or saturation, drift deposits, oxidized root channels, or salt crusts; or secondary indicators such as the FAC-neutral test, the presence of a shallow aquitard, or frost-heave hummocks. The Arid West Regional Supplement contains 18 primary hydrology indicators and 9 secondary hydrology indicators (USACE 2008). Only one primary indicator is required to meet the wetland hydrology criterion. If secondary indicators are used, at least two secondary indicators must be present to conclude that an area has wetland hydrology.

The presence or absence of the primary or secondary indicators described in the Arid West Regional Supplement was utilized to determine if sample points within the delineation study area met the wetland hydrology criterion.

Soils

NRCS defines a hydric soil as follows:

"A hydric soil is a soil that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part."

(Vasilas et al. 2010)

Soils formed over long periods of time under wetland (anaerobic) conditions often possess characteristics that indicate they meet the definition of hydric soils. Hydric soils can have a hydrogen sulfide (i.e., rotten egg) odor, low chroma matrix color (designated 0, 1, or 2), presence of redox concentrations, gleyed or depleted matrix, or high organic matter content.

Specific indicators that can be used to determine whether a soil is hydric for the purpose of wetland delineation are provided in the NRCS Field Indicators of Hydric Soils in the United States (Vasilas et al. 2010). The Arid West Regional Supplement provides a list of 19 hydric soil indicators that are known to occur in the Arid West Region (USACE 2008). Where possible, soil samples were collected and described according to the methodology provided in the Arid West Regional Supplement (see Difficult Wetlands Situations in Section 3.2 below). Soil chroma and values were determined by utilizing a standard Munsell soil chart (Munsell 2009).

Hydric soils were determined to be present if any of the soil samples met 1 or more of the 19 hydric soil indicators described in the Arid West Regional Supplement.

3.1.3 Other Waters of the United States

WOTUS are defined by Title 40 of the CFR 230.3 and by 33 CFR 328.3 as:

- All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce
- All interstate waters, including interstate wetlands
- All impoundments of waters otherwise identified as WOTUS
- All tributaries of interstate waters or territorial seas
- All waters adjacent to an identified WOTUS, including wetlands, ponds, lakes, oxbows, impoundments, and similar waters
- All waters determined to have a 'significant nexus' to WOTUS

The term 'significant nexus' is defined in 40 CFR 203.3 and 33 CFR 328.3 as:

"...a water, including wetlands, either alone or in combination with other similarly situated waters in the region, significantly affects the chemical, physical, or biological integrity of a water identified..." as a WOTUS. "For an effect to be significant, it must be more than speculative or insubstantial. Waters are similarly situated when they function alike and are sufficiently close to function together in affecting downstream waters."

Federal Register Vol. 80, No. 124 Part 230.3(c) and 328.3 (c). June 29, 2015

This delineation evaluated the presence of other waters potentially subject to USACE jurisdiction under Section 404 of the CWA. Waters subject to USACE jurisdiction include lakes, rivers, and streams (including intermittent streams), in addition to all areas below the high tide line in areas subject to tidal influence. Jurisdiction in non-tidal areas extends to the OHWM, defined as:

"...that line on the shore established by the fluctuations of water and indicated by physical characteristics such as clear, natural line impresses on the bank, shelving, changes in the characteristics of the soil, destruction of terrestrial vegetation, the presence of litter and debris, or other appropriate means that consider the characteristics of the surrounding areas."

Federal Register Vol. 51, No. 219 Part 328.3 (e). November 13, 1986

Additionally, if adjacent wetlands are present, USACE jurisdiction extends beyond the OHWM to the limit of the adjacent wetland.

Identification of the OHWM followed the USACE Regulatory Guidance Letter Number 05-05, OHWM Identification (USACE 2005). The extent of the OHWM was determined using a combination of aerial imagery and field assessment. OHWM data gathered in the field was identified by a break between upland and wetland characteristics, as identified in the Arid West Regional Supplement. Topographic information from ArcGIS software Esri ArcMap 10.4.1 was used to extend the break throughout the entire feature.

Channel lengths approximate the centerline of main channel flow. Widths and depths were measured from cross-channel measurements conducted in the field, general field observations, and post-field calculations. Delineation of the OHWM of all washes was conducted using handheld sub-meter GPS, in combination with available aerial imagery, to provide an accurate representation of the OHWM at the time survey. All OHWM data collected at sample points during the site visit were recorded on Arid West Ephemeral and Intermittent Streams OHWM Datasheets (**Appendix B**).

3.2 Areas Outside of Section 404 Jurisdiction

Some areas that meet the technical criteria for wetlands or other waters may not be jurisdictional under the CWA. Included in this category are some man-induced wetlands, which are areas that have developed at least some characteristics of naturally-occurring wetlands due to either intentional or incidental human activities. Examples of man-induced wetlands may include, but are not limited to, irrigated wetlands, impoundments, drainage ditches excavated in uplands, wetlands resulting from filling of formerly deepwater habitats, dredge material disposal areas, and depressions within construction areas.

In addition, some isolated wetlands and other waters may be considered outside of USACE jurisdiction as a result of the Supreme Court's decision in Solid Waste Agency of Northern Cook County versus USACE (531 U.S. 159 [2001]). Isolated wetlands and other waters are those areas that do not have a surface or groundwater connection to and are not adjacent to a navigable "waters of the United States" and do not otherwise exhibit an interstate commerce connection.

SECTION 4 EXISTING CONDITIONS

4.1 Existing Field Conditions, Land Use, and Landscape Setting

4.1.1 Existing Field Conditions

The study area has an arid, desert climate, with an average yearly precipitation total of approximately 14.67 inches. The majority of surveys of the study area were conducted between October 8, 2018 and October 10, 2018. Supplementary field reviews of additional borrow pit locations were conducted on April 24 and September 20, 2019. The monthly average precipitation for October is 1.47 inches (Weather Underground 2018). Weather at the time of the surveys was mostly clear, with some shorter periods of cloudiness with scattered showers. Winds averaged 5–10 miles per hour and average temperatures ranged in the low-60s (degrees Fahrenheit). Surveys occurred approximately 24–36 hours following a significant rain event and evidence of flooding (e.g., sheet flow, heavy debris, and sedimentation of streams) was abundant throughout the study area.

4.1.2 Land Use

The proposed project area is located within the Grand Staircase subdivision of the Colorado Plateau physiographic region of southwestern Utah, immediately south of the Basin and Range–Colorado Plateau Transition Zone (Woods et al 2001). The Grand Staircase subdivision is characterized by a series of slopes, cliffs, and terraces that extend from the Grand Canyon in Arizona culminating in the High Plateaus of southern Utah. This region is further characterized by many unique linear cliffs that are distinctly colored and display several different geologic ages (Stokes 1977). Major drainage systems in the project area include the East Fork Virgin River and Muddy Creek, as well as numerous unnamed intermittent and ephemeral streams, springs, and dry washes.

The project area begins south of Mount Carmel Junction at the UDOT borrow pit, encompasses a large area west of Orderville at the proposed reservoir site, extends along the East Fork Virgin River at the area of the proposed new pipeline, and terminates northeast of Glendale by the Bald Knoll borrow pit (**Figure 1**). The topography of the region is characterized by steep slopes, cliff faces, and various rock formations, and is situated in a distinctive geological area surrounded by the Coral Pink Sand Dunes State Park to the south, Zion National Park to the west, Cedar Breaks National Monument to the northwest, the Grand Staircase-Escalante National Monument to the east, and Bryce Canyon National Park to the northeast. Most of the project extends along the Sevier Fault; Triassic and Jurassic rock formations are exposed in the region across the anticline, including the Glen Canyon Group of Moenave Formation, Kayenta Formation, and Navajo Sandstone. There are also Cretaceous rock formations west of the Sevier Fault in the project area,

including the Wahweap and Straight Cliffs formations, Dakota Sandstone and Cedar Mountain Formation, and the Jurassic Carmel Formation (Williams et al. 2014).

The project area associated with the reservoir is primarily utilized for livestock grazing and recreation, including hiking and off-highway vehicle use. East and south of the proposed project area are agricultural fields located on privately owned lands. Much of the project area, associated with the Glendale hydroelectric power plant and pipeline replacement, is located along an existing access road. North of this alignment are steep, forested hills while south of the project is mainly agricultural fields and private residences. Portions of the pipeline traverse through some of these agricultural fields.

4.1.3 Landscape Setting

The proposed new pipeline section of the project area is located within Long Valley along the Mt. Carmel Scenic Byway (US-89), which lies west of Glendale Bench and the White Cliffs. The proposed reservoir section of the project area is located south and west of the town of Orderville adjacent to Cove Canyon and Deer Hollow, and Bald Knoll pit is located just above the Skutumpah Terrace. Elevations in the project area range from 5,230 feet above sea level (asl) near Lamb's Pitt to 6,542 feet asl in the vicinity of Bald Knoll pit. Elevations in the proposed new pipeline area range from 5,600 to 5,721 asl.

Vegetation

Vegetation found in the project area consists of greasewood-salt scrub and transitions into sagebrush-perennial grassland habitat and, eventually, into pinyon-juniper woodland in the higher elevations. The project proposes the use of four existing borrow pits (Elbow, Tait, Lamb, and Bald Knoll). One new borrow pit (Black Knoll), consists of a mix of pinyon-juniper woodland and sagebrush communities. The area of the proposed new pipeline and hydroelectric plant is found in proximity to the East Fork Virgin River, and portions of this section of the project cross though agricultural fields and along a riparian environment with tamarisk (tamarix sp.), Russian olive (Elaeagnus angustifolia), and cottonwood trees (Populus fremontii).

Dominant ecological systems in the study area include Inter-Mountain Basins Big Sagebrush, Colorado Plateau Pinyon-Juniper Woodland, Introduced Upland Vegetation-Shrub, Shrub land, Inter-Mountain Basins Greasewood Flat, Rocky Mountain Lower Montane Riparian Woodland and Shrub land, Mogollon Chaparral, Disturbed/Successional – Shrub Regeneration, and Pasture/Hay (USGS 2018). Species observed within or adjacent to the project area were characteristics of these ecosystems and included a mix of native and non-native trees, shrubs, forbs, and grasses. Dominant native vegetation observed within the study area included: two-needle pinyon pine (*Pinus edulis*), Utah juniper (*Juniperus osteosperma*), sagebrush (*Artemesia tridentata*), salt bush (*Atriplex confertifolia*), greasewood (*Sarcobatus vermiculatus*), narrowleaf willow (*Salix exigua*), cattail (*Typhus latifolia*), blue bunch wheatgrass (*Pseudoroegneria spicata*), western wheatgrass (*Pascopyrum smithii*), and bottlebrush squirreltail (*Elymus elymoides*).

Activities associated with the project would have direct impacts to vegetation communities in the project area.

Regional Hydrology

The project is located within the Upper Virgin River Watershed, with the East Fork Virgin River intersecting the project limits. Within the project limits, the East Fork Virgin River is considered perennial, and flowing water was observed during field reconnaissance. Water in the East Fork Virgin River is derived from runoff via rainfall and snowmelt, and from groundwater entering via seeps and springs. The water from snowmelt makes up the largest percentage of streamflow and usually causes the highest monthly flows to occur in March through May, while most low-flow periods occur from June through October (Glancy

and Van Denburgh 1969). Water collected within or upstream of the reservoir and pipeline portions of the proposed project area eventually drains into the East Fork Virgin River.

National Wetlands Inventory (NWI)

The general location of potential wetlands and potentially jurisdictional WOTUS was identified using NWI data provided by the USFWS (USFWS 2018). **Table 1** lists the feature types that intersect with the study area, as reported by NWI. Features shown to intersect the study area include four wetlands and nine intermittent stream systems.

TABLE 1 NWI FEATURE TYPES WITHIN AND NEAR THE 805.6-ACRE STUDY AREA					
NWI Wetland ID (South to North)	NWI Feature Type	NWI Feature Type Feature Type NWI*			
1	Riverine (intermittent)	R4SBJ	30.08		
2	Riverine (intermittent)	R5UBFx	0.91		
3	Freshwater Pond	PABFh	0.10		
4	Freshwater Pond	PABFh	0.10		
5	Riverine (intermittent)	R4SBC	5.13		
6	Riverine (intermittent)	R4SBC	1.41		
7	Riverine (Perennial; East Fork Virgin River)	R3UBG	16.11		
8	Riverine (intermittent)	R4SBC	1.23		
9	Riverine (intermittent)	R4SBC	2.26		
10	Freshwater Emergent Wetland	PEM1Fh	0.27		
11	Freshwater Pond	PABFh	0.47		
12	Riverine (intermittent)	R4SBC	1.27		
13	Riverine (intermittent)	R4SBC	4.62		

*Note: Wetlands and Deepwater Habitats Classification (Cowardin et al. 1979). System—P: Palustrine; R: Riverine; Subsystem—3: Upper Perennial; 4: Intermittent Class—AB: Aquatic Bed; EM: Emergent; SB: Streambed; UB: Unconsolidated Bottom; Subclass—1: Persistent; Modifiers—C: Seasonally Flooded; F: Semipermanently Flooded; G: Intermittently Exposed; J: Intermittently Flooded; Special Modifiers—h: Diked/Impounded; x: Excavated

Soils

USDA NRCS soil surveys indicate 14 native soil types in the study area (NRCS 2018). **Table 2** lists the soil types and whether they meet the NRCS hydric soils criteria. None of the soil types found within the study area are listed as an NRCS hydric soil type. NRCS custom resource reports including a description and map for all soils contained within the study area listed below are located in **Appendix C.**

TABLE 2 NATIVE SOIL TYPES IN THE STUDY AREA				
Map Unit Name Acres in Percent of Study Area Study Area Hydric Soil				
Naplene-Teromote-Arboles-Oxyaquic Ustifluvents complex, 2- to 8-percent slopes	36.6	4.5	No	

TABLE 2 NATIVE SOIL TYPES IN THE STUDY AREA					
Map Unit Name	Acres in Study Area	Percent of Study Area	NRCS Hydric Soil		
Quezcan, deep-Sideshow-Orderville complex, 15- to 35- percent slopes	176.3	21.9	No		
Sili-Sideshow-Gypsic Haplustepts complex, 2- to 15-percent slopes	258.5	32.1	No		
Zigzag family-Badland-Quezcan complex, 35- to 90-percent slopes	107.7	13.4	No		
Catdraw family-Orderville-Quezcan family complex, 15- to 35-percent slopes	0.3	0.02	No		
Catdraw-Quezcan-Vessilla complex, 35- to 60-percent slopes	8.4	1.0	No		
Parkelei-Quagmeier-Fraguni complex, 2 to 35 percent	29.4	3.6	No		
Elpedro-Plumasano-Teromote family-Flatnose complex, 0-to 8-percent slopes	0.7	0.1	No		
Wetoe family-Flugle-Royosa family-Lava flows complex, 2-to 60-percent slopes	118.9	14.8	No		
Pinepoint-Waumac-Royosa complex, 0- to 4-percent slopes	11.4	1.4	No		
Pinepoint-Pana-Parkwash complex, 2- to 8-percent slopes	20.7	2.6	No		
Tonalea family-Barnac complex, 15- to 65-percent slopes	36.7	4.6	No		

4.2 Aquatic Resources Within the Study Area

4.2.1 Overview

Based on our desktop review and field surveys of the overall 805.6-acre study area conducted between October 8, 2018 and October 10, 2018, April 24, 2019, and September 20, 2019, it has been determined that within the approximately 264.4-acre project area that 6 potentially jurisdictional intermittent or ephemeral streams currently exist. Although two isolated wetland features were discovered and delineated, these features were determined to be isolated, man-made features and are not considered jurisdictional WOTUS (Table 3). A total of 2.97 acres, or 9,716 linear feet, were identified as potentially jurisdictional intermittent or ephemeral streams (Table 4). All WOTUS identified were located within the project areas associated with the Cove Reservoir and Glendale pipeline portions of the proposed project. Five borrow pits, Black Knoll (Appendix A-Sheet 12), Elbow (Appendix A-Sheet 13), Bald Knoll (Appendix A, Sheet 14), Tait (Appendix A-Sheet 15), and Lamb (Appendix A-Sheet 16) pits were all investigated and no WOTUS were identified. During our field review, it was also noted that prior anthropogenic disturbances had altered a number of streams that were identified by NWI, and now no longer exist or no longer exhibit connectivity to other aquatic features downstream. These disturbances included roads, residential developments, and cattle ponds. Cattle ponds that had been filled in with silt were discovered during field surveys and were investigated for wetland characteristics; however, none exhibited the required vegetation, hydrology, or soils to be considered wetlands. Representative photos of all potential aquatic resources observed within the study area are included in **Appendix D**.

Isolated Wetlands

Wetland 1 (W1) is a small, approximately 0.03-acre, artificial pond located approximately 200 feet south of the existing Cove Road, south of the proposed reservoir location and project area (**Appendix A**–Sheet 7). Upon field review, W1 was observed to contain a virtual monoculture of cattail, a wetland obligate species, and was confirmed to contain the necessary hydrophytic vegetation to be classified as a wetland

(**Appendix D**–Figure 10). Investigations of hydrologic and soil conditions resulted in the positive identification of wetland indicators confirming its status as a wetland, with inundation visible on aerial imagery and abundant redox depressions throughout the soil sample at the site. Underground irrigation hoses were observed around the pond and it appeared that it was artificially fed in the past. No outlet or connectivity to other aquatic features was observed and this appears to be an artificially created isolated wetland feature. Boundaries of the wetland were well defined and surrounding vegetation directly adjacent to W1 consisted of upland dominant species.

Wetland 2 (W2) is an approximately 0.73-acre, man-made pond located within the ROW for the Glendale pipeline portion of the project area and is adjacent to privately-owned agricultural pastures (**Appendix A**–Sheet 11). Field review showed the wetland to contain primarily narrowleaf willow, a facultative wetland species, with a mix of unknown grass species at the herbaceous stratum (**Appendix D**–Figure 32). Due to the time of year field surveys were conducted, species and thus wetland indicator statuses for these grasses was not attainable. However, because willow was abundant and noticeably dominant throughout the pond at the sapling/shrub stratum, application of the Dominance Test confirmed that hydrophytic vegetation was present. Investigations of the hydrologic and soil conditions also confirmed its status as a wetland, with surface soil cracks present throughout the pond basin and redox depressions throughout the soil sample. No inlet, outlet, or connectivity to other aquatic features was observed and this appears to be an artificially created isolated wetland feature. Boundaries of the wetland were well defined and surrounding vegetation directly adjacent to W2 consisted of upland dominant species.

Perennial, Intermittent and Ephemeral Streams

Potentially jurisdictional aquatic feature, or PJD 1, is a largely ephemeral drainage which bisects the project area in a southeasterly direction through where the proposed reservoir would be constructed (Appendix A-Sheets 1, 2, 6, and 7). Sediment and flow carried within this drainage are collected from terrain northwest of the proposed project area and eventually lead south and out of the project area, debouching into the East Fork Virgin River. The northeast portion of PJD 1 within the project area is situated at the bottom of an approximately 25- to 30-foot deep canyon. Here the OHWM was well-defined with large debris and deposition evident of significant flow from the heavy precipitation experienced in the area days prior to survey. The channel was relatively clear, with some vegetation and sediment consisting of a mix of boulders and clay (Appendix D-Figures 1-3). Average width of PJD 1 here was 17 feet. Further downstream, the width of the OHWM and channel characteristics remain the same and terrain opens up into a large valley (Appendix D-Figures 4-5). No flowing water was observed, although there were numerous areas of pooling and the active floodplain was deeply saturated, making walking the stream difficult to impossible. PJD1a is a smaller intermittent stream tributary to PJD 1 which carries precipitation and snowmelt from mountains directly adjacent and north of the proposed reservoir and access road location (Appendix A-Sheet 2). This stream has a well-defined channel and deposition at the OHWM (Appendix D-Figures 13 and 14). No flowing water was observed within this stream at the time of field surveys. Both PJD 1 and PJD 1a exhibited a clear OHWM and evidence of recent flow and likely have jurisdictional status as WOTUS.

PJD 2 is an ephemeral drainage which bisects the reservoir portion of the project area in a southerly direction along the eastern boundary of where the proposed reservoir would be constructed (**Appendix A**–Sheets 3 and 7). Sediment and flow carried within this drainage are collected from terrain northeast of the proposed project area, leading to the confluence with PJD 1 and eventually to the East Fork Virgin River downstream (**Appendix D**–Figure 6). The upper reaches of PJD 2 are characterized by 50- to 60-foot deep slot canyon walls and a narrow channel with some upland vegetation observed growing in the active floodplain and along canyon walls (**Appendix D**–Figure 18). Channels were not walked on foot in this area during field surveys because of safety concerns due to the unstable cliff walls; however, the conditions of the channel could be easily viewed from above the edge of the canyon. Downstream, PJD 2 opens up into

an open valley landscape where widths of the active floodplain are similar to its upstream segment, but there is more terracing, banks are less steep, and more significant vegetation was present within the channel and floodplain (**Appendix D**–Figures 19-20). Average width of PJD 2 was 14 feet. PJD 2a is a tributary ephemeral drainage which feeds into the upper reach of PJD 2 within the project area, upstream of where the proposed reservoir would occur (**Appendix A**–Sheet 3). This tributary is formed by sheet flow and runoff north of the study area that is diverted into a set of 2 non-functional sediment ponds (**Appendix D**–Figure 15) which then spills into an approximately 50-foot canyon and confluence with PJD2. Average width of PJD 2a was 17 feet. Saturation was evident throughout PJD 2 and PJD 2a, though no flowing water was observed. Due the likelihood of sustained flow events, as indicated by the deep canyons upstream, and the indirect connectivity to the East Fork Virgin River located approximately 0.75 mile downstream, PJD 2 and PJD 2a likely have jurisdictional as WOTUS.

PJD 3 and PJD 3a (PJD3a is tributary to PJD 3) is an ephemeral stream system located at the southwest boundary of where the proposed reservoir would be constructed and runs in a generally easterly direction (**Appendix A**—Sheets 5 and 6). Sediment and flow carried within this small drainage are collected from upland terrain west of the proposed project area, but does not maintain definition or connectivity downstream. Upstream, PJD 3 and PJD 3a exhibited a clear channel, banks, and a well-defined OHWM (**Appendix D**—Figures 21 and 22). Below the confluence of PJD 3 and PJD 3a, this ephemeral stream reaches an existing dirt road downhill of where the OHWM is delineated and all definition of a channel and OHWM disappear (**Appendix D**—Figure 23). Prior to creation of the road, PJD3 may have had surficial connectivity with PJD 1. Currently flow and sediment carried in the upper reaches of PJD 3 dissipate into sheet flow, roughly following the alignment of the road, and likely only reach PJD1 during heavy or extended precipitation or snowmelt events. Average width of PJD 3 and PJD 3a, where an OHWM was observed, was approximately 2 feet. No flowing water was observed during field surveys. Because of its lack of a continuous OHWM or connectivity to other potential WOTUS, PJD 3 and PJD 3a likely do not have jurisdictional status as a WOTUS.

PJD 4 is a short, ephemeral drainage which runs in a southerly direction and is located within the study area, but west of the project area where activities would occur. Flow and sediment carried within this drainage, collected from terrain northwest of the proposed project area, runs in a southerly direction and, similar to PJD 3 and 3a, does not maintain definition or connectivity to other aquatic features downstream. Sheet flow originating from upstream of PJD 4 (Appendix D–Figure 24) is funneled from adjacent hillsides into a steep-walled gorge where the OHWM and channel are well-defined (**Appendix D**–Figures 25-26). The OHWM here was defined by the presence of debris and deposition along the stream banks. As terrain flattens out, the drainage opens up into another section of sheet flow which is gathered in a series of three sediment or watering ponds (Appendix D-Figures 27, 28, 30 and 31). No evidence of an OHWM beyond where terrain opens up nor surface connectivity beyond the lower of the three ponds was observed during field surveys. Average width of PJD 4 where the OHWM was observed was approximately 9 feet. Saturation of soils was evident throughout the area, but no flowing water was observed in PJD 4 during field surveys. Because of its lack of a continuous OHWM or connectivity to other potential WOTUS, PJD 4 likely does not have jurisdictional status as a WOTUS. It should be noted that following consultation with the USACE, this stream was determined to not have jurisdictional status, nor would it be impacted by the project. Therefore, delineation of this stream is not displayed on the maps in Appendix A.

PJD 5 is an intermittent stream located west of W2 which runs in southerly direction and bisects the ROW for the Glendale pipeline portion of the project area (**Appendix A**–Sheet 11). Flow and sediment carried within this stream is collected from mountains directly north of the project area. The stream had flowing water in its approximately 3-foot-wide channel during the time of surveys and showed evidence of recent heavier flow indicated by downed vegetation and large debris deposition at the OHWM (**Appendix D**–Figures 33 and 34). Vegetation surrounding PJD 5 was a mix of upland and riparian species including cottonwood, two-needle pinyon pine, Utah juniper, and oak (*Quercus sp.*). Average width of the OHWM

for PJD 5 within the pipeline ROW was approximately 11 feet. PJD 5 was one of only two streams that had flowing water in the study area, despite the occurrence of heavy rains a few days prior to field surveys. Flow is likely maintained within this stream much of the year, at least seasonally, and because of its proximity and connectivity to the East Fork Virgin River, located approximately 0.2 mile south, PJD 5 likely has jurisdictional status as a WOTUS.

PJD 6 is an intermittent stream located west of W2 and PJD 5 and north of the proposed hydroelectric plant location. PJD 6 runs in a southerly direction and bisects the ROW for the Glendale pipeline portion of the project area (**Appendix A**–Sheet 11). Flow and sediment carried within this stream is collected from mountains directly north of the project area. Like PJD 5, PJD 6 had flowing water in its channel during the time of surveys and showed evidence of recent flood events as indicated by downed, matted vegetation, and debris deposition at the OHWM (**Appendix D**–Figures 35-36). Vegetation was observed within the channel of the intermittent stream which consisted of smaller herbaceous species and grasses. Vegetation surrounding the stream consisted of a mix of upland and riparian species including oak, cottonwood, and cattail. Average width of the OHWM for PJD 6 within the project area was 5 feet. Flow is likely maintained within this stream much of the year, though likely less that PJD 5 as the channel contained vegetation and was significantly smaller. Because of observation in the field of flowing water, a clear OHWM and connectivity to the East Fork Virgin River approximately 0.2 mile south, PJD 6 likely has jurisdictional status as a WOTUS.

A short section of the East Fork Virgin River crossed the proposed ROW for the electric transmission line which leads from the proposed Glendale Hydroelectric Plant location southeast to roughly US-89. The East Fork Virgin River is classified by NWI as an upper perennial riverine feature and is formed from precipitation and snowmelt collected from mountains and valleys north of Glendale. At the time of surveys, this section of the river had a low gradient characterized by flat water with no pools or riffles. Riparian vegetation was abundant including mixed stands of cottonwood, tamarisk, Russian olive, and willow. The East Fork Virgin River's location is labeled on the maps in **Appendix A**; however; the OHWM was not delineated, as project activities are not anticipated to occur within or directly adjacent to the river or its banks.

TABLE 3 DELINEATED WETLAND FEATURES								
ID	Latitude	Longitude	Wetland Type	Wetland Type NWI*	Acres			
W1	37.269568	-112.65711	Isolated Wetland (Non-Jurisdictional)	PABFh	0.03			
W2	37.303818	-112.614124	Isolated Wetland (Non-Jurisdictional)	PABFh/PEM1Fh	0.73			

*Note: Wetlands and Deepwater Habitats Classification **System**—P: Palustrine; **Class**—AB: Aquatic Bed; EM: Emergent; **Modifiers**—F: Semipermanently Flooded; **Special Modifiers**—h: Diked/Impounded (Cowardin et al. 1979).

TABLE 4 POTENTIALLY JURISDICTIONAL AQUATIC FEATURES WITHIN THE PROJECT AREA									
Feature Name	Latitude	Longitude	Distinct Banks/ Channel- ization	Connection to Water Body	Average Width (feet)	Length (feet)	Potential Disturbance (Acres)		
PJD 1	37.273763	-112.663389	Yes	Yes	16	5,700	1.920		
PJD 1a	37.274738	-112.663199	Yes	Yes	3	306	0.021		
PJD 2	37.276115	-112.657022	Yes	Yes	14	2,988	0.970		

TABLE 4 POTENTIALLY JURISDICTIONAL AQUATIC FEATURES WITHIN THE PROJECT AREA									
Feature Name	Latitude	Longitude	Distinct Banks/ Channel- ization	Connection to Water Body Average Width (feet)		Length (feet)	Potential Disturbance (Acres)		
PJD 2a	37.278365	-112.655583	Yes	Yes	17	21	0.010		
PJD 3	37.272185	-112.668303	Yes	No	2	598	0.040		
PJD 3a	37.271801	-112.668842	Yes	No	2	33	0.001		
PJD 5	37.303370	-112.614455	Yes	Yes	11	32	0.004		
PJD 6	37.301501	-112.616446	Yes	Yes	5	38	0.010		

4.2.2 Impacts

The proposed project is expected to permanently impact 2.96 acres, or 9,646 linear feet, and temporarily impact approximately 0.01 acres, or 70 linear feet, of potentially jurisdictional intermittent and ephemeral streams. Although the proposed project area crosses through one wetland at the Glendale pipeline portion of the project area this wetland is an isolated, man-made feature and is not considered jurisdictional. The East Fork Virgin River will remain in its current configuration and impacts within the river or its banks are not anticipated as a result of construction of the proposed project. Total impacts to potentially jurisdictional WOTUS delineated within the project area totals approximately 2.97 acres (2,716 linear feet). Impacts to each identified WOTUS are summarized in **Table 5.**

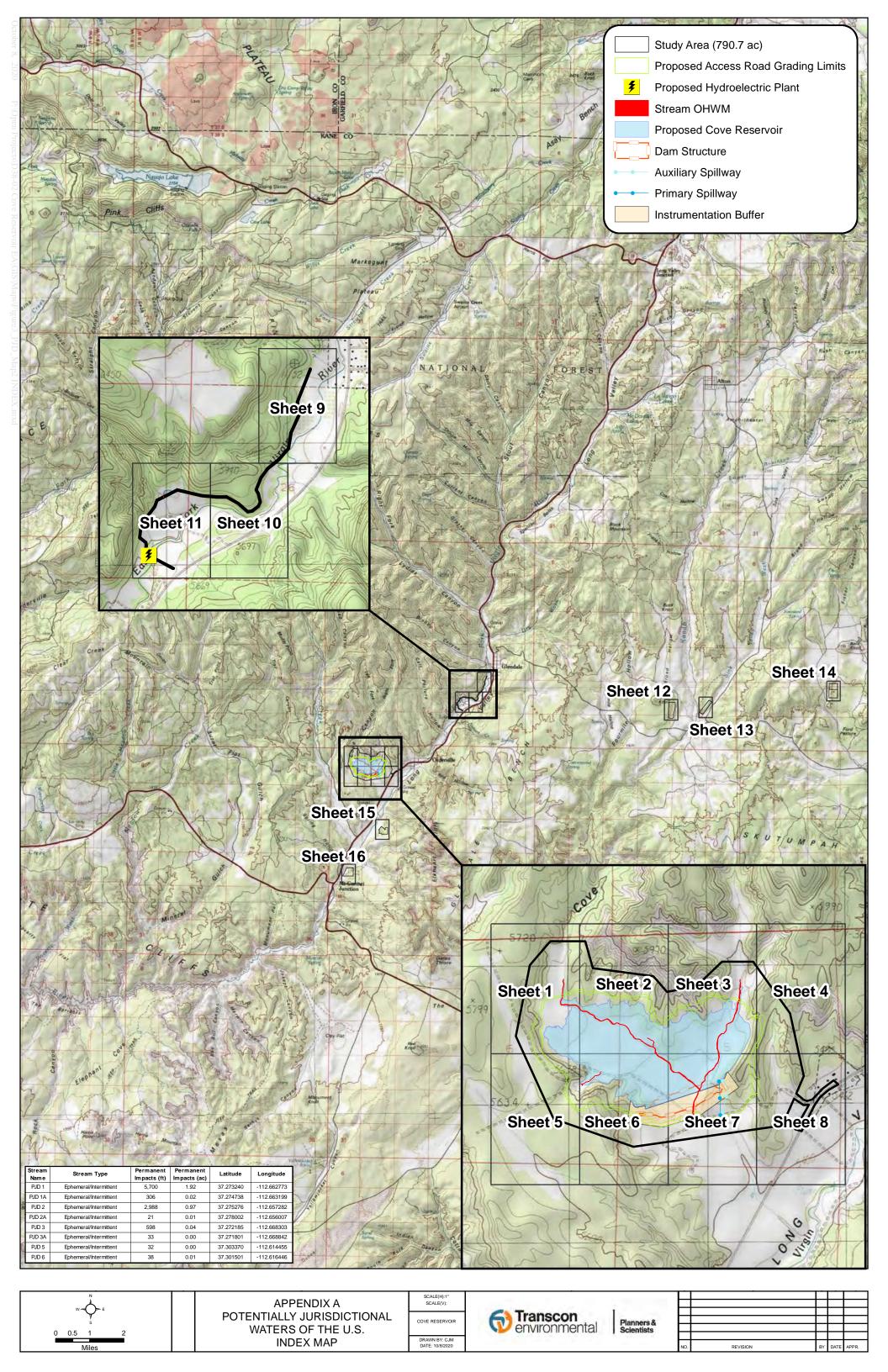
Although designs of the project have not been finalized, the majority of project features are not anticipated to deviate significantly from their currently proposed locations. Permanent impacts would occur to potentially jurisdictional WOTUS where the reservoir, dam, access road, spillways, recreational features (designs yet to be determined) and hydroelectric plant would be constructed. All WOTUS within the boundaries of the proposed reservoir would be disturbed during construction and would be permanently inundated once the dam is complete and the reservoir is filled. Access road construction would also necessitate cut and fill slope in steeper terrain resulting in permanent impacts outside of the 16-foot travel surface. Impacts to intermittent streams during construction of the access road would also occur should bridges or culverts be constructed or fill be installed at stream crossings. An approximate 80-foot by 80-foot area of permanent disturbance would be associated with the installation of the Glendale hydroelectric power plant's new proposed location.

All impacts associated with the Glendale pipeline portion of the study area during pipeline replacement, would be temporary. Staging of material and equipment during construction is anticipated to take place within the reservoir basin and would not require additional temporary disturbance. No impacts within OHWM of the East Fork Virgin River are anticipated. Development of the five borrow pits would result in a total new surface disturbance of approximately 5.7 acres; however no WOTUS are found within the boundaries of these pits and none would be impacted by the use or development of the borrow pits. Temporarily disturbed areas would be returned to pre-construction conditions following construction activities. Applicant-committed best management practices (BMPs) would be employed to minimize long-term surface disturbance.

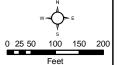
TABLE 5 IMPACTS TO POTENTIALLY JURISDICTIONAL WOTUS						
ID	Acres within Study Area	Impacts (acres)	Impacts (linear feet)			
PJD 1	2.686	1.92	5,700			
PJD1a	0.021	0.021	306			
PJD 2	1.218	0.97	2,988			
PJD2a	0.150	0.01	21			
PJD 3	0.055	0.043	598			
PJD 3a	0.004	0.002	33			
PJD 5	0.018	0.004	32			
PJD 6	0.022	0.01	38			
TOTAL POTENTIAL IMPACTS		2.97	9,716			

SECTION 5 CONCLUSION

Based on our desktop review and field reconnaissance, it has been determined that a total of 2 wetlands, 6 potentially jurisdictional intermittent streams, and 1 perennial river exist within the 805.6-acre study area. It is anticipated that within the 264.4-acre project area footprint, total impacts would be limited to approximately 2.97 acres or 9,716 linear feet within the OHWM of potentially jurisdictional intermittent and ephemeral streams and that no jurisdictional wetlands would be impacted. Although plans for project activities have not yet been finalized, all disturbances would be contained within the study area analyzed within this report. To limit impacts outside of the proposed project footprint, all aquatic features, both within and near the study area, would be further protected through the implementation of BMPs to limit erosion and prevent increased sedimentation.

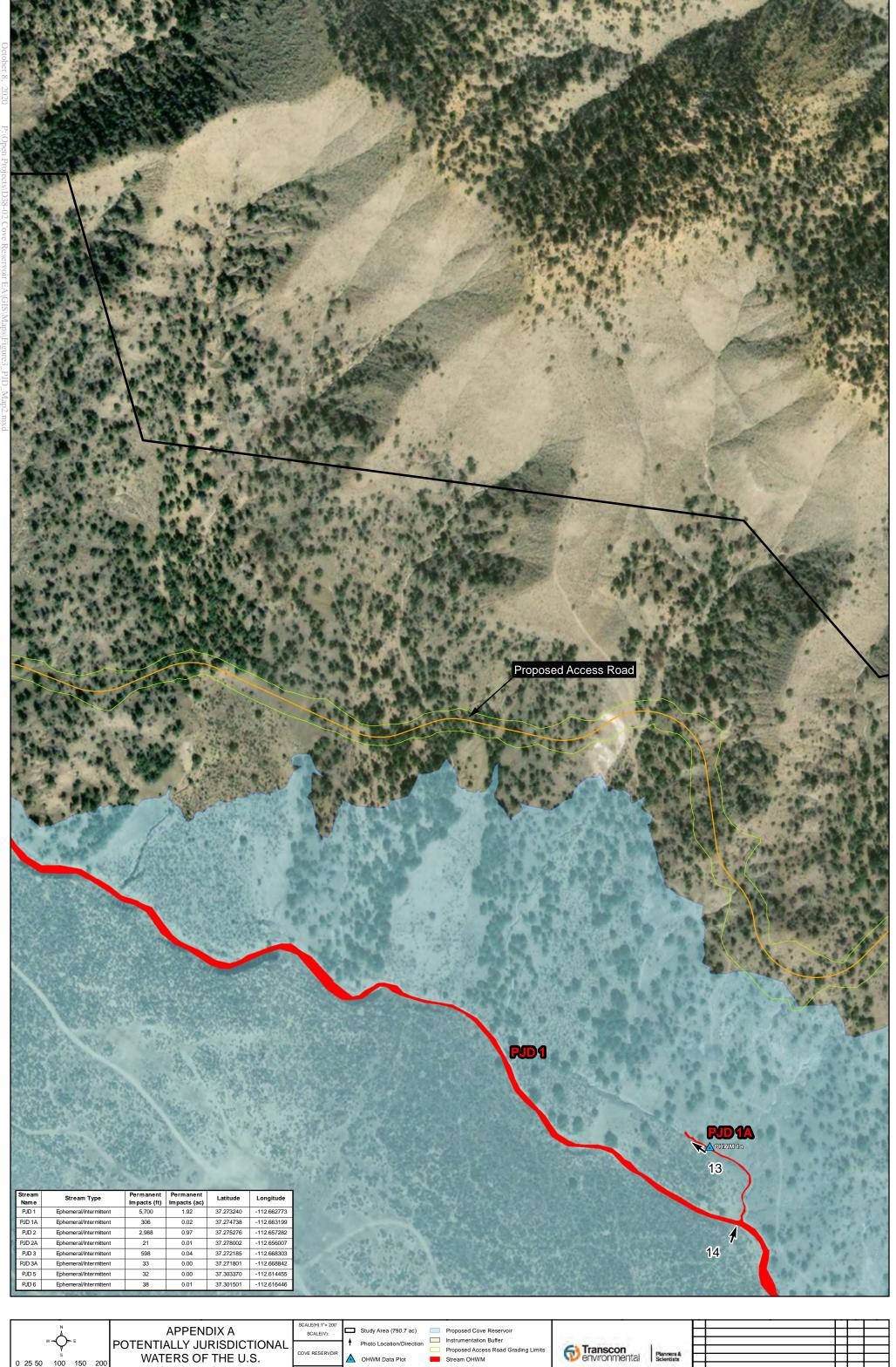

Field surveys of the study area were conducted 2–3 days following a significant rain event in the region. Evidence of mass sheet flow and flooding were present throughout the study area. Within most of the intermittent streams delineated, large debris and deposition clearly marked the location of the OHWM and much of this delineation was based on where this deposition occurred. Only two intermittent streams contained active flow at the time of surveys (PJD 5 and PJD 6) which may indicate these are fed through a spring or seep and flow does not solely rely on precipitation and snowmelt accumulation or runoff. The two wetlands identified are artificial features and artificially fed. Neither showed to have an outlet or connectivity to other aquatic features and both appeared to no longer be in use, or have not been used in the recent past. The perennial feature is the East Fork Virgin River which has jurisdictional status as a WOTUS and is subject to regulation by the USACE under Section 404 of the CWA following review by the USACE; however, construction is not anticipated to impact areas within the river or its banks and would be avoided. No wetlands or other potentially jurisdictional WOTUS were discovered at any of the six borrow pits.

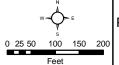
REFERENCES


- Glancy, P.A., and A.S. Van Denburgh. 1969. Water-resources appraisal of the Lower Virgin River Valley Area, Nevada, Arizona, and Utah. U.S. Department of Interior, Geological Survey, and State of Nevada Division of Water Resources.
- Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. *The National Wetland Plant List*; 2016 wetland ratings. Phytoneron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X.
- Lichvar, Robert W. and Shawn M. McColley. 2008. A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States. United States Army Engineer Research and Development Center. Vicksburg, Mississippi.
- Munsell Color X-Rite. 2009. Munsell Soil Color Charts. Grand Rapids, MI.
- Natural Resources Conservation Service (NRCS). 2018. Custom Soil Resource Report for Kane County Area, Utah.
- United States Army Corps of Engineers (USACE). 1987. Corps of Engineers Wetlands Delineation Manual. Department of the Army, Waterways Experiment Station, Vicksburg, Mississippi.
- _____. 2005. Regulatory Guidance Letter No. 05-05. Ordinary High-Water Mark Identification.
- ______. 2007. U.S. Army Corps of Engineers Jurisdictional Determination Form Instructional Guidebook. May 30, 2007. URL: http://www.usace.army.mil/Portals/2/docs/civilworks/regulatory/cwa_guide/jd_guidebook_051207final.pdf.
- _____. 2008. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0). United States Army Engineer Research and Development Center. Vicksburg, Mississippi.
- United States Fish and Wildlife Service (USFWS). 2016. National Wetlands Inventory (NWI), Wetlands Mapper. URL: http://fws.gov/wetlands/Data/Mapper.html.
- United States Geological Service (USGS). 2018. Gap Analysis Program (GAP) Land Cover Data Viewer, Version 2. URL: http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx.
- Vasilas, L.M., G.W. Hurt, and C.V. Noble (eds.). 2010. Field Indicators of Hydric Soils in the United States, Version 7.0. USDA, NRCS, in cooperation with the National Technical Committee for Hydric Soils. http://soils.usda.gov/use/hydric/ or ftp://ftp-c.sc.egov.usda.gov/NSSC/Hydric _Soils/FieldIndicators_v7.pdf>.
- Weather Underground. 2018. Accessed September 6, 2018. URL: https://www.wunderground.com/
- Woods, A.J., Lammers, D.A., Bryce, S.A., Omernik, J.M., Denton, R.L., Domeier, M., and Comstock, J.A., 2001, Ecoregions of Utah (color poster with map, descriptive text, summary tables, and photographs): Reston, Virginia, U.S. Geological Survey (map scale 1:1,175,000).

APPENDIX A

AQUATIC RESOURCE DELINEATION MAPS

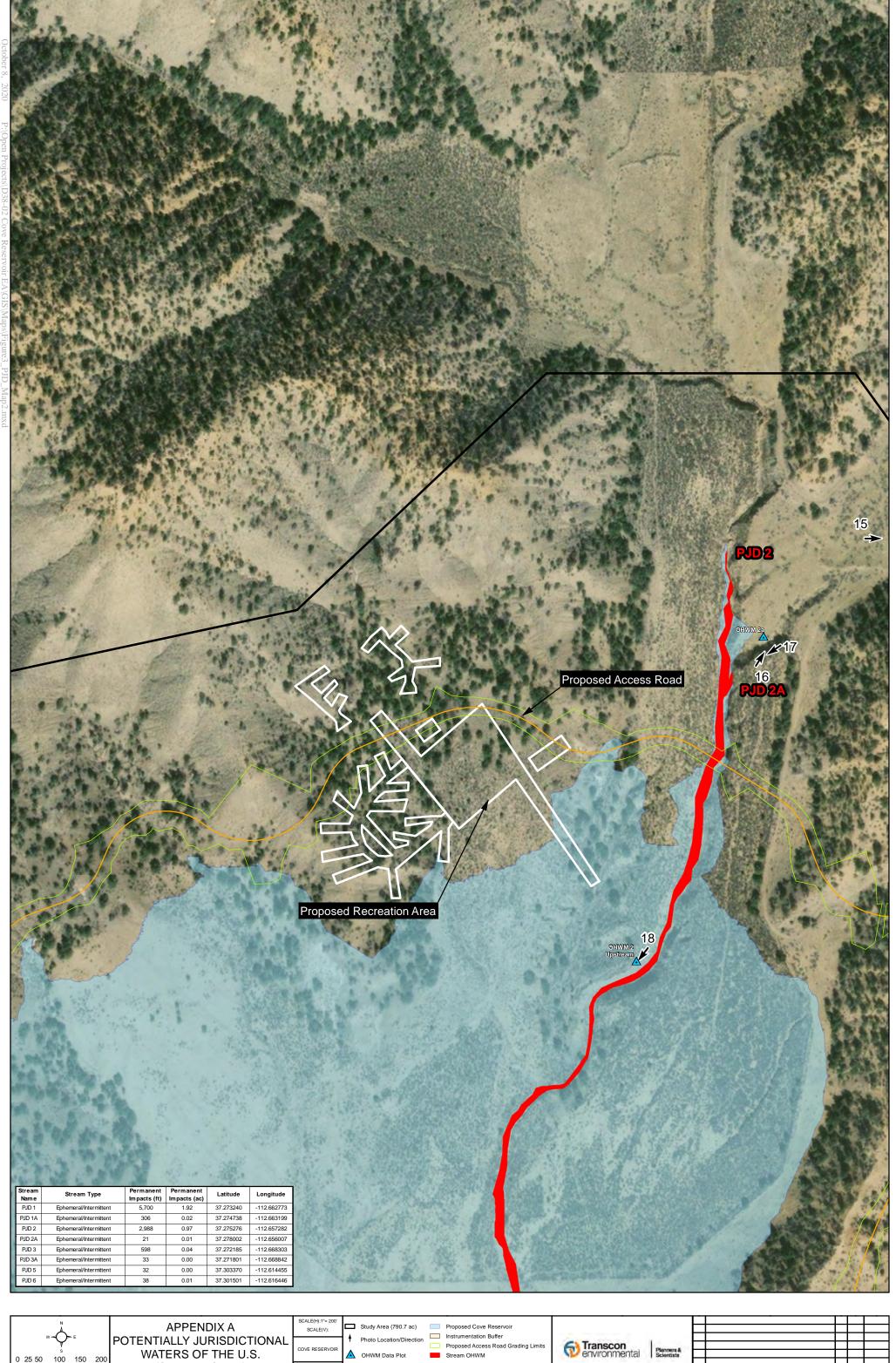


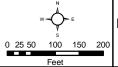

WATERS OF THE U.S. (SHEET 1 OF 16)

DRAWN BY: CJM

△ OHWM Data Plot Soil Pit

Stream OHWM




WATERS OF THE U.S. (SHEET 2 OF 16)

DRAWN BY: CJM

△ OHWM Data Plot Soil Pit

Stream OHWM

WATERS OF THE U.S. (SHEET 3 OF 16)

DRAWN BY: CJM

△ OHWM Data Plot Soil Pit

Stream OHWM

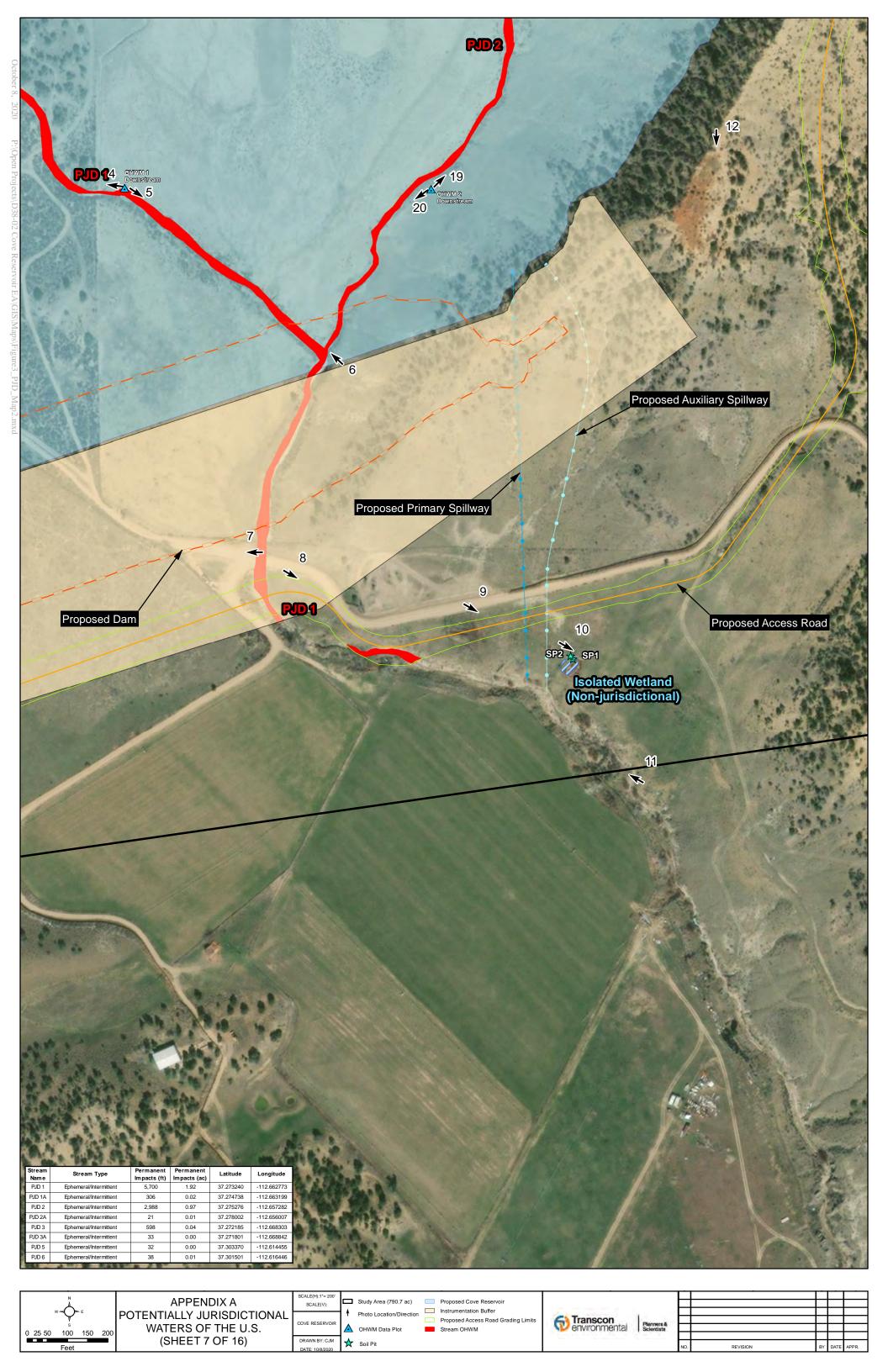
0 25 50 100 150 200

WATERS OF THE U.S. (SHEET 5 OF 16)

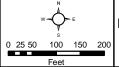
△ OHWM Data Plot Soil Pit

DRAWN BY: CJM

Stream OHWM



0 25 50 100 150 200


(SHEET 6 OF 16)

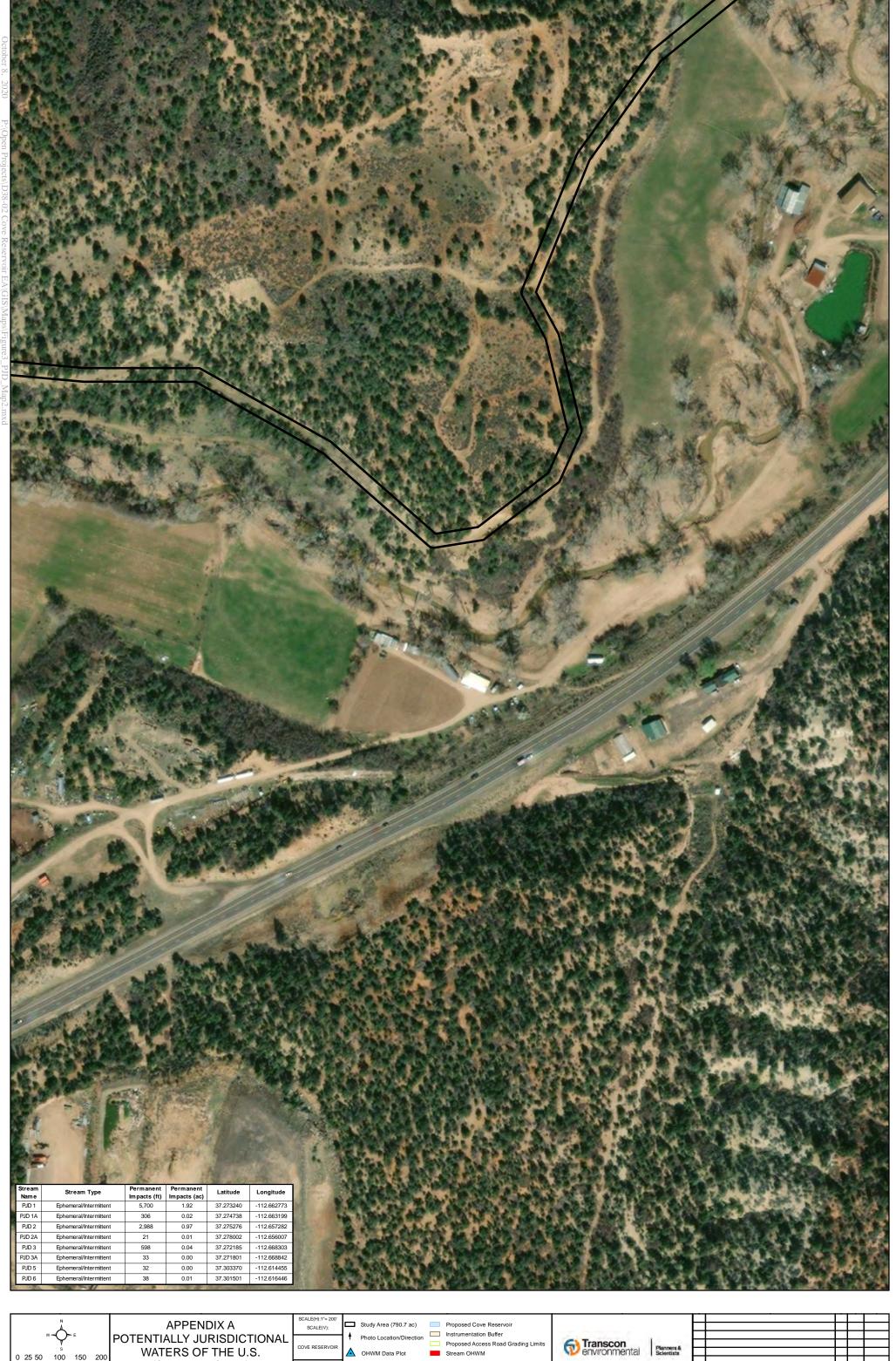
DRAWN BY: CJM

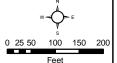
Soil Pit

WATERS OF THE U.S. (SHEET 8 OF 16)

△ OHWM Data Plot DRAWN BY: CJM Soil Pit

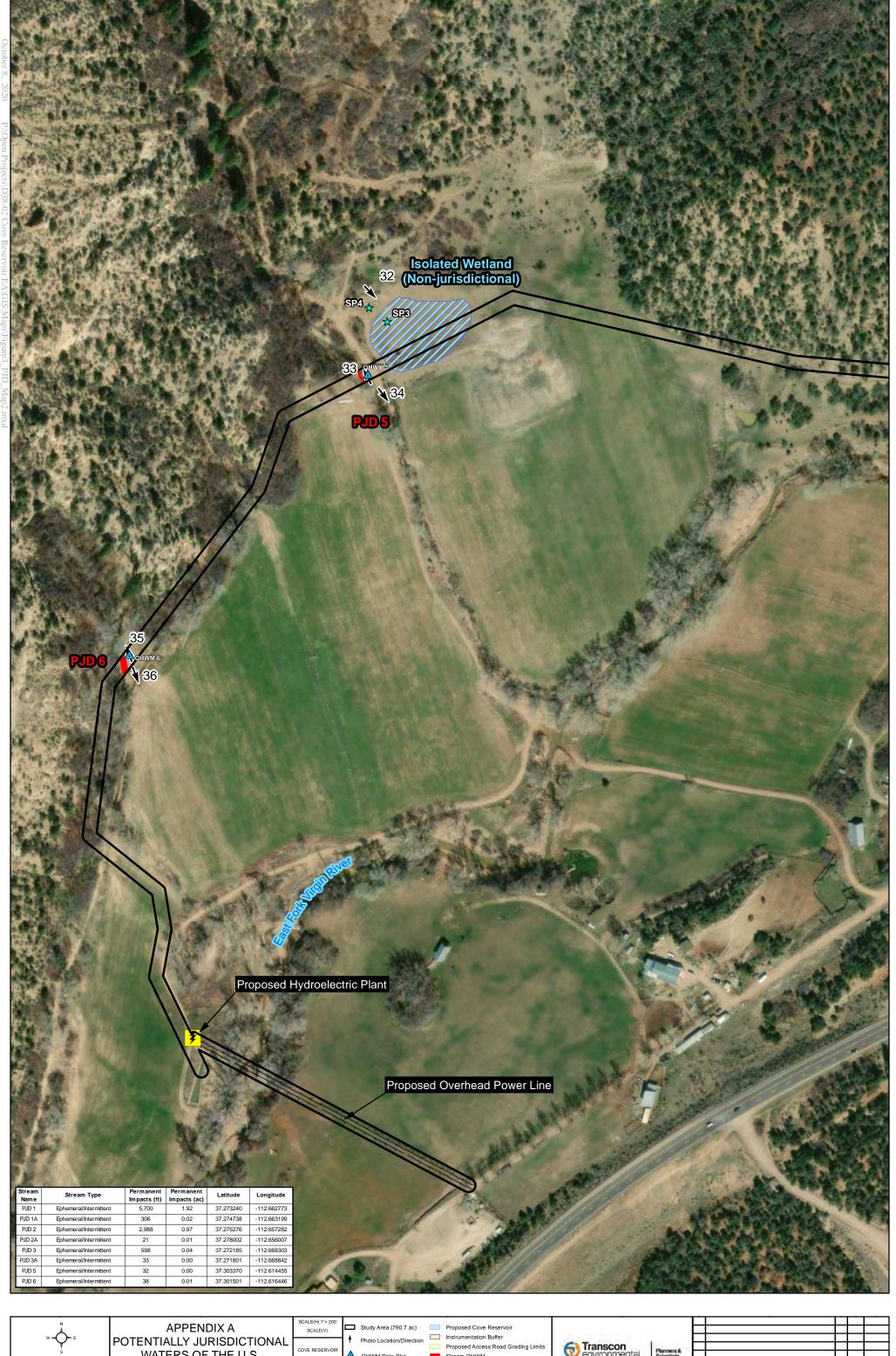
Stream OHWM

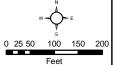

0 25 50 100 150 200


POTENTIALLY JURISDICTIONAL WATERS OF THE U.S. (SHEET 9 OF 16)

△ OHWM Data Plot DRAWN BY: CJM Soil Pit

Proposed Access Road Grading Limits Stream OHWM




WATERS OF THE U.S. (SHEET 10 OF 16)

△ OHWM Data Plot DRAWN BY: CJM Soil Pit

Stream OHWM

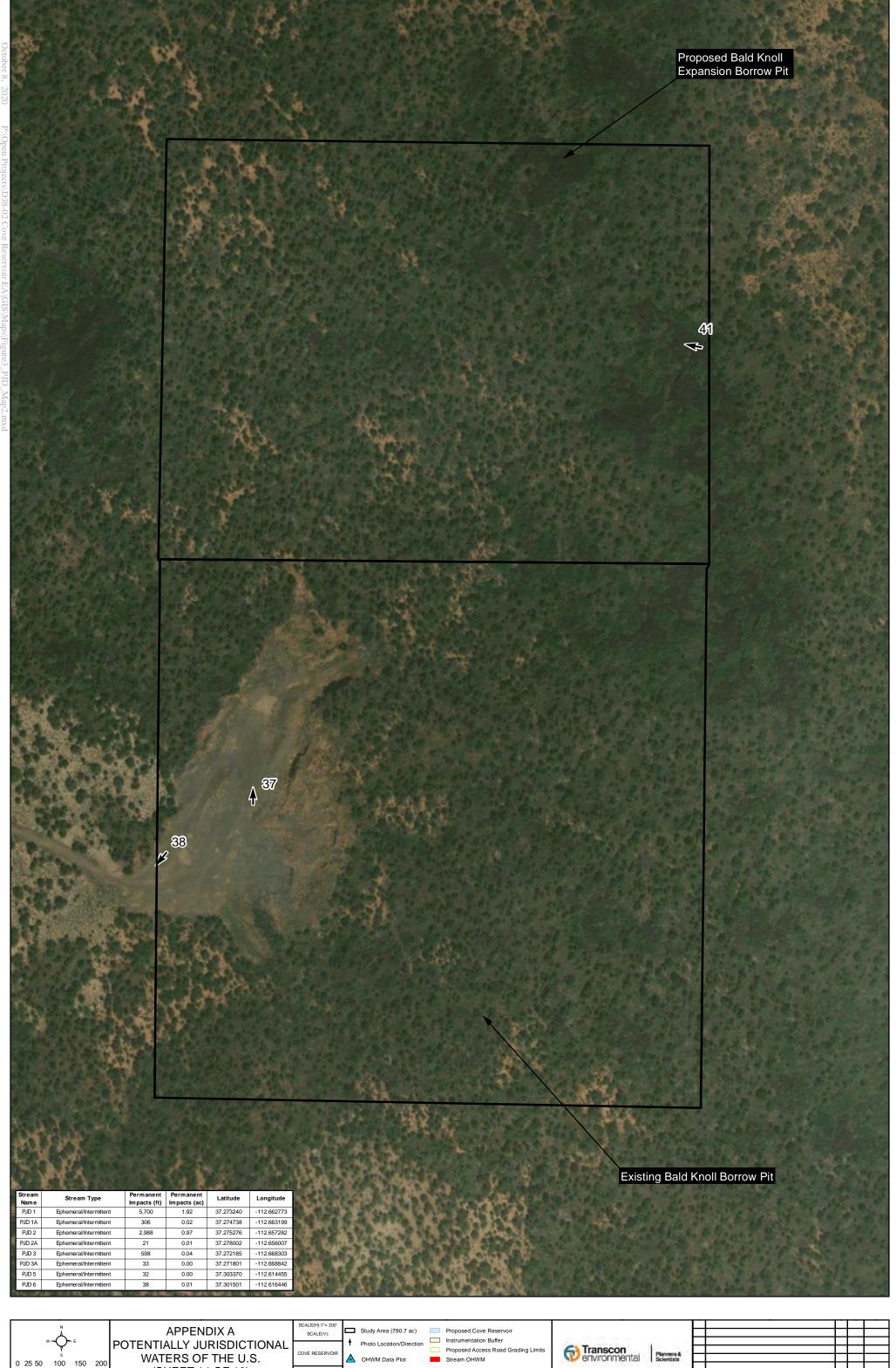
WATERS OF THE U.S. (SHEET 11 OF 16)

△ OHWM Data Plot DRAWN BY: CJM Soil Pit

Stream OHWM

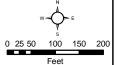
Transcon environmental

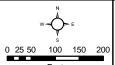
Planners & Scientists REVISION


0 25 50 100 150 200

WATERS OF THE U.S. (SHEET 13 OF 16)

△ OHWM Data Plot DRAWN BY: CJM Soil Pit


Stream OHWM


WATERS OF THE U.S. (SHEET 15 OF 16)

△ OHWM Data Plot DRAWN BY: CJM Soil Pit

Stream OHWM

WATERS OF THE U.S. (SHEET 16 OF 16)

△ OHWM Data Plot Stream OHWM Soil Pit

DRAWN BY: CJM

APPENDIX B

WETLAND DELINEATION FORMS AND OHWM DATA SHEETS

WETLAND DETERMINATION DATA FORM – Arid West Region

Project Site: <u>Cove Reservor</u>			City/Count	ty: <u>Orderville/Kane</u>	Sampling Date:	10/8/1	8
Applicant/Owner: Kane County Water Conservance	y District		•	State: UT	Sampling Point:		_
Investigator(s): <u>Brian Parker</u>			Section, To	ownship, Range:			
Landform (hillslope, terrace, etc.): depression		Loc	cal relief (cor	ncave, convex, none): <u>concave</u>	Slop	pe (%):	<u>1</u>
Subregion (LRR): <u>D</u>	Lat:			Long:	Datum: N	√ad 83 Z	Zone 12N
Soil Map Unit Name:				NWI class	sification: <u>IFreshwa</u>	ater Pon	ı <u>d</u>
Are climatic / hydrologic conditions on the site typi	cal for this tir	ne of year?	Yes 🛚	No ☐ (If no, explain in R	emarks.)		
Are Vegetation □, Soil □, or Hydrology	☐ signific	antly disturbed	? Are "	Normal Circumstances" present?	Yes	\boxtimes	No 🗆
Are Vegetation □, Soil □, or Hydrology	☐ natural	lly problematic?	? (If ne	eded, explain any answers in Rema	irks.)		
			`	•	•		
SUMMARY OF FINDINGS – Attach site map sl	nowing sar	npling point	locations,	transects, important features	, etc.		
Hydrophytic Vegetation Present?	Yes 🛛	No 🗆		·			
Hydric Soil Present?	Yes 🛚	No 🗆	Is the Sam	pled Area within a Wetland?	Yes		No 🗆
Wetland Hydrology Present?	Yes 🛛	No 🗆					
Remarks: Wetland is the product of a man-made pond	The nond	has not natural	outlet and is	artificially fed through underground	and above ground	irrinatio	n
Isolated. No surface water appeared to be						iiiigatioi	
VEGETATION - Use scientific names of plants	S.						
Tree Stratum (Plot size:1000 sq.ft.)	Absolute	Dominant	Indicator	Dominance Test Worksheet:			
1. <u>N/A</u>	% Cover	Species?	<u>Status</u>				
2.				Number of Dominant Species That Are OBL, FACW, or FAC:	<u>1</u>		(A)
3.							
4.				Total Number of Dominant Species Across All Strata:	<u>1</u>		(B)
50% =, 20% =	0	= Total Cover					
Sapling/Shrub Stratum (Plot size:1000 sq.ft.)	<u>u</u>	- Total Covel		Percent of Dominant Species That Are OBL, FACW, or FAC:	<u>100</u>		(A/B)
, , , , , , , , , , , , , , , , , , , ,				Prevalence Index worksheet:	_		
1. <u>N/A</u> 2.					NA: dtimb		
				Total % Cover of :	Multiply	<u>/ by:</u>	
3 4.				OBL species	x1 =		-
5.				FACW species	x2 =		-
				FAC species	x3 =		-
50% =, 20% =	<u>0</u>	= Total Cover		FACU species	x4 =		-
Herb Stratum (Plot size: 1000 sq.ft.)				UPL species	x5 =		-
1. <u>Typha latifolia</u>	<u>99</u>	<u>yes</u>	<u>OBL</u>	Column Totals: (A)			(B)
2				Prevalence Ind	ex = B/A =		
3				Hydrophytic Vegetation Indicate	ors:		
4				☑ Dominance Test is >50)%		
5				☐ Prevalence Index is ≤3	3.0 ¹		
6				Morphological Adaptat	4	orting	
7				data in Remarks or on	a separate sheet)	_	
8				☐ Problematic Hydrophyt	tic Vegetation ¹ (Exp	lain)	
50% =, 20% =	<u>99</u>	= Total Cover	-	1.		,	
Woody Vine Stratum (Plot size:1000 sq.ft.)				¹ Indicators of hydric soil and wetla be present, unless disturbed or pro			
1. <u>N/A</u>				be present, unless disturbed or pro	blematic.		
2				Lhadranhadia			
50% =, 20% =	0	= Total Cover	. –	Hydrophytic Vegetation	Yes 🛛	No	
% Bare Ground in Herb Stratum <u>0</u>	% Cover	of Biotic Crust	<u>0</u>	Present?			
Remarks: Vegetaton is almost completely ca	ittail w/ some	unknown arae	ses around t	he edge of the nond			
v ogotatori is almost completely of	**/ 501110	Samurovin gras	220 around t	sage of the police.			

US Army Corps of Engineers Arid West – Version 2.0

Project Site: Cove Reservoir

SOIL Sampling Point: W1 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Redox Features Depth **Texture** (inches) Color (moist) % Color (Moist) % Type¹ Loc² Remarks 6/10BG Gley2 80 6/4 10YR 20 0-4 <u>clay</u> 0-4 Plant material 20 4-20 6/10BG Gley2 99 6/4 10YR 20 Plant material mostly absent clay ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ²Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils³: Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histosol (A1) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) П Loamy Mucky Mineral (F1) Reduced Vertic (F18) \boxtimes Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) П Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) \boxtimes Thick Dark Surface (A12) Redox Depressions (F8) ³Indicators of hydrophytic vegetation and Sandy Mucky Mineral (S1) Vernal Pools (F9) wetland hydrology must be present, Sandy Gleyed Matrix (S4) unless disturbed or problematic. Restrictive Layer (if present): Type: Depth (Inches): **Hydric Soils Present?** \boxtimes No Remarks: Redox features present throughout sample pit and around roots. **HYDROLOGY** Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required) Water Marks (B1) (Riverine) Surface Water (A1) Salt Crust (B11) Sediment Deposits (B2) (Riverine) High Water Table (A2) Biotic Crust (B12) Drift Deposits (B3) (Riverine) Saturation (A3) Aquatic Invertebrates (B13) Water Marks (B1) (Nonriverine) Hydrogen Sulfide Odor (C1) Drainage Patterns (B10) Sediment Deposits (B2) (Nonriverine) \boxtimes Oxidized Rhizospheres along Living Roots (C3) Dry-Season Water Table (C2) Drift Deposits (B3) (Nonriverine) Presence of Reduced Iron (C4) Crayfish Burrows (C8) Surface Soil Cracks (B6) Recent Iron Reduction in Tilled Soils (C6) Saturation Visible on Aerial Imagery (C9) \boxtimes Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Thin Muck Surface (C7) Water-Stained Leaves (B9) Other (Explain in Remarks) FAC-Neutral Test (D5) Field Observations: \boxtimes Surface Water Present? Yes No Depth (inches): Water Table Present? \boxtimes Yes No Depth (inches): Saturation Present? \boxtimes \boxtimes Wetland Hydrology Present? No Yes No Depth (inches): Yes (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks: Aerial imagery and evidence of periodic artificial fed indundation (irrigation hoses/lines around pond) indicate that the pond occasionally has surface water.

US Army Corps of Engineers

Arid West – Version 2.0

WETLAND DETERMINATION DATA FORM – Arid West Region

Project Site: Cove Reservor			City/Count	ty: Orderville/Kane	Samplir	ng Date:	10/8/	<u>18</u>	
Applicant/Owner: Kane County Water Conservant	cy District			State: <u>UT</u>	Samplin	g Point:	UPL1	L	
Investigator(s): Brian Parker			Section, T	ownship, Range:					
Landform (hillslope, terrace, etc.): hillslope		Lo	cal relief (cor	ncave, convex, none): <u>none</u>		Slo	pe (%):	<u>1</u>	
Subregion (LRR): <u>D</u>	Lat:	_		Long:	Da	atum: <u>N</u>	lad 83	Zone	12N
Soil Map Unit Name:				NWI class	ification: I	N/A			
Are climatic / hydrologic conditions on the site typ	ical for this tin	ne of year?	Yes 🛚	No (If no, explain in Re	emarks.)				
Are Vegetation \square , Soil \square , or Hydrology	☐ signific	antly disturbed	? Are "	Normal Circumstances" present?		Yes	\boxtimes	No	
Are Vegetation \square , Soil \square , or Hydrology	☐ natural	ly problematic	? (If ne	eded, explain any answers in Remar	ks.)				
SUMMARY OF EINDINGS Attach site man	howing con	nnling noint	loostions	transacta important footures	oto				
SUMMARY OF FINDINGS – Attach site map s Hydrophytic Vegetation Present?	Yes		iocations,	transects, important reatures,	, etc.				
Hydric Soil Present?	Yes 🗆	_	ls the Sam	pled Area within a Wetland?		Yes	П	No	M
Wetland Hydrology Present?	Yes 🗆		io tho Gan	ipiou ra ou maini a modalia.					
Remarks: Location is adjacent and slightly upslop		made pond/w	retiand featt	ire.					
VEGETATION – Use scientific names of plant	Absolute	Dominant	Indicator	Daminana Tank Wantah ask					
Tree Stratum (Plot size: 200 sq. ft.)	% Cover	Species?	<u>Status</u>	Dominance Test Worksheet:					
1. <u>N/A</u>				Number of Dominant Species		<u>0</u>		((A)
2				That Are OBL, FACW, or FAC:					
3				Total Number of Dominant Species Across All Strata:		<u>1</u>		((B)
4				•					
50% =, 20% =	<u>0</u>	= Total Cover	r	Percent of Dominant Species That Are OBL, FACW, or FAC:		<u>0</u>		((A/B)
Sapling/Shrub Stratum (Plot size: 200 sqft.)									
1. <u>N/A</u> 2.				Prevalence Index worksheet:		Multipl			
3.				Total % Cover of :		Multipl	<u>y by:</u>		
4.				OBL species FACW species		x1 = x2 =		_	
5.				FAC species		x2 - x3 =	-	_	
50% =, 20% =		- Total Cava		·				_	
	<u>0</u>	= Total Cover		FACU species		x4 =		_	
Herb Stratum (Plot size: 200 sq. ft.)	_			UPL species		x5 =		_ (5)	
1. Atriplex confertifolia	<u>5</u>	<u>no</u>	<u>FAC</u>	Column Totals: (A)				_ (B)	
2. <u>Pascopyrum smithii</u>	<u>5</u>	<u>no</u>	<u>FAC</u>	Prevalence Inde					
3. <u>Hesperotstipa comata</u>	<u>35</u>	<u>yes</u>	NL (UPL)	Hydrophytic Vegetation Indicato					
4. <u>Symphyotrichum spathulatum</u>	<u>10</u>	<u>no</u>	<u>UPL</u>	Dominance Test is >50	%				
5				☐ Prevalence Index is ≤3	.0 ¹				
6				Morphological Adaptati			orting		
7				data in Remarks or on	a separate	sneet)			
8				□ Problematic Hydrophyti	ic Vegetati	on¹ (Exp	lain)		
50% =, 20% =	<u>55</u>	= Total Cover	r	1 Indicators of budgis sail and watton	ad budrala				
Woody Vine Stratum (Plot size: 200 sq. ft.)				Indicators of hydric soil and wetlar be present, unless disturbed or pro		gy musi			
1. <u>N/A</u>									
2				Hydrophytic		_			_
50% =, 20% =	<u>0</u>	= Total Cover	r	Vegetation Present?	Yes		No		\boxtimes
% Bare Ground in Herb Stratum 45	% Cover	of Biotic Crust	<u>0</u>	Fresenti					
Remarks: Vegetaton is almost completely c	attail w/ some	unknown gras	ses around t	he edge of the pond.					

US Army Corps of Engineers Arid West – Version 2.0

SOIL Sampling Point: UPL1 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Redox Features Depth (inches) Color (moist) % Color (Moist) Type¹ Loc² **Texture** Remarks 4/3 2.5 YR 0-20 100 N/A ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ²Location: PL=Pore Lining, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histosol (A1) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) П П Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) П Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) ³Indicators of hydrophytic vegetation and Sandy Mucky Mineral (S1) Vernal Pools (F9) wetland hydrology must be present, Sandy Gleyed Matrix (S4) unless disturbed or problematic. Restrictive Layer (if present): Type: Depth (Inches): **Hydric Soils Present?** No \boxtimes Soil slightly moist; likely due to heavy rain a few days prior to field survey (massive sheet flow, flash flooding in area) Remarks: **HYDROLOGY** Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required) Salt Crust (B11) Water Marks (B1) (Riverine) Surface Water (A1) Sediment Deposits (B2) (Riverine) High Water Table (A2) Biotic Crust (B12) Drift Deposits (B3) (Riverine) Saturation (A3) Aquatic Invertebrates (B13) Water Marks (B1) (Nonriverine) Hydrogen Sulfide Odor (C1) Drainage Patterns (B10) Sediment Deposits (B2) (Nonriverine) Oxidized Rhizospheres along Living Roots (C3) Dry-Season Water Table (C2) Drift Deposits (B3) (Nonriverine) Presence of Reduced Iron (C4) Crayfish Burrows (C8) Surface Soil Cracks (B6) Recent Iron Reduction in Tilled Soils (C6) Saturation Visible on Aerial Imagery (C9) Inundation Visible on Aerial Imagery (B7) Shallow Aquitard (D3) Thin Muck Surface (C7) Water-Stained Leaves (B9) Other (Explain in Remarks) FAC-Neutral Test (D5) Field Observations: \boxtimes Surface Water Present? Yes No Depth (inches): Water Table Present? \boxtimes Yes No Depth (inches): Saturation Present? \boxtimes \boxtimes Wetland Hydrology Present? No Yes No Depth (inches): Yes (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks: Hillside above pond

US Army Corps of Engineers Arid West – Version 2.0

WETLAND DETERMINATION DATA FORM – Arid West Region

Project Site: Glendale Pipeline			City/Coun	ty: <u>Orderville/Kane</u>	Sampling Date:	10/9/18
Applicant/Owner: Kane County Water Conservance	y District			State: <u>UT</u>	Sampling Point:	<u>W2</u>
Investigator(s): Brian Parker			Section, T	ownship, Range:		
Landform (hillslope, terrace, etc.): pond basin		Loc	cal relief (co	ncave, convex, none): <u>concave</u>	Slope	e (%): <u>0</u>
Subregion (LRR): <u>D</u>	Lat:			Long:	Datum: <u>Na</u>	ad 83 Zone 12N
Soil Map Unit Name:				NWI classifi	cation: <u>N/A</u>	
Are climatic / hydrologic conditions on the site typi	cal for this tin	ne of year?	Yes 🛚	No 🔲 (If no, explain in Ren	narks.)	
Are Vegetation ☐, Soil ☐, or Hydrology	☐ signific	antly disturbed	? Are "	Normal Circumstances" present?	Yes [⊠ No □
Are Vegetation □, Soil □, or Hydrology	☐ natural	ly problematic?	? (If ne	eeded, explain any answers in Remarks	s.)	
SUMMARY OF FINDINGS – Attach site map sl	owing car	anlina noint	locations	transacte important features	nto	
Hydrophytic Vegetation Present?	Yes 🛛		iocations,	transects, important leatures, t	,	
Hydric Soil Present?	Yes 🏻		le the San	npled Area within a Wetland?	Yes [⊠ No □
*	_		is the San	ipieu Area witiiii a Wetialiu:	ies (
Wetland Hydrology Present?	Yes 🛚	No 🗆				
Remarks: Location is within the basin of a man-ma	ide pond					
VEGETATION – Use scientific names of plants		<u> </u>		I		
Tree Stratum (Plot size: 1000 sq. ft.)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:		
1. <u><i>N/A</i></u>				Number of Dominant Species	2	(4)
2				That Are OBL, FACW, or FAC:	<u>3</u>	(A)
3				Total Number of Dominant	2	(D)
4				Species Across All Strata:	<u>3</u>	(B)
50% =, 20% =	<u>0</u>	= Total Cover	•	Percent of Dominant Species	100	(A/D)
Sapling/Shrub Stratum (Plot size:1000 sqft.)				That Are OBL, FACW, or FAC:	<u>100</u>	(A/B)
1. <u>Salix exigua</u>	<u>70</u>	<u>yes</u>	FACW	Prevalence Index worksheet:		
2.				<u>Total % Cover of :</u>	Multiply	<u>by:</u>
3.				OBL species	x1 =	
4				FACW species	x2 =	
5				FAC species	x3 =	
50% =, 20% =	<u>0</u>	= Total Cover		FACU species	x4 =	
Herb Stratum (Plot size: 1000 sq. ft.)				UPL species	x5 =	
1. <u>Unknown grass</u>	<u>40</u>	<u>yes</u>	<u>NO</u>	Column Totals: (A)		(B)
2. <u>Symphyotrichum spathulatum</u>	20	<u>ves</u>	FAC	Prevalence Index	= B/A =	
3				Hydrophytic Vegetation Indicators		
4				☐ Dominance Test is >50%)	
5				☐ Prevalence Index is ≤3.0	1	
6				Morphological Adaptation		rtina
7	·			data in Remarks or on a		rung
8.	·			☐ Problematic Hydrophytic	Vegetation ¹ (Evol:	ain)
50% =, 20% =	45	= Total Cover	. —	— Troblematic Hydrophytic	vegetation (Expla	aii i <i>j</i>
Woody Vine Stratum (Plot size:1000 sq. ft.)	<u></u>			¹ Indicators of hydric soil and wetland		
1. <u>N/A</u>				be present, unless disturbed or prob	ematic.	
2.						
50% = , 20% =	0	= Total Cover	. —	Hydrophytic Vegetation	Yes ⊠	No 🗆
% Bare Ground in Herb Stratum 20	∽ % Cover	of Biotic Crust	0	Present?		
				L sumed to be OBL, FACW, or FAC		

US Army Corps of Engineers Arid West – Version 2.0

Project Site: Glendale Pipeline

SOIL Sampling Point: W2 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Redox Features Depth **Texture** (inches) Color (moist) % Color (Moist) % Type¹ Loc² Remarks 6/2 5YR 0-20 100 5/6 7.5YR <u>10</u> redox throughout entire sample <u>clay</u> ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ²Location: PL=Pore Lining, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histosol (A1) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) П Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) П Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) \boxtimes Thick Dark Surface (A12) Redox Depressions (F8) ³Indicators of hydrophytic vegetation and Sandy Mucky Mineral (S1) Vernal Pools (F9) wetland hydrology must be present, Sandy Gleyed Matrix (S4) unless disturbed or problematic. Restrictive Layer (if present): Type: Depth (Inches): **Hydric Soils Present?** \boxtimes No Remarks: Soil slightly moist **HYDROLOGY** Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required) Salt Crust (B11) Water Marks (B1) (Riverine) Surface Water (A1) Sediment Deposits (B2) (Riverine) High Water Table (A2) Biotic Crust (B12) Drift Deposits (B3) (Riverine) Saturation (A3) Aquatic Invertebrates (B13) Water Marks (B1) (Nonriverine) Hydrogen Sulfide Odor (C1) Drainage Patterns (B10) Sediment Deposits (B2) (Nonriverine) Oxidized Rhizospheres along Living Roots (C3) Dry-Season Water Table (C2) Drift Deposits (B3) (Nonriverine) Presence of Reduced Iron (C4) Crayfish Burrows (C8) \boxtimes Surface Soil Cracks (B6) Recent Iron Reduction in Tilled Soils (C6) Saturation Visible on Aerial Imagery (C9) \boxtimes Inundation Visible on Aerial Imagery (B7) Shallow Aquitard (D3) Thin Muck Surface (C7) Water-Stained Leaves (B9) Other (Explain in Remarks) FAC-Neutral Test (D5) Field Observations: \boxtimes Surface Water Present? Yes No Depth (inches): Water Table Present? \boxtimes Yes No Depth (inches): Saturation Present? \boxtimes \boxtimes Wetland Hydrology Present? No Yes No Depth (inches): Yes (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

US Army Corps of Engineers Arid West – Version 2.0

Remarks: Likely seasonal inundation during periods of irrigation and/or heavy precipitation

WETLAND DETERMINATION DATA FORM – Arid West Region

Project Site: <u>Glendale Pipeline</u>			City/Coun	ty: <u>Orderville/Kane</u>	Sampling Date:	: <u>10/9/</u>	<u>18</u>
Applicant/Owner: Kane County Water Conservance	y District			State: <u>UT</u>	Sampling Point	: <u>UPL2</u>	2
Investigator(s): Brian Parker			Section, T	ownship, Range:			
Landform (hillslope, terrace, etc.): pond basin		Lo	cal relief (co	ncave, convex, none): concave	Slo	pe (%):	: <u>0</u>
Subregion (LRR): <u>D</u>	Lat:	_		Long:	Datum:	Nad 83	Zone 12N
Soil Map Unit Name:				NWI classif	fication: <u>N/A</u>		
Are climatic / hydrologic conditions on the site typi	cal for this tin	ne of year?	Yes 🛚	No	narks.)		
Are Vegetation □, Soil □, or Hydrology	☐ signific	antly disturbed	? Are "	Normal Circumstances" present?	Yes	\boxtimes	No 🗆
Are Vegetation □, Soil □, or Hydrology	_	ly problematic		eded, explain any answers in Remark	(s.)		
		.,	(, - ,	,		
SUMMARY OF FINDINGS – Attach site map sh	nowing san	nplina point	locations.	transects, important features.	etc.		
Hydrophytic Vegetation Present?	Yes 🗆						
Hydric Soil Present?	Yes 🏻		Is the San	pled Area within a Wetland?	Yes		No ⊠
Wetland Hydrology Present?	Yes 🗆					_	
		110 24					
Remarks: Location is above pond on relatively flat							
VEGETATION – Use scientific names of plants	S. Absolute	Dominant	Indicator				
Tree Stratum (Plot size: 100 sq.ft)	% Cover	Species?	<u>Status</u>	Dominance Test Worksheet:			
1. <u>N/A</u>				Number of Dominant Species	<u>0</u>		(A)
2				That Are OBL, FACW, or FAC:	<u> </u>		(7.1)
3				Total Number of Dominant	<u>2</u>		(B)
4				Species Across All Strata:	<u> </u>		(6)
50% =, 20% =	<u>0</u>	= Total Cover		Percent of Dominant Species	0		(A/D)
Sapling/Shrub Stratum (Plot size: 100 sqft.)				That Are OBL, FACW, or FAC:	<u>0</u>		(A/B)
1. <u>Chrysothamnus viscidiflorus</u>	<u>20</u>	<u>yes</u>	NL (UPL)	Prevalence Index worksheet:			
2. <u>Purshia tridentata</u>	<u>20</u>	<u>yes</u>	NL (UPL)	Total % Cover of :	Multip	ıy by:	
3.				OBL species	x1 =		_
4				FACW species	x2 =		_
5				FAC species	x3 =		_
50% =, 20% =	<u>40</u>	= Total Cover		FACU species	x4 =		_
Herb Stratum (Plot size:100 sq. ft.)				UPL species	x5 =		
1. Sphaeralcea sp.	<u>10</u>	<u>no</u>	NL (UPL)	Column Totals: (A)			(B)
2. <u>Salsola tragus</u>	<u>5</u>	no	FACU	Prevalence Index	x = R/A =		_ (-)
3. Erodium cicutarium	<u>10</u>	no no	NL (UPL)	Hydrophytic Vegetation Indicators			
4.	10	110	INE (OI E)	Dominance Test is >50%			
5.							
				1 Tevalence index is 40.0			
6.				Morphological Adaptation data in Remarks or on a		porting	
7				_			
8				☐ Problematic Hydrophytic	; Vegetation¹ (Exp	olain)	
50% =, 20% =	<u>25</u>	= Total Cover		¹ Indicators of hydric soil and wetland	d hydrology must		
Woody Vine Stratum (Plot size:100 sq. ft.)				be present, unless disturbed or prob			
1. <u>N/A</u>							
2				Hydrophytic			_
50% =, 20% =	<u>0</u>	= Total Cover		Vegetation	Yes 🗆	No) <u> </u>
% Bare Ground in Herb Stratum 20	% Cover	of Biotic Crust	<u>0</u>	Present?			
Remarks: Edge of man-made pond structure	•						

US Army Corps of Engineers Arid West – Version 2.0

Project Site: Glendale Pipeline

SOIL Sampling Point: <u>UPL2</u> Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Redox Features Color (Moist) (inches) Color (moist) % % Type¹ Loc² **Texture** Remarks 5/4 2.5YR 100 <u>0-8</u> N/A Sandy 8-20 8/3 5Y 100 6/6 7.5YR 5 Sandy hard soil area ¹Type: C= Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ²Location: PL=Pore Lining, M=Matrix. Indicators for Problematic Hydric Soils³: Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Sandy Redox (S5) 1 cm Muck (A9) (LRR C) Histosol (A1) Histic Epipedon (A2) Stripped Matrix (S6) 2 cm Muck (A10) (LRR B) Black Histic (A3) П П Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) П 1 cm Muck (A9) (LRR D) П Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) \boxtimes Thick Dark Surface (A12) Redox Depressions (F8) ³Indicators of hydrophytic vegetation and Sandy Mucky Mineral (S1) Vernal Pools (F9) wetland hydrology must be present, Sandy Gleyed Matrix (S4) unless disturbed or problematic. Restrictive Layer (if present): Type: Depth (Inches): **Hydric Soils Present?** Yes \boxtimes No Redox feature present below 8 inches may have existed prior to human disturbance as there is evidence of sandy soil above hard layer indicating that the Remarks: soil has probably been turned over or disturbed above. Lacks hydrology and wetland veg. **HYDROLOGY** Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required) Surface Water (A1) Salt Crust (B11) Water Marks (B1) (Riverine) High Water Table (A2) Biotic Crust (B12) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Saturation (A3) Aquatic Invertebrates (B13) Water Marks (B1) (Nonriverine) Hydrogen Sulfide Odor (C1) Drainage Patterns (B10) Sediment Deposits (B2) (Nonriverine) Oxidized Rhizospheres along Living Roots (C3) Dry-Season Water Table (C2) Drift Deposits (B3) (Nonriverine) Presence of Reduced Iron (C4) Crayfish Burrows (C8) Surface Soil Cracks (B6) Recent Iron Reduction in Tilled Soils (C6) Saturation Visible on Aerial Imagery (C9) Inundation Visible on Aerial Imagery (B7) Thin Muck Surface (C7) Shallow Aquitard (D3) Water-Stained Leaves (B9) Other (Explain in Remarks) FAC-Neutral Test (D5) Field Observations: Surface Water Present? Yes No \boxtimes Depth (inches): \boxtimes Water Table Present? Yes No Depth (inches): Saturation Present? Wetland Hydrology Present? M \boxtimes Nο Yes No Depth (inches): (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks:

US Army Corps of Engineers Arid West – Version 2.0

Arid West Ephemeral and Intermittent Streams OHWM Datasheet

Projects / O	D-t who lies B' MOO
Project: (ove Reservoi (Project Number:	Date: 10/8/19 Time: 1730
Stream: PJD 1 (down stream)	Town: orders the State: vT
Investigator(s): Brian Parte	Photo begin file#: Photo end file#:
· · · · · ·	Location Details:
Y V / N Do normal circumstances exist on the site?	lower reach of PJD3
Y \(\sum_\) / N \(\mathbb{Z}\) Is the site significantly disturbed?	Projection: Datum: W4053 Coordinates: Q5 0352746; 4126424
Potential anthropogenic influences on the channel syst	tem:
None @ this reach of PJD 3	
Brief site description:	
Brief site description: Nowe 1960h of Entermitted Street before Flood event last week (luge shows layed du	or uprosted, Debris)
Checklist of resources (if available):	
Aerial photography Stream gag	ge data
Dates: Gage numl	i de la companya de
Topographic maps Period of r	
	y of recent effective discharges
	s of flood frequency analysis
*	ecent shift-adjusted rating
T 	neights for 2-, 5-, 10-, and 25-year events and the ecent exceeding a 5-year event
Global positioning system (GPS)	count event exceeding a 3-year event
Other studies	
Hydrogeomorphic F	Floodplain Units
Active Floodplain	Low Terrace
7 Journal of the Company	Low lendee
	🖎
,	
the state of the s	
Low-Flow Channels	/ / / OHWM Paleo Channel
Procedure for identifying and characterizing the flood	· · · · · · · · · · · · · · · · · · ·
1. Walk the channel and floodplain within the study area t	· -
vegetation present at the site.	so get all respector of the geomorphology and
2. Select a representative cross section across the channel.	Draw the cross section and label the floodplain units.
3. Determine a point on the cross section that is characteri	istic of one of the hydrogeomorphic floodplain units.
a) Record the floodplain unit and GPS position.	
b) Describe the sediment texture (using the Wentworth floodplain unit.	class size) and the vegetation characteristics of the
c) Identify any indicators present at the location.	
4. Repeat for other points in different hydrogeomorphic fl	oodplain units across the cross section.
5. Identify the OHWM and record the indicators. Record to	the OHWM position via:
Mapping on aerial photograph	GPS
Digitized on computer	015

Project ID: (ove Cross section ID: 73	772 drang Date: 10/9/18 Time: 1730
Cross section drawing:	
Active Floor	2 uluin low terace
- All	
600	Debris @ OHUM
OHUM	Teem to villar
	a fb-chane'
<u>OHWM</u>	210200
<u>Onwiw</u>	
GPS point: 125 0352731; 4126426	
Indicators:	
Change in average sediment texture	Break in bank slope
Change in vegetation species	Other:
Change in vegetation cover	Other:
Comments:	
significant debris observel (a off	um. May be lager than normal
flook event that occurred last week	- I weekend Appox. with some
	20 test
Floodplain unit: Low-Flow Channel	☐ Active Floodplain ☐ Low Terrace
GPS point: 15 035 2737; 412422	
615 point. 63 033 & 131 / 1/ 5/	
Characteristics of the floodplain unit:	
Average sediment texture:	b:% Herb:%
Community successional stage:	
NA THE REPORT OF THE PARTY OF T	Mid (herbaceous, shrubs, saplings)
☐ Early (herbaceous & seedlings)	Late (herbaceous, shrubs, mature trees)
Indicators:	
Mudcracks	Soil development
Ripples	Surface relief
☐ Drift and/or debris☐ Presence of bed and bank	Other: Other:
Benches	Other:
Comments:	
Mix of sand, colde and bouldes	
MIX of gana, who some son	

Project ID: Cove	Cross section ID ATD	\$ do unstrem Date: 18/18 Time: 1730	•
Floodplain unit:	Low-Flow Channel	Active Floodplain Low Terrace	
GPS point: 125	035 8735, 4126419		
Total veg cover: <u>3</u> Community success NA	exture: Nedrupa SAN & Mediupa SAN & Shru	Mid (herbaceous, shrubs, saplings) Late (herbaceous, shrubs, mature trees)	
A Benches	r debris Sbed and bank	Soil development Surface relief Other: Other: Other:	
Comments:	Ar 1 Abs	man 1: \ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
by scouring	of bank, and uproof	this May down of medium sized shows	S .,
Floodplain unit:	Low-Flow Channel	☐ Active Floodplain ☐ Low Terrace	
_	0352733; 4126414		
Community successing NA	exture: Fine SAA Shr Market Shru	ab: <u>45</u> % Herb: <u>5</u> % Mid (herbaceous, shrubs, saplings) Late (herbaceous, shrubs, mature trees)	
Indicators:			
☐ Mudcracks ☐ Ripples ☐ Drift and/or		Soil development Surface relief Other: Other:	
Comments:			
Eristane	of sheet flow	from recent event.	

Arid West Ephemeral and Intermittent Streams OHWM Datasheet

Project: Cove Reservoir	Date: /019/18 Time: 1230				
Droiget Number	Town: Orderville State: UT				
Stream: PJD 3 (upstream)	Photo begin file#: Photo end file#:				
Investigator(s): Brian Parker Y ✓ N ☐ Do normal circumstances exist on the site?	Location Details:				
Y / N X Is the site significantly disturbed?	Projection: UTM Datum: NAD 87 Coordinates: 125 0351949; 4127317				
Potential anthropogenic influences on the channel syst	tem:				
None					
Brief site description:					
Deep canyon (~25-30 ft.)	n pinyon-jumpe habitat				
Checklist of resources (if available):					
Aerial photography					
Dates: Gage num					
Topographic maps Period of r Geologic maps Histor	ecord: y of recent effective discharges				
	s of flood frequency analysis				
	ecent shift-adjusted rating				
	neights for 2-, 5-, 10-, and 25-year events and the				
	ecent event exceeding a 5-year event				
Global positioning system (GPS)					
Other studies					
Hydrogeomorphic F	Floodplain Units				
Active Floodplain	Low Terrace				
Low-Flow Channels	/ / OHWM Paleo Channel				
Procedure for identifying and characterizing the flood					
1. Walk the channel and floodplain within the study area vegetation present at the site.					
2. Select a representative cross section across the channel.	Draw the cross section and label the floodplain units.				
3. Determine a point on the cross section that is character	istic of one of the hydrogeomorphic floodplain units.				
a) Record the floodplain unit and GPS position.b) Describe the sediment texture (using the Wentworth	class size) and the vegetation characteristics of the				
floodplain unit.	class size, and the vegetation characteristics of the				
c) Identify any indicators present at the location.					
4. Repeat for other points in different hydrogeomorphic fl	oodplain units across the cross section.				
5. Identify the OHWM and record the indicators. Record	the OHWM position via:				
Mapping on aerial photograph Digitized on computer	GPS				
	Other:				

Project ID: Cove Cross section ID: Pod 3 (4) stream) Date: 19/18 Time: 1234
Cross section drawing:
OHUN BOND Places)
10 m flow e hand
<u>OHWM</u>
GPS point: 125 0351948; 4127317
Indicators: Change in average sediment texture Change in vegetation species Change in vegetation cover Break in bank slope Other: Other:
Comments: Wall Jeffund. Mix of clay + boulders
Floodplain unit: Low-Flow Channel
GPS point: 125 6251944; 4127314
Characteristics of the floodplain unit: Average sediment texture: Total veg cover: W % Tree: Shrub: Herb: Community successional stage:
✓ NA ☐ Mid (herbaceous, shrubs, saplings) ☐ Early (herbaceous & seedlings) ☐ Late (herbaceous, shrubs, mature trees)
Indicators: Mudcracks

Project ID: Cove Cross section ID: 950 Jupstem Date: 16/9/19 Time: 123
Floodplain unit: Low-Flow Channel Active Floodplain Low Terrace
GPS point: 125 635 1944; 4127314
Characteristics of the floodplain unit: Average sediment texture: Median sand / Colde Total veg cover: 20 % Tree: 20 % Shrub: 10 % Herb: 10 % Community successional stage: NA Mid (herbaceous, shrubs, saplings) Early (herbaceous & seedlings) Late (herbaceous, shrubs, mature trees)
Indicators: Mudcracks Soil development Surface relief Drift and/or debris Presence of bed and bank Benches Other: Other:
Comments:
Floodplain unit:
Characteristics of the floodplain unit: Average sediment texture: Total veg cover: 50 % Tree:% Shrub: 30 % Herb: 26 % Community successional stage: NA
Indicators:
Comments:
Terracing Only in a few places, along this stretch

	10.1
Project: Cove Reservol	Date: /0/8/ /8 Time: /300
Project Number:	Town: Ordeville State: UT
Stream: PゴD / 9	Photo begin file#: Photo end file#:
Investigator(s):	
VM/ND Do normal aircumatances aviet on the site?	Location Details:
Y M Do normal circumstances exist on the site?	Tributary to PJD]
V / N V Is the site significantly disturbed?	Projection: UTM Datum: NAD 87
Y / N X Is the site significantly disturbed?	Coordinates: \$25 35253). 412 6665
Potential anthropogenic influences on the channel sys	tem:
None	
700110	
Brief site description:	
Brief site description: Small to be by all uppox 2-3 4/ope & bomks; clear channel m? Checklist of resources (if available):	Et wite chamel. Medien
Alone & broke (len (land)	ONWM
Checklist of resources (if available):	- · ·
Aerial photography	
Dates: Gage num	
Topographic maps Oage hunder Period of:	
	y of recent effective discharges
	s of flood frequency analysis
1 1	ecent shift-adjusted rating
1 <u> </u>	•
	neights for 2-, 5-, 10-, and 25-year events and the recent event exceeding a 5-year event
Global positioning system (GPS)	ecent event exceeding a 3-year event
Other studies	
Hydrogeomorphic	Floodplain Units
Active Floodplain	Low Terrace
Low-Flow Channels	OHWM Paleo Channel
Low-Flow Channels Procedure for identifying and characterizing the floor	OHWM Paleo Channel Iplain units to assist in identifying the OHWM:
Low-Flow Channels Procedure for identifying and characterizing the flood 1. Walk the channel and floodplain within the study area	OHWM Paleo Channel Iplain units to assist in identifying the OHWM:
Procedure for identifying and characterizing the floor 1. Walk the channel and floodplain within the study area vegetation present at the site.	OHWM Paleo Channel Iplain units to assist in identifying the OHWM: to get an impression of the geomorphology and
Procedure for identifying and characterizing the floor 1. Walk the channel and floodplain within the study area vegetation present at the site. 2. Select a representative cross section across the channel.	OHWM Paleo Channel Iplain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units.
Procedure for identifying and characterizing the floor 1. Walk the channel and floodplain within the study area vegetation present at the site. 2. Select a representative cross section across the channel. 3. Determine a point on the cross section that is character.	OHWM Paleo Channel Iplain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units.
Procedure for identifying and characterizing the floor 1. Walk the channel and floodplain within the study area vegetation present at the site. 2. Select a representative cross section across the channel. 3. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position.	OHWM Paleo Channel Iplain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units.
Procedure for identifying and characterizing the flood 1. Walk the channel and floodplain within the study area vegetation present at the site. 2. Select a representative cross section across the channel. 3. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth)	OHWM Paleo Channel Iplain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units.
Procedure for identifying and characterizing the flood 1. Walk the channel and floodplain within the study area vegetation present at the site. 2. Select a representative cross section across the channel. 3. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth floodplain unit.	OHWM Paleo Channel Iplain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units.
Procedure for identifying and characterizing the flood 1. Walk the channel and floodplain within the study area vegetation present at the site. 2. Select a representative cross section across the channel. 3. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth floodplain unit. c) Identify any indicators present at the location.	OHWM Paleo Channel Iplain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units. class size) and the vegetation characteristics of the
Procedure for identifying and characterizing the flood 1. Walk the channel and floodplain within the study area vegetation present at the site. 2. Select a representative cross section across the channel. 3. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic in the sediment in the sedim	OHWM Paleo Channel Iplain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units. class size) and the vegetation characteristics of the loodplain units across the cross section.
Procedure for identifying and characterizing the flood 1. Walk the channel and floodplain within the study area vegetation present at the site. 2. Select a representative cross section across the channel. 3. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic is 1. Identify the OHWM and record the indicators. Record	OHWM Paleo Channel Iplain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units. class size) and the vegetation characteristics of the loodplain units across the cross section. the OHWM position via:
Procedure for identifying and characterizing the flood 1. Walk the channel and floodplain within the study area vegetation present at the site. 2. Select a representative cross section across the channel. 3. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic in the sediment in the sedim	OHWM Paleo Channel Iplain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units. class size) and the vegetation characteristics of the loodplain units across the cross section.

Project ID: Cove Cross section ID: 10 / 1 Date: 18/9/18 Time: 1300	
Cross section drawing:	
low flow chansel	
/ou How chance!	
<u>OHWM</u>	
GPS point: 125 352531; 4126663	
Indicators: Change in average sediment texture Change in vegetation species Change in vegetation cover Break in bank slope Other: Other:	
Comments: Clen chance . No veg. Endence of Cecent flow	
Floodplain unit: Low-Flow Channel Active Floodplain Low Terrace	
GPS point: 125 35253 0; 4/36663	
Characteristics of the floodplain unit:	
Average sediment texture: Medium Sm 2 Total veg cover: 8 % Tree: 8 Shrub: % Herb: %	
Community successional stage:	
✓ NA ☐ Mid (herbaceous, shrubs, saplings) ☐ Early (herbaceous & seedlings) ☐ Late (herbaceous, shrubs, mature trees)	
Indicators: Mudcracks	

Project ID: Cross section ID	D: PJD 1a Date: 18/4/18 Time: 1300
Floodplain unit: Low-Flow Channel	
GPS point: 25 352531; 42666	3
Characteristics of the floodplain unit: Average sediment texture: Total veg cover: /5 % Tree: % Community successional stage: NA Early (herbaceous & seedlings)	Shrub: /6 % Herb: 5 % Mid (herbaceous, shrubs, saplings) Late (herbaceous, shrubs, mature trees)
Indicators: Mudcracks Ripples Drift and/or debris Presence of bed and bank Benches	Soil development Surface relief Other: Other: Other:
Comments:	last class for 1
Namon Abol plan due to	deep mester sunt
Floodplain unit:	Active Floodplain Low Terrace
GPS point: NA	
Characteristics of the floodplain unit: Average sediment texture:	
Total veg cover: % Tree: %	Shrub:% Herb:%
Community successional stage: NA	☐ Mid (herbaceous, shrubs, saplings)
Early (herbaceous & seedlings)	Late (herbaceous, shrubs, mature trees)
Indicators: Mudcracks Ripples Drift and/or debris Presence of bed and bank Benches	Soil development Surface relief Other: Other: Other:
Comments:	
No terracing	

Project: Love Reserval/ Project Number: Stream: PJD 2 (downstream) Investigator(s): Bran Packer Y N Do normal circumstances exist on the site? Y N S Is the site significantly disturbed? Potential anthropogenic influences on the channel system. For Jahren down schem; Graning	Date: 10/8/18 Time: 13:45 Town: 1/2018 State: UT Photo begin file#: Photo end file#: Location Details: Luc Research Front Projection: UTM Datum: NAN F3 Coordinates: 125 6352969; 412 6425 em:
Brief site description: Enternition stream runing post East. beyond the tost pint of the project.	tran Looks to drain large untershed
☐ Vegetation maps ☐ Results ☐ Soils maps ☐ Most r ☐ Rainfall/precipitation maps ☐ Gage h	per:
Hydrogeomorphic F	Floodplain Units
Active Floodplain Low-Flow Channels	OHWM Paleo Channel
 Procedure for identifying and characterizing the flood Walk the channel and floodplain within the study area to vegetation present at the site. Select a representative cross section across the channel. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position. Describe the sediment texture (using the Wentworth floodplain unit. Identify any indicators present at the location. Repeat for other points in different hydrogeomorphic floodplain the OHWM and record the indicators. Record Mapping on aerial photograph Digitized on computer 	to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units. class size) and the vegetation characteristics of the loodplain units across the cross section.

Project ID: Cove Cross section ID: PJD 2 Date: 10/8/18 Time: 13 45
Cross spection drawing:
Autive F.P.
10 m terran
1 st flow channel
A Library
<u>OHWM</u>
GPS point: 125 0352970; 4/26430
GPS point: 120 0532170, 1120 ()
Indicators:
Change in average sediment texture Change in vegetation species Break in bank slope Other:
Change in vegetation cover Other:
Comments:
Meeting to speed while a small a speed of
Comments: Medium to steep walled banks dove them firmel flow fairly Lonsistently with little ability to meanure.
Floodplain unit: Low-Flow Channel
GPS point: 125 635 2968; 4126437
Characteristics of the floodplain unit:
Average sediment texture: Clay Total veg cover: 36 % Tree: 8 % Shrub: 26 % Herb: 16 %
Community successional stage: NA Mid (herbaceous, shrubs, saplings)
Early (herbaceous & seedlings)
Indicators:
✓ Mudcracks ☐ Soil development
✓ Ripples ☐ Surface relief ✓ Drift and/or debris ☐ Other:
Presence of bed and bank Other:
Benches Other:
Comments:
Recent Flow. Channel has some harbaceous resuggest seedlings and Stables

Floodplain unit: Low-Flow Channe	el
GPS point: 125 615 2470 ; 4/26 U.	24
Characteristics of the floodplain unit: Average sediment texture: Total veg cover: *4/ % Tree: // % Community successional stage: NA Early (herbaceous & seedlings)	Mid (herbaceous, shrubs, saplings)
Indicators: Mudcracks Ripples Drift and/or debris	Soil development Surface relief Other:
Presence of bed and bank Benches	Other:
Comments: Terraces only in some ar Evidence of scazing through put	teas, Mostly on See last larger bends. tedges if stream and surroundin, valla
Terraces only in some ar Evidence of sourcing through put	el Active Floodplain Low Terrace
Terraces only in Jone or Evidace of Scazing through Dut	el Active Floodplain
Floodplain unit: Low-Flow Channe Characteristics of the floodplain unit: Average sediment texture: Claracteristics of the floodplain unit: Total veg cover: 46 % Tree: \$6 % Community successional stage: NA	El Active Floodplain Low Terrace Shrub: 46 % Herb: 10 % Mid (herbaceous, shrubs, saplings)

Project: (ove Reservoir	Date: 16/8/18 Time: 1630	
	Town: Octovile State: UT	
Stream: PJD 2 (wstream)	Photo begin file#: Photo end file#:	
Investigator(s): Bu a Parcer		
Y X / N Do normal circumstances exist on the site?	Location Details:	
Y \(\sum / \) Is the site significantly disturbed?	Projection: MAD 87 Datum: JA Coordinates: 125 6353122; 412 6795	
Potential anthropogenic influences on the channel system:		
Numerus flood control retention ponds upstracum		
Brief site description:		
Brief site description: Steep Conjun portion of PJD 2 (4)tream with a narrow 'slot' channel at the both). This Northern section is very deep	
chand at the both	-ом.	
With A layour stor chance of the		
Checklist of resources (if available):		
Aerial photography	ge data	
Dates: Gage num	ber:	
Topographic maps Period of r	ecord:	
Geologic maps History	y of recent effective discharges	
∇egetation maps Result	s of flood frequency analysis	
Soils maps	ecent shift-adjusted rating	
Rainfall/precipitation maps Gage l	neights for 2-, 5-, 10-, and 25-year events and the	
Existing delineation(s) for site most r	ecent event exceeding a 5-year event	
Global positioning system (GPS)		
Other studies		
Hydrogeomorphic F	loodplain Units	
, Active Floodplain	_	
+ Active Produplatin	Low Terrace	
Low Flow Channale	OHWM Paleo Channel	
Low-Flow Channels	or it the condition	
Procedure for identifying and characterizing the flood	plain units to assist in identifying the OHWM:	
Procedure for identifying and characterizing the flood 1. Walk the channel and floodplain within the study area	plain units to assist in identifying the OHWM:	
Procedure for identifying and characterizing the flood 1. Walk the channel and floodplain within the study area vegetation present at the site.	plain units to assist in identifying the OHWM: to get an impression of the geomorphology and	
Procedure for identifying and characterizing the flood 1. Walk the channel and floodplain within the study area vegetation present at the site. 2. Select a representative cross section across the channel.	plain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units.	
 Procedure for identifying and characterizing the flood Walk the channel and floodplain within the study area vegetation present at the site. Select a representative cross section across the channel. Determine a point on the cross section that is character. 	plain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units.	
 Procedure for identifying and characterizing the flood Walk the channel and floodplain within the study area vegetation present at the site. Select a representative cross section across the channel. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position. 	plain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units.	
 Procedure for identifying and characterizing the flood Walk the channel and floodplain within the study area vegetation present at the site. Select a representative cross section across the channel. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position. Describe the sediment texture (using the Wentworth) 	plain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units.	
 Procedure for identifying and characterizing the flood Walk the channel and floodplain within the study area vegetation present at the site. Select a representative cross section across the channel. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position. Describe the sediment texture (using the Wentworth floodplain unit. 	plain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units.	
 Procedure for identifying and characterizing the flood Walk the channel and floodplain within the study area vegetation present at the site. Select a representative cross section across the channel. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position. Describe the sediment texture (using the Wentworth floodplain unit. Identify any indicators present at the location. 	Iplain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units. class size) and the vegetation characteristics of the	
 Procedure for identifying and characterizing the flood Walk the channel and floodplain within the study area vegetation present at the site. Select a representative cross section across the channel. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position. Describe the sediment texture (using the Wentworth floodplain unit. Identify any indicators present at the location. Repeat for other points in different hydrogeomorphic floodplain. 	plain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units. class size) and the vegetation characteristics of the doodplain units across the cross section.	
 Procedure for identifying and characterizing the flood Walk the channel and floodplain within the study area vegetation present at the site. Select a representative cross section across the channel. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position. Describe the sediment texture (using the Wentworth floodplain unit. Identify any indicators present at the location. 	plain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units. class size) and the vegetation characteristics of the doodplain units across the cross section.	
 Procedure for identifying and characterizing the flood Walk the channel and floodplain within the study area vegetation present at the site. Select a representative cross section across the channel. Determine a point on the cross section that is character a) Record the floodplain unit and GPS position. Describe the sediment texture (using the Wentworth floodplain unit. Identify any indicators present at the location. Repeat for other points in different hydrogeomorphic floodplain. 	plain units to assist in identifying the OHWM: to get an impression of the geomorphology and Draw the cross section and label the floodplain units. istic of one of the hydrogeomorphic floodplain units. class size) and the vegetation characteristics of the doodplain units across the cross section.	

Project ID: Covi Cross section ID: PJD2 (upstrem) Date: 18/18 Time: 1830
Cross section drawing: b6-70'
<u>OHWM</u>
GPS point:
Indicators: Change in average sediment texture Change in vegetation species Change in vegetation cover Break in bank slope Other: Other:
Comments: Progressively Slot canyon at bottom, degree as you so upstream
Floodplain unit: Low-Flow Channel
GPS point:
Characteristics of the floodplain unit: Average sediment texture:
Indicators:
Comments:
Some veg. growing in slot channel.

> 41

Project ID: Cove Cross section	ID: PTD2 (4)+10 Date: 10/8/14 Time: 1630
Floodplain unit: Low-Flow Chan	
GPS point:	
	
Characteristics of the floodplain unit:	
Average sediment texture: Clay Total veg cover: 20 % Tree:9	% Shrub: 15 % Herb: 5 %
Community successional stage:	·
☐ NA ☐ Early (herbaceous & seedlings)	Mid (herbaceous, shrubs, saplings) Late (herbaceous, shrubs, mature trees)
Early (herbaccous & securings)	Late (heroaccous, sin dos, mataro docs)
Indicators:	
☐ Mudcracks☐ Ripples	Soil development Surface relief
Drift and/or debris	Other:
Presence of bed and bank	Other:
Benches	Other:
Comments:	
Some berthes where	of the lotton of the caryon
Most wat a channel	a M. Inter of the carres
instity gon a concept	e the wife of the
Floodplain unit: Low-Flow Chan	nel
GPS point:	~// /
Characteristics of the floodplain unit: Average sediment texture:	
Total veg cover: % Tree: 9	% Shrub:% Herb:%
Community successional stage:	☐ Mid (herbaceous, shrubs, saplings)
☐ NA☐ Early (herbaceous & seedlings)	Late (herbaceous, shrubs, mature trees)
	,
Indicators: Mudcracks	Soil development
Ripples	Surface relief
Drift and/or debris	Other:
Presence of bed and bank Benches	Other:
	Other:
Comments:	
No terrace . Only ste	P.O. Cha alan Islahla
In terrace, and sta	ep can you walls

1-10 COVE RAPIL			
Project Number	de la	Date: 10 8 18	Time: /500
Project Number: Stream: PTD 2		Town: Orderville	State: UT
	0 1	Photo begin file#:	Photo end file#:
Investigator(s): Brian			1 noto end me#:
Y N Do normal circu	umstances exist on the site?	Location Details:	
		Past TOCK above	PUD 2
Y / N X Is the site signif	ficantly disturbed?	Projection:	UTM Datum: WAD
			035 3214; 4127015
Potential anthropogenic inf	nuences on the channel sy		112/015
downstream water is	rends are tound which	h collect water that	would normally flow jacent sheet flow runoff
Brief site description:	with sorall caryon	nly flows from ad	jacent sheet flow runoff
Brief site description:	where the ponds	over thow	_
(m.) 1-/2-1		\	
Small tributary co	myon (~50th de	ep) leading to PJ	02
		J .	
Checklist of resources (if ava	ailahlo):		
Aerial photography		•	
Dates:	☐ Stream gas		
Topographic maps	Gage num Period of r		
Geologic maps			1
☐ Vegetation maps	Popult	y of recent effective disch	arges
Soils maps	I I Most +	s of flood frequency analy	sis
Rainfall/precipitation maps	O I Garak	ecent shift-adjusted rating	_
Existing delineation(s) for	site most a	eights for 2-, 5-, 10-, and	25-year events and the
Global positioning system	(GPS)	ecent event exceeding a 5-	-year event
U Other studies	,		
	I I and an		
	HV0f00e0morphia E		
	Hydrogeomorphic F	oodplain Units	
ļ 	Active Floodplain	oodplain Units	
			· *
			*
	Active Floodplain		
	Active Floodplain	Low Terrace	nel
rocedure for identifying and	Active Floodplain Low-Flow Channels characterizing the floodp	OHWM Paleo Chann	
rocedure for identifying and . Walk the channel and floodpl	Active Floodplain Low-Flow Channels characterizing the floodp	OHWM Paleo Chann	
vegetation present at the site	Low-Flow Channels characterizing the floodp ain within the study area to	OHWM Paleo Chanr lain units to assist in ide get an impression of the	ntifying the OHWM: geomorphology and
vegetation present at the site. Select a representative cross se	Low-Flow Channels characterizing the floodp ain within the study area to	OHWM Paleo Chanrelain units to assist in ideaget an impression of the s	ntifying the OHWM: geomorphology and
vegetation present at the site. Select a representative cross se Determine a point on the cross	Low-Flow Channels characterizing the floodp ain within the study area to ection across the channel. D	OHWM Paleo Chanrelain units to assist in ideaget an impression of the s	ntifying the OHWM: geomorphology and
vegetation present at the site. Select a representative cross set. Determine a point on the cross a) Record the floodplain unit a	Low-Flow Channels characterizing the floodp ain within the study area to ection across the channel. D s section that is characterist and GPS position	OHWM Paleo Chanrelain units to assist in idea get an impression of the graw the cross section and laic of one of the hydrogeon	ntifying the OHWM: geomorphology and abel the floodplain units. morphic floodplain units
vegetation present at the site. Select a representative cross set. Determine a point on the cross a) Record the floodplain unit a	Low-Flow Channels characterizing the floodp ain within the study area to ection across the channel. D s section that is characterist and GPS position	OHWM Paleo Chanrelain units to assist in idea get an impression of the graw the cross section and laic of one of the hydrogeon	ntifying the OHWM: geomorphology and abel the floodplain units. morphic floodplain units
vegetation present at the site. Select a representative cross se. Determine a point on the cross a) Record the floodplain unit a b) Describe the sediment texture floodplain unit.	Low-Flow Channels characterizing the floodp ain within the study area to ection across the channel. D s section that is characterist and GPS position. are (using the Wentworth cl	OHWM Paleo Chanrelain units to assist in idea get an impression of the graw the cross section and laic of one of the hydrogeon	ntifying the OHWM: geomorphology and abel the floodplain units. morphic floodplain units
vegetation present at the site. Select a representative cross set. Determine a point on the cross a) Record the floodplain unit a b) Describe the sediment texture floodplain unit. c) Identify any indicators present	Low-Flow Channels characterizing the floodp ain within the study area to ection across the channel. D s section that is characterist and GPS position. are (using the Wentworth cl	OHWM Paleo Chanralain units to assist in idea get an impression of the graw the cross section and laic of one of the hydrogeonass size) and the vegetation	geomorphology and abel the floodplain units. morphic floodplain units. on characteristics of the
vegetation present at the site. Select a representative cross set. Determine a point on the cross a) Record the floodplain unit at b) Describe the sediment texture floodplain unit. c) Identify any indicators present Repeat for other points in different countries.	Low-Flow Channels characterizing the floodp ain within the study area to ection across the channel. D s section that is characterist and GPS position. are (using the Wentworth clauser at the location.	OHWM Paleo Change lain units to assist in idea get an impression of the graw the cross section and hic of one of the hydrogeon ass size) and the vegetation	geomorphology and abel the floodplain units. morphic floodplain units. on characteristics of the
vegetation present at the site. Select a representative cross set. Determine a point on the cross a) Record the floodplain unit a b) Describe the sediment texture floodplain unit. c) Identify any indicators present Repeat for other points in differ Identify the OHWM and record.	Low-Flow Channels characterizing the floodp ain within the study area to ection across the channel. D s section that is characterist and GPS position. are (using the Wentworth cl ent at the location. erent hydrogeomorphic flood d the indicators. Record the	OHWM Paleo Change lain units to assist in idea get an impression of the graw the cross section and hic of one of the hydrogeon ass size) and the vegetation	mtifying the OHWM: geomorphology and abel the floodplain units. morphic floodplain units. on characteristics of the
vegetation present at the site. Select a representative cross set. Determine a point on the cross a) Record the floodplain unit a b) Describe the sediment texture floodplain unit. c) Identify any indicators present	Low-Flow Channels characterizing the floodp ain within the study area to ection across the channel. D s section that is characterist and GPS position. are (using the Wentworth cl ent at the location. erent hydrogeomorphic flood d the indicators. Record the	OHWM Paleo Change lain units to assist in idea get an impression of the graw the cross section and hic of one of the hydrogeon ass size) and the vegetation	mtifying the OHWM: geomorphology and abel the floodplain units. morphic floodplain units. on characteristics of the

Project ID: Core Cross section ID:	PJD 2a Date: 10/4/14 Time: 1500
Cross section drawing:	
	·
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
30 tai	
30	
1 bottom	
OHWM	
GPS point: <u>12 5 0353 212; 412 701 8</u>	
Indicators:	
Change in average sediment texture	🗹 Break in bank slope
Change in vegetation species	Other:
Change in vegetation cover	Other:
Comments:	
	weight by front IN constinue from about
60-60 Rey Caryon. Not Time	versible by foot. Observations from above
Indicated a clear thank !	Appoor; mately & ft. unile a bottom he
- M	
Floodplain unit: \(\infty\) Low-Flow Channel	☐ Active Floodplain ☐ Low Terrace
GPS point: 125 6 353212; 4127 019	9
Characteristics of the floodplain unit:	
Average sediment texture:	hrub: % Herb: %
Community successional stage:	<u></u>
NA Early (herbaceous & seedlings)	Mid (herbaceous, shrubs, saplings)Late (herbaceous, shrubs, mature trees)
Early (herbaceous & seedings)	Late (nerbaceous, sinubs, mature trees)
ndicators:	
Mudcracks	Sould development
	☐ Surface relief ☐ Other:
Presence of bed and bank	☐ Other: ☐ Other:
Benches	Other:
Comments:	

Project ID: (ove Cross section ID: Po) 2a Date: 10/8/18 Time: 1500
Floodplain unit: Low-Flow Channel Active Floodplain Low Terrace
GPS point: 125 0353212; 4127018
Characteristics of the floodplain unit: Average sediment texture:
Indicators: ☐ Mudcracks ☐ Soil development ☐ Ripples ☐ Surface relief ☐ Drift and/or debris ☐ Other: ☐ Presence of bed and bank ☐ Other: ☐ Benches ☐ Other:
Comments:
Some vegiling hulls of canyon
Floodplain unit: Low-Flow Channel Active Floodplain Low Terrace
GPS point: 12 5 035 3214; 412 7015 (Beze of upper caryon) N//1
Characteristics of the floodplain unit: Average sediment texture: Total veg cover: % Tree: % Shrub: % Herb: % Community successional stage: NA
Indicators: ☐ Mudcracks ☐ Soil development ☐ Ripples ☐ Surface relief ☐ Drift and/or debris ☐ Other: ☐ Presence of bed and bank ☐ Other: ☐ Benches ☐ Other: Comments:
No terrace. Steep conjor unil, contain all flow to statelike conjon.

and the second s

Town: order Number: Stream: PDT Photo begin file#: Photo begin fil	Project: Cove Regensor	Date: 10/9/18 Time: 11:30
Investigator(s): Sein Cole Y N Do normal circumstances exist on the site? Y N Do normal circumstances exist on the site? Y Projection: Orth Datum: NAPS Coordinates: PS 0352581, 4124364 Protential anthropogenic influences on the channel system: None system Dowstream is a diet ron 1 that has been constructed where flow and world in the orea appers to have objusted to deep the flow of the point in the orea appers to have objusted as a clearly defined to deep the flow of recent effective discharges Checklist of resources (if available): Aerial photography Dates: Gage number: Topographic maps History of recent effective discharges Results of flood frequency analysis Nost recent shift-adjusted rating Gage heights for 2-, 5-, 10-, and 25-year events and the most recent event exceeding a 5-year event and the most recent event exceeding a 5-year event within the study area to get an impression of the geomorphology and vegetation present at the site. Select a representative cross section across the channel Draw the cross section and label the floodplain units. Hydrogeomorphic Floodplain units are of the hydrogeomorphic floodplain units. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. Cheenify any indicators present at the location. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.	Project Number:	Town: orderville State: UT
Y N Do normal circumstances exist on the site? Y N Is the site significantly disturbed? Y Y N Doubt rear. Y Y Y Y Y Y Y Y Y	_	Photo begin file#: Photo end file#:
Projection: Under the projection the projection: Under the projection: Under the project	Investigator(s): Brian Parle	
Potential anthropogenic influences on the channel system: None upstream: Dowstream is a dirt ron 1 that has been constructed where flow naturally account of the channel system on the channel system: Brief site description: brief site descripti	Y \(\sum / N \) Do normal circumstances exist on the site?	1
Potential anthropogenic influences on the channel system: Wose cystreum Dowstream is a dirt ron 1 that has been constructed where flow naturally accurs. Recest Sheet flow due to thosting in the one appears to have obscurred channel.	Y / N X Is the site significantly disturbed?	· I
Brief site description: Checklist of resources (if available): Acrial photography		tem:
Brief site description: Checklist of resources (if available): Acrial photography	None upstream . Dowstream is a dirt rom.	1 that has been constructed where flow
Checklist of resources (if available): Aerial photography Dates: Gage number: Period of record: Geologic maps Vegetation maps Rainfall/precipitation maps Rainfall/precipitation maps Rainfall/precipitation maps Rainfall/precipitation maps Robber Soils maps Hydrogeomorphic Floodplain Units Hydrogeomorphic Floodplain Units Hydrogeomorphic Floodplain unit to assist in identifying the OHWM: Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. Cldentify any indicators present at the location. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.	naturally occurs. Recent Sheet flow due to	flooling in the area appers to have obscurred
Checklist of resources (if available): Aerial photography Dates: Gage number: Topographic maps Period of record: Geologic maps Vegetation maps Rainfall/precipitation maps Rainfall/precipitation maps Gage heights for 2-, 5-, 10-, and 25-year events and the most recent event exceeding a 5-year event with the most recent event exceeding a 5-year event with the foodplain Units Active Floodplain Hydrogeomorphic Floodplain units to assist in identifying the OHWM: Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. Record the floodplain unit and GPS position. Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.	Brief site description:	
Active Floodplain Nates Content	bully or deeply esoled Channel; moderately.	leep (2-3 A.) w/ cut bank
Active Floodplain Nates Content	Checklist of resources (if available)	
Dates: Gage number: Topographic maps Geologic maps History of recent effective discharges Vegetation maps Soils maps Most recent shift-adjusted rating Gage heights for 2-, 5-, 10-, and 25-year events and the most recent event exceeding a 5-year event and the most recent event exceeding a 5-year event Global positioning system (GPS) Other studies Hydrogeomorphic Floodplain Units Active Floodplain Nalk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. Becord the floodplain unit and GPS position. Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. Clathify any indicators present at the location. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.	·	ge data
Topographic maps		
Vegetation maps	<u> </u>	
Soils maps		y of recent effective discharges
Rainfall/precipitation maps Existing delineation(s) for site Global positioning system (GPS) Other studies Hydrogeomorphic Floodplain Units Active Floodplain Low-Flow Channels OHWM Paleo Channel Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM: 1. Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. 2. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. 3. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.	☐ Vegetation maps ☐ Result	ts of flood frequency analysis
Existing delineation(s) for site most recent event exceeding a 5-year event Global positioning system (GPS) Other studies Hydrogeomorphic Floodplain Units Active Floodplain Low-Flow Channels OHWM Paleo Channel Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM: 1. Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. 2. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. 3. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.	<u> </u>	recent shift-adjusted rating
Global positioning system (GPS) Other studies Hydrogeomorphic Floodplain Units Active Floodplain Low Terrace Low Terrace Active Floodplain Low Terrace OHWM Paleo Channel Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM: 1. Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. 2. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. 3. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.		= -
Other studies Hydrogeomorphic Floodplain Units Active Floodplain Low Terrace Low Terrace Low Terrace Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM: 1. Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. 2. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. 3. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.		recent event exceeding a 5-year event
Hydrogeomorphic Floodplain Units Active Floodplain Low Terrace Low-Flow Channels OHWM Paleo Channel Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM: 1. Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. 2. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. 3. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.		
Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM: 1. Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. 2. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. 3. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.	Other studies	
Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM: 1. Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. 2. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. 3. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.	Hydrogeomorphic	Floodplain Units
 Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM: Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. Repeat for other points in different hydrogeomorphic floodplain units across the cross section. 	Active Floodplain	Low Terrace
 Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM: Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. Repeat for other points in different hydrogeomorphic floodplain units across the cross section. 		
 Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM: Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. Repeat for other points in different hydrogeomorphic floodplain units across the cross section. 		
 Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM: Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. Repeat for other points in different hydrogeomorphic floodplain units across the cross section. 	4 44 4	
 Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM: Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. Repeat for other points in different hydrogeomorphic floodplain units across the cross section. 		
 Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM: Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. Repeat for other points in different hydrogeomorphic floodplain units across the cross section. 		
 Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. Repeat for other points in different hydrogeomorphic floodplain units across the cross section. 	Low-Flow Channels	OHWM Paleo Channel
 vegetation present at the site. 2. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. 3. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section. 	1	
 Select a representative cross section across the channel. Draw the cross section and label the floodplain units. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. Repeat for other points in different hydrogeomorphic floodplain units across the cross section. 	<u>-</u>	to get an impression of the geomorphology and
 3. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section. 	1	D 4
 a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section. 		
 b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section. 		astic of one of the hydrogeomorphic floodplain units.
floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.	ļ '	class size) and the vacatation characteristics of the
c) Identify any indicators present at the location.4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.		i class size) and the vegetation characteristics of the
4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.		
	_	loodulain units across the cross section
5. Identify the OHWM and record the indicators. Record the OHWM position via:	,	-
Mapping on aerial photograph GPS	<u> </u>	_
Digitized on computer		₹

Project ID: Cove Cross section ID:	PDB Date: 10/9/18 Time: 11:30
Cross section drawing:	1 A -
WWW VAS	
poince poince	
, and	
	litter
OHUM	\
Low How	
<u>OHWM</u>	
GPS point: 125 0352080; 4126366	
Indicators:	
Change in average sediment texture	Break in bank slope
Change in vegetation species Change in vegetation cover	☐ Other: ☐ Other:
LA Change in regulation 20.01	Cinci.
Comments:	
Clear channel. No water obs	and the state !
DIEW WINTER . 100 WILTO NOSH	ever m came (.
Floodplain unit: \(\mathbb{X}\) Low-Flow Channel	☐ Active Floodplain ☐ Low Terrace
GPS point: 125 0352080; 412636	SS .
	
Characteristics of the floodplain unit: Average sediment texture:	
	rrub:% Herb:%
Community successional stage:	
NA Early (herbaceous & seedlings)	✓ Mid (herbaceous, shrubs, saplings)✓ Late (herbaceous, shrubs, mature trees)
Larry (noroaccous & sectings)	Late (nervaceous, sinuos, mature acces)
Indicators:	
✓ Mudcracks ✓ Ripples	☐ Soil development ☐ Surface relief
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	
Presence of bed and bank	Other: Other:
Benches	Other:
Comments:	

	Low-Flow Channel	Date: /b/9/69 Active Floodplain	☐ Low Terrace
GPS point: 125 0352	1081; 4126364		
Characteristics of the flood Average sediment texture: Total veg cover: _5 % Community successional s NA Early (herbaceous	Clay fine Silt Tree: <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</u>	: _ 5 _% Herb: _ \geq % Mid (herbaceous, shrubs, Late (herbaceous, shrubs,	- ·
Indicators: Mudcracks Ripples Drift and/or debri Presence of bed a Benches	_	Soil development Surface relief Other: Other:	
Comments:			
the country in	n. Floodplain		
	Low-Flow Channel	☐ Active Floodplain	Low Terrace
Floodplain unit:	Low-Flow Channel	Active Floodplain	
Floodplain unit: GPS point: 125 063 Characteristics of the flood Average sediment texture:	Low-Flow Channel B 5 2081 ; 4/2 63 6 (dplain unit:	Active Floodplain	Low Terrace saplings)
Floodplain unit: GPS point: 125 063 Characteristics of the flood Average sediment texture: Total veg cover: 25 % Community successional s	Low-Flow Channel S 5 2081; 4/2 6367 dplain unit:	Active Floodplain Active Floodplain Herb:	Low Terrace saplings) mature trees)
Floodplain unit: GPS point: 125 063 Characteristics of the flood Average sediment texture: Total veg cover: 25 % Community successional s NA Early (herbaceous Indicators: Mudcracks Ripples Drift and/or debrig	Low-Flow Channel S 5 2081; 4/2 6367 dplain unit:	Active Floodplain Active Floodplain Herb:	Low Terrace saplings) mature trees)

Project: Cove Reservoi	Date: /8/8//8 Time: //; 23
Project Number	
Stream: D-D 4	Town: Octoville State: UT Photo begin file#: Photo end file#:
Project Number: Stream: PJD 4 Investigator(s): Brian Parker	r noto begin me#: r noto ena me#:
Y N Do normal circumstances exist on the site?	Projection: vtm NaD 83 Datum:
Y / N X Is the site significantly disturbed?	Projection: UTM NOD 83 Datum: Coordinates: 125,363,59;4126,944
Potential anthropogenic influences on the channel syst	tem:
Retention (ond) (2) downstrem	
Brief site description:	
Steep availed intermittant stroum draining	adjacent hillsides and leading to
Steep availab intermittant stroum drainings retention ponds downstream. Little to no	surficial connectivity downstream of
Checklist of resources (if available):	
Aerial photography Stream gag	ge data
Dates: Gage num	
Topographic maps Period of r	ecord:
Geologic maps Histor	y of recent effective discharges
	s of flood frequency analysis
	ecent shift-adjusted rating
	neights for 2-, 5-, 10-, and 25-year events and the
	ecent event exceeding a 5-year event
Global positioning system (GPS)	•
Other studies	<u>\</u>
Hydrogeomorphic F	Floodplain Units
Active Floodplain	Low Terrace
Low-Flow Channels	/ / OHWM Paleo Channel
Procedure for identifying and characterizing the flood	
1. Walk the channel and floodplain within the study area	-
vegetation present at the site.	
2. Select a representative cross section across the channel.	Draw the cross section and label the floodplain units.
3. Determine a point on the cross section that is character	istic of one of the hydrogeomorphic floodplain units.
a) Record the floodplain unit and GPS position.	
b) Describe the sediment texture (using the Wentworth	class size) and the vegetation characteristics of the
floodplain unit.	-
c) Identify any indicators present at the location.	
4. Repeat for other points in different hydrogeomorphic fl	oodplain units across the cross section.
5. Identify the OHWM and record the indicators. Record	the OHWM position via:
	GPS
Digitized on computer	Other:

Project ID: Cove Cross section ID: 3TD 4 Date: 10/8/14 Time: 11:20
Cross section drawing:
<u>OHWM</u>
GPS point: 125 0353490; 4126985
Indicators: Change in average sediment texture Change in vegetation species Change in vegetation cover Break in bank slope Other: Other:
Comments:
Steep walled bushs. Chanel void of Vegetation.
Floodplain unit: Low-Flow Channel
GPS point: 185 035 3490 ; 412 700 1
Characteristics of the floodplain unit: Average sediment texture:
Indicators:
Comments:
Recent flow due to heavy rainfall in the days prior to survey

Project ID: Cross section ID: Floodplain unit: Low-Flow Channel	Active Floodplain
GPS point: 125 035 >490; 413 69	15
Characteristics of the floodplain unit: Average sediment texture: Clay Total veg cover:% Tree:% Si Community successional stage: NA Early (herbaceous & seedlings)	hrub: 2 % Herb: 3 % Mid (herbaceous, shrubs, saplings) Late (herbaceous, shrubs, mature trees)
Indicators: Mudcracks Ripples Drift and/or debris Presence of bed and bank	Soil development Surface relief Other: Other: Other:
Benches	
Comments: Steep would book @ flood pla	uin edge
Comments: Steep walled bank @ floodpla Floodplain unit: Low-Flow Channel	Active Floodplain Bow Terrace
Steep would back a flood pla Flood plain unit: Low-Flow Channel GPS point:	
Comments: Steep walled bank @ floodpla Floodplain unit: Low-Flow Channel	☐ Active Floodplain ☐ L ow Terrac e MA
Comments: Step walled bank a flood plant with the	Active Floodplain Low Terrace MA

Project: Cove Resour	Date: 1019/19 Time: 1745
Project Number:	Town: orderville State: or
Stream: V50 \$ 5	Photo begin file#: Photo end file#:
Investigator(s): Brian larke YN Do normal circumstances exist on the site?	Location Details:
Y / N X Is the site significantly disturbed?	Projection: UTM Datum: NAB83 Coordinates: DS 6356914; 412 875
Potential anthropogenic influences on the channel syst	tem:
Dirt coul, lipelines installed (irrigation))
Brief site description:	/ ,
Runing Stream above resture and	. Cottonwood, oaks and proyon/juniper
a singent to stream	_
Checklist of resources (if available):	-
Aerial photography	ge data
Pates: Gage num	
Topographic maps Period of r	record:
Geologic maps Histor	y of recent effective discharges
l <u>— </u>	s of flood frequency analysis
Soils maps	recent shift-adjusted rating
l	neights for 2-, 5-, 10-, and 25-year events and the
	ecent event exceeding a 5-year event
Global positioning system (GPS)	
Other studies	
Hydrogeomorphic F	Floodplain Units
Active Floodplain	Low Terrace
المستور المستور الم	- Comment of the Comm
	_ / /
Low-Flow Channels	OHWM Paleo Channel
Procedure for identifying and characterizing the flood 1. Walk the channel and floodplain within the study area	· · · · · · · · · · · · · · · · · · ·
vegetation present at the site.	
2. Select a representative cross section across the channel.	Draw the cross section and label the floodplain units.
3. Determine a point on the cross section that is character	
a) Record the floodplain unit and GPS position.	
b) Describe the sediment texture (using the Wentworth	class size) and the vegetation characteristics of the
floodplain unit.	
c) Identify any indicators present at the location.	
4. Repeat for other points in different hydrogeomorphic f	
5. Identify the OHWM and record the indicators. Record	·
	Mag GPS
Digitized on computer	Other:

Cross section ID Cross section ID Cross section drawing: With Active Floridation (SHUM)	11th At	
DHWM		
GPS point: 125 7356914; 412	756	
Indicators: Change in average sediment texture Change in vegetation species	Break in bank slope Other:	
Change in vegetation cover	Other:	
Change in vegetation cover Comments: Flowing water in Channel a	Since at survey.	
Change in vegetation cover Comments: Tlowing water in Channel as Floodplain unit: Low-Flow Channel	Since at survey.	L Low Terrace
Change in vegetation cover Comments: Flowing water in Channel a	Since at survey.	
Change in vegetation cover Comments: Tlowing water in Channel a Floodplain unit: Description Channel GPS point: 125 6356914 9129746 Characteristics of the floodplain unit:	Since at survey.	
Change in vegetation cover Comments: Tlowing water in Channel a Floodplain unit: Description Channel GPS point: 125 6356914 9129746 Characteristics of the floodplain unit:	Since at survey.	
Change in vegetation cover Comments: Tlowing water in Channel a Floodplain unit: Characteristics of the floodplain unit: Average sediment texture: Total veg cover: 65 % Tree: 25 % Community successional stage:	Active Floodplain Shrub: 25 % Herb: / 3 %	L Low Terrace
Change in vegetation cover Comments: Flowing water in Channel of Channel of Channel of Channel of Channel of Characteristics of the floodplain unit: Average sediment texture: Total veg cover: 65 % Tree: 25 %	Active Floodplain	Low Terrace
Change in vegetation cover Comments: Tlown, water in Channel a Floodplain unit: Characteristics of the floodplain unit: Average sediment texture: Total veg cover: 65 % Tree: 25 % Community successional stage: NA	Active Floodplain Active Floodplain Mid (herbaceous, shrubs, sap	Low Terrace
Change in vegetation cover Comments: Howin, water in Channel a Floodplain unit: Low-Flow Channel GPS point: 125 \$356914 . 4129746 Characteristics of the floodplain unit: Average sediment texture: Medican Sond Total veg cover: 65 % Tree: 25 % Community successional stage: NA Early (herbaceous & seedlings) Indicators: Mudcracks	Active Floodplain Active Floodplain Mid (herbaceous, shrubs, sap Late (herbaceous, shrubs, ma	Low Terrace
Change in vegetation cover Comments: Howm, white in Channel as Floodplain unit: Characteristics of the floodplain unit: Average sediment texture: Average sediment texture: Median Send Total veg cover: 66 % Tree: 25 % Community successional stage: NA Early (herbaceous & seedlings) Indicators: Mudcracks Ripples	Active Floodplain Active Floodplain Active Floodplain Mid (herbaceous, shrubs, sap Late (herbaceous, shrubs, ma	Low Terrace plings) ature trees)
Change in vegetation cover Comments: Howm, white is Channel as Floodplain unit: Characteristics of the floodplain unit: Average sediment texture: Average sediment texture: Total veg cover: One of the floodplain unit: Average sediment texture: Medican Send Tree: 25 % Community successional stage: NA Early (herbaceous & seedlings) Indicators: Mudcracks Ripples Drift and/or debris	Active Floodplain Active Floodplain Active Floodplain Mid (herbaceous, shrubs, sap Late (herbaceous, shrubs, ma	Low Terrace plings) ature trees)
Change in vegetation cover Comments: Howm, white in Channel as Floodplain unit: Characteristics of the floodplain unit: Average sediment texture: Average sediment texture: Median Send Total veg cover: 66 % Tree: 25 % Community successional stage: NA Early (herbaceous & seedlings) Indicators: Mudcracks Ripples	Active Floodplain Active Floodplain Mid (herbaceous, shrubs, sap Late (herbaceous, shrubs, ma	Low Terrace plings) ature trees)

roject ID: LOVE Cross section ID Floodplain unit: Low-Flow Channel	Active Floodplain Low Terrace
GPS point: 12 5 635 6908 ; 412 1759	_
Characteristics of the floodplain unit:	
Average sediment texture: Me from 511+ Total veg cover: 40 % Tree: 8 %	
Total veg cover: <u>96</u> % Tree: <u>Q</u> % Community successional stage:	Shrub: <u>\$</u> % Herb: <u>38</u> %
□ NA	Mid (herbaceous, shrubs, saplings)
Early (herbaceous & seedlings)	Late (herbaceous, shrubs, mature trees)
Indicators:	
Mudcracks	Soil development
Ripples Drift and/or debris	Surface relief
Presence of bed and bank	☐ Other:
Benches	☐ Other:
Delicites	
_	
Comments: Vegetation layed down due to	
Comments: Vezetation layed down due to	o recent ton
Comments: Veretation layed down due to Floodplain unit: [XLow-Flow Channel]	o recent ton
Comments: Very tation layed down due to Floodplain unit: Characteristics of the floodplain unit:	o recent ton
Comments: Very tation layed down due to Floodplain unit: GPS point: 125 038 6909; 412 9751 Characteristics of the floodplain unit: Average sediment texture: 20612	D Active Floodplain ☐ Low Terrace
Comments: Very tation layed down due to the state of the floodplain unit: Average sediment texture: Lobble Total veg cover: We to the floodplain unit: A verage sediment texture: Lobble Total veg cover: We to the floodplain unit: Total veg cover: We to the floodplain unit: Tree: We to the floodplain unit:	D Active Floodplain ☐ Low Terrace
Comments: Very tation layed down due to Floodplain unit: Characteristics of the floodplain unit: Average sediment texture:	D Active Floodplain ☐ Low Terrace
Comments: Very tation layed down due to Floodplain unit: [XLow-Flow Channel GPS point: [25 035 69 69; 412 975] Characteristics of the floodplain unit: Average sediment texture: [266] 2 Total veg cover: [8 % Tree:% Community successional stage:	Active Floodplain Low Terrace Shrub:% Herb:%
Comments: Very tation layed down due to Floodplain unit: Characteristics of the floodplain unit: Average sediment texture:	Active Floodplain Low Terrace Shrub:% Herb:% Mid (herbaceous, shrubs, saplings)
Comments: Veretation layed down due to the floodplain unit: Characteristics of the floodplain unit: Average sediment texture:	Active Floodplain Low Terrace Shrub:% Herb:% Mid (herbaceous, shrubs, saplings) Late (herbaceous, shrubs, mature trees) Soil development
Eloodplain unit:	Active Floodplain Low Terrace Shrub:% Herb:% Mid (herbaceous, shrubs, saplings) Late (herbaceous, shrubs, mature trees) Soil development Surface relief
Floodplain unit:	Active Floodplain Low Terrace Shrub:% Herb:% Mid (herbaceous, shrubs, saplings) Late (herbaceous, shrubs, mature trees) Soil development Surface relief Other:
Floodplain unit:	Shrub:% Herb:% Mid (herbaceous, shrubs, saplings) Late (herbaceous, shrubs, mature trees) Soil development Surface relief Other: Other: Other:
Comments: Veretation layed down due to the period down due to the p	Active Floodplain Low Terrace Shrub:% Herb:% Mid (herbaceous, shrubs, saplings) Late (herbaceous, shrubs, mature trees) Soil development Surface relief Other:

/

Arid West Ephemeral and Intermittent Streams OHWM Datasheet Project: (ove Revoic Time: 1800 Date: 10/9/18 **Project Number:** Town: Glen Zale State: ッケ Stream: DDD 36 6 Investigator(s): Brian Parker Photo begin file#: Photo end file#: **Location Details:** Stream Cheest to farm long Projection: 1777 Datum: NAD83 Y/ / N Do normal circumstances exist on the site? Projection: UTM Y / N / Is the site significantly disturbed? Coordinates: 125 0356736; 4129546 Trighted farmland argacent to stream. Norther bank his been built op likely for flood control of farmland Potential anthropogenic influences on the channel system: Brief site description: pernoun stream south of irrighted tembra towns souther and of Herdale Meline. Wooded (Oak, Cotton and , Sycamore) Checklist of resources (if available): Aerial photography Stream gage data Dates: Gage number: Topographic maps Period of record: Geologic maps History of recent effective discharges 🔏 Vegetation maps Results of flood frequency analysis Soils maps Most recent shift-adjusted rating Rainfall/precipitation maps Gage heights for 2-, 5-, 10-, and 25-year events and the Existing delineation(s) for site most recent event exceeding a 5-year event Global positioning system (GPS) Other studies Hydrogeomorphic Floodplain Units Active Floodplain Low Terrace Paleo Channel Low-Flow Channels **OHWM** Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM: 1. Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site. 2. Select a representative cross section across the channel. Draw the cross section and label the floodplain units. 3. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units. a) Record the floodplain unit and GPS position. b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit. c) Identify any indicators present at the location. 4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.

5. Identify the OHWM and record the indicators. Record the OHWM position via:

GPS

Other:

Mapping on aerial photograph

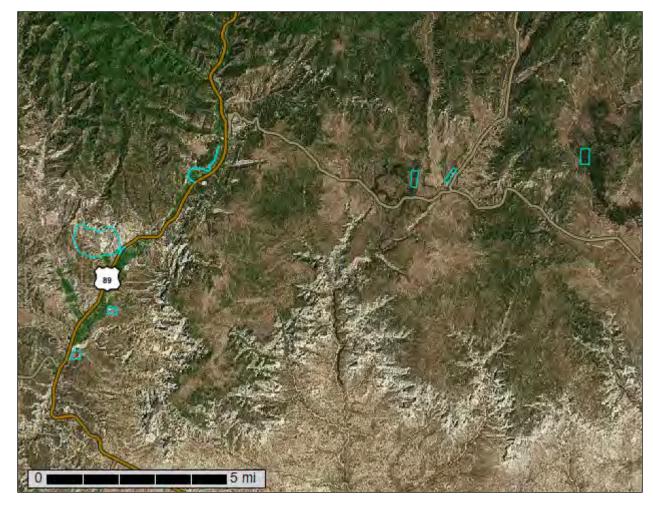
Digitized on computer

Project ID: Cross section ID: PTD % 6 Date: 10/9/18 Time: 1800
Cross section drawing.
lon terres
la terece
Active F.P. Pastone
7 437000
WHO TOHUN
low for chance
OHWM
GPS point: 25 0356735; 4129559
Indicators:
Change in average sediment texture Break in bank slope
Change in vegetation species Other:
Change in vegetation cover Other:
Comments:
Veg. layed down and litter laboris present
Floodplain unit: Low-Flow Channel Active Floodplain Low Terrace
GPS point: 125 0356735; 4129559
Characteristics of the floodplain unit:
Average sediment texture: Manager Shrub: 2 % Herb: 23 %
Community successional stage:
☐ NA ☐ Mid (herbaceous, shrubs, saplings)
Early (herbaceous & seedlings) Late (herbaceous, shrubs, mature trees)
Indicators:
Mudcracks Soil development
Ripples Surface relief
Drift and/or debris Other: Presence of bed and bank Other:
Presence of bed and bank Benches Other: Other:
Comments:

٠ .

Floodplain units	L El Cl1	50 b Date: /6/41/8 Time: /8
riooupiain unit: X	Low-Flow Channel	☐ Active Floodplain ☐ Low Terrac
GPS point: <u>12</u> 5 035	6731; 4129555	
Characteristics of the flo	odplain unit:	
Average sediment texture	: Coase sour	
Total veg cover: _/ ***	% Tree: <u> ½</u> % Sł	ırub: <u>&</u> % Herb: <u>/ O</u> %
Community successional	stage:	
□ NA		Mid (herbaceous, shrubs, saplings)
Early (herbaceou	is & seedlings)	Late (herbaceous, shrubs, mature trees)
Indicators:		
Mudcracks		Soil development
Ripples		Surface relief
Drift and/or debr	is	Other:
Presence of bed	and bank	Other:
Benches		Other:
Comments:		
Floodplain unit:	Low-Flow Channel	☐ Active Floodplain
i loouplain unit.	Low-Plow Chainlei	Active Produptain Low Terrac
GPS point: <u>いなら めい</u>	6733; 412956	r
	<u> </u>	
Characteristics of the floo		
Average sediment texture	: Come silt	
Total veg cover: 50%	6 Tree: // Sh	rub: <u>15</u> % Herb: <u>10</u> %
Community successional	stage:	A
∐ NA	0 11' \	Mid (herbaceous, shrubs, saplings)
Early (herbaceou	s & seedlings)	Late (herbaceous, shrubs, mature trees)
Indicators:		
Mudcracks		Soil development
Ripples		Surface relief
Drift and/or debr	is	Other:
Presence of bed a	nd bank	Utner:
🛚 Benches		Other:
Comments:		
~ ~		

APPENDIX C


NRCS CUSTOM SOIL REPORTS

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Kane County Area, Utah

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	11
Kane County Area, Utah	
12—Catdraw family-Orderville-Quezcan family complex, 15 to 35	
percent slopes	.14
13—Catdraw-Quezcan-Vessilla complex, 35 to 60 percent slopes	
28—Elpedro-Plumasano-Teromote family-Flatnose complex, 0 to 8	
percent slopes	.19
55—Naplene-Teromote-Arboles-Oxyaquic Ustifluvents complex, 2 to 8	
percent slopes	.22
58—Parkelei-Quagmeier-Fraguni complex, 2 to 35 percent slopes	.25
68—Pinepoint-Waumac-Royosa complex, 0 to 4 percent slopes	28
69—Pinepoint-Paria-Parkwash complex, 2 to 8 percent slopes	30
72—Quezcan, deep-Sideshow-Orderville complex, 15 to 35 percent	
slopes	.32
94—Sili-Sideshow-Gypsic Haplustepts complex, 2 to 15 percent slopes	. 35
98—Tonalea family-Bamac complex, 15 to 65 percent slopes	.37
105—Wetoe family-Flugle-Royosa family-Lava flows complex, 2 to 60	
percent slopes	.39
110—Zigzag family-Badland-Quezcan complex, 35 to 90 percent slopes	. 42
References	45

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

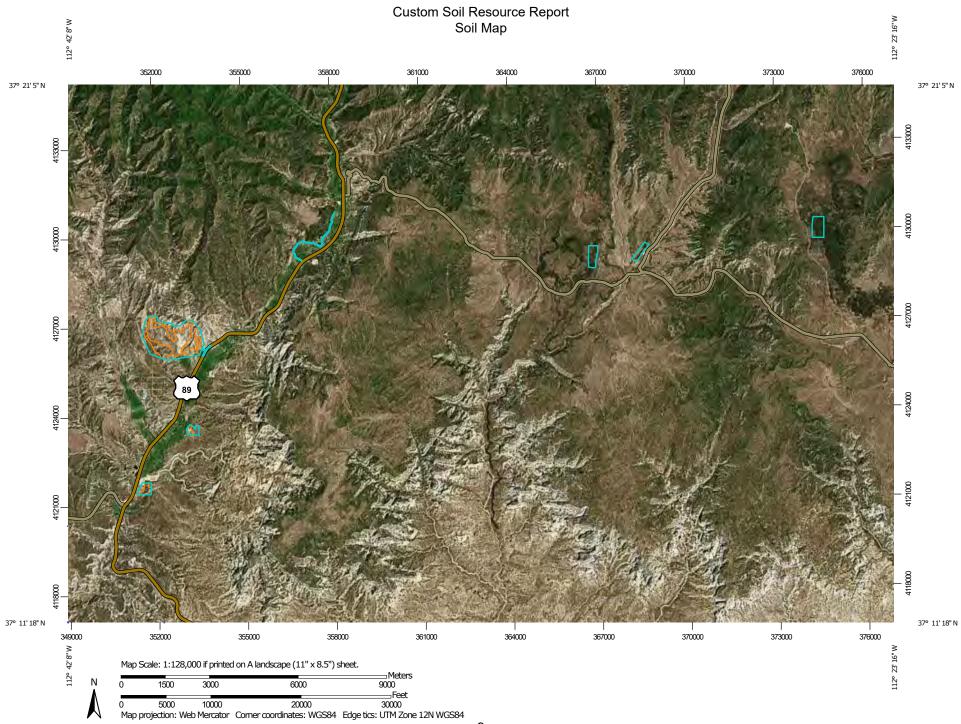
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

-

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

(©)

Blowout

 \boxtimes

Borrow Pit

366

Clay Spot

 \triangle

Closed Depression

`.

Gravel Pit

۰

Gravelly Spot

0

Landfill Lava Flow

٨

Marsh or swamp

2

Mine or Quarry

0

Miscellaneous Water

Perennial Water

0

Rock Outcrop

+

Saline Spot

...

Sandy Spot

Severely Eroded Spot Sinkhole

24

Slide or Slip

Ø

Sodic Spot

OLIND

Spoil Area Stony Spot

Very Stony Spot

Wet Spot Other

Δ

Special Line Features

Water Features

~

Streams and Canals

Transportation

Rails

~

Interstate Highways

US Routes

~

Major Roads Local Roads

Background

The same

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:63.400.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Kane County Area, Utah Survey Area Data: Version 4, Sep 16, 2019

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Mar 15, 2013—Aug 13, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
12	Catdraw family-Orderville- Quezcan family complex, 15 to 35 percent slopes	0.3	0.0%
13	Catdraw-Quezcan-Vessilla complex, 35 to 60 percent slopes	8.4	1.0%
28	Elpedro-Plumasano-Teromote family-Flatnose complex, 0 to 8 percent slopes	0.7	0.1%
55	Naplene-Teromote-Arboles- Oxyaquic Ustifluvents complex, 2 to 8 percent slopes	36.6	4.5%
58	Parkelei-Quagmeier-Fraguni complex, 2 to 35 percent slopes	29.4	3.6%
68	Pinepoint-Waumac-Royosa complex, 0 to 4 percent slopes	11.4	1.4%
69	Pinepoint-Paria-Parkwash complex, 2 to 8 percent slopes	20.7	2.6%
72	Quezcan, deep-Sideshow- Orderville complex, 15 to 35 percent slopes	176.3	21.9%
94	Sili-Sideshow-Gypsic Haplustepts complex, 2 to 15 percent slopes	258.5	32.1%
98	Tonalea family-Bamac complex, 15 to 65 percent slopes	36.7	4.6%
105	Wetoe family-Flugle-Royosa family-Lava flows complex, 2 to 60 percent slopes	118.9	14.8%
110	Zigzag family-Badland-Quezcan complex, 35 to 90 percent slopes	107.7	13.4%
Totals for Area of Interest		805.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named

according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Kane County Area, Utah

12—Catdraw family-Orderville-Quezcan family complex, 15 to 35 percent slopes

Map Unit Setting

National map unit symbol: 2ndzc Elevation: 5,350 to 7,550 feet

Mean annual precipitation: 14 to 17 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 100 to 119 days

Farmland classification: Not prime farmland

Map Unit Composition

Catdraw family and similar soils: 40 percent Orderville and similar soils: 30 percent Quezcan family and similar soils: 15 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Catdraw Family

Setting

Landform: Structural benches Down-slope shape: Linear Across-slope shape: Linear

Parent material: Colluvium derived from sandstone and shale over residuum

weathered from sandstone and shale

Typical profile

AC - 0 to 4 inches: loam C1 - 4 to 9 inches: loam

C2 - 9 to 27 inches: fine sandy loam

R - 27 to 37 inches: bedrock

Properties and qualities

Slope: 15 to 35 percent

Depth to restrictive feature: 24 to 39 inches to lithic bedrock

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Gypsum, maximum in profile: 3 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Low (about 4.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: Upland Loam (Mountain Big Sagebrush) (R035XY308UT)

Hydric soil rating: No

Description of Orderville

Setting

Landform: Structural benches Down-slope shape: Linear Across-slope shape: Linear

Parent material: Slope alluvium derived from sandstone and shale over residuum

weathered from sandstone and shale

Typical profile

A - 0 to 4 inches: silty clay loam Bw - 4 to 12 inches: clay loam Bk1 - 12 to 23 inches: silt loam Bk2 - 23 to 33 inches: silt loam Bk3 - 33 to 61 inches: silt loam

Properties and qualities

Slope: 15 to 35 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 12.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: Upland Loam (Mountain Big Sagebrush) (R035XY308UT)

Hydric soil rating: No

Description of Quezcan Family

Settina

Landform: Structural benches Down-slope shape: Linear Across-slope shape: Linear

Parent material: Colluvium derived from sandstone and shale over residuum

weathered from sandstone and shale

Typical profile

A - 0 to 4 inches: clay loam
BC - 4 to 15 inches: clay
C1 - 15 to 21 inches: clay loam

C2 - 21 to 24 inches: gravelly clay loam

R - 24 to 34 inches: bedrock

Properties and qualities

Slope: 15 to 35 percent

Percent of area covered with surface fragments: 7.0 percent Depth to restrictive feature: 24 to 33 inches to lithic bedrock

Natural drainage class: Well drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Low (about 4.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: D

Ecological site: Upland Clay Loam (Pinyon - Juniper) (R035XY304UT)

Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 15 percent

13—Catdraw-Quezcan-Vessilla complex, 35 to 60 percent slopes

Map Unit Setting

National map unit symbol: 2nd10 Elevation: 5,540 to 7,700 feet

Mean annual precipitation: 14 to 17 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 100 to 119 days

Farmland classification: Not prime farmland

Map Unit Composition

Catdraw and similar soils: 40 percent Quezcan and similar soils: 25 percent Vessilla and similar soils: 15 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Catdraw

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Colluvium derived from sandstone and shale over residuum

weathered from sandstone and shale

Typical profile

AC - 0 to 3 inches: gravelly sandy clay loam C1 - 3 to 15 inches: gravelly silty clay loam

C2 - 15 to 34 inches: silty clay loam Cy - 34 to 60 inches: silty clay loam

Properties and qualities

Slope: 35 to 60 percent

Percent of area covered with surface fragments: 15.0 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.20 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Gypsum, maximum in profile: 5 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 10.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: C

Ecological site: Upland Dissected Slope (Twoneedle Pinyon-Utah Juniper)

(R035XY302UT)

Hydric soil rating: No

Description of Quezcan

Setting

Landform: Escarpments
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Residuum weathered from sandstone and shale

Typical profile

AC - 0 to 5 inches: gravelly silt loam
C1 - 5 to 19 inches: very paragravelly clay
C2 - 19 to 26 inches: very paragravelly silt loam

R - 26 to 35 inches: bedrock

Properties and qualities

Slope: 35 to 60 percent

Percent of area covered with surface fragments: 4.0 percent Depth to restrictive feature: 22 to 33 inches to lithic bedrock

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Gypsum, maximum in profile: 5 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Low (about 3.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: Upland Steep Stony Loam (Utah Juniper-Pinyon) (R035XY317UT)

Hydric soil rating: No

Description of Vessilla

Setting

Landform: Escarpments
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Residuum weathered from sandstone and shale

Typical profile

AC - 0 to 7 inches: gravelly fine sandy loam

R - 7 to 17 inches: bedrock

Properties and qualities

Slope: 35 to 60 percent

Depth to restrictive feature: 4 to 16 inches to lithic bedrock

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Very low (about 0.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: Upland Shallow Loam (Pinyon-Utah Juniper) AWC <3

(R035XY315UT) Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 20 percent

28—Elpedro-Plumasano-Teromote family-Flatnose complex, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2mhbz Elevation: 5,940 to 7,400 feet

Mean annual precipitation: 13 to 17 inches Mean annual air temperature: 47 to 52 degrees F

Frost-free period: 130 to 147 days

Farmland classification: Farmland of statewide importance, if irrigated

Map Unit Composition

Elpedro and similar soils: 30 percent Plumasano and similar soils: 30 percent Teromote family and similar soils: 20 percent

Flatnose and similar soils: 10 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Elpedro

Setting

Landform: Terraces, alluvial flats

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock

Typical profile

A - 0 to 4 inches: silt loam

Bt - 4 to 11 inches: silty clay loam

Btk1 - 11 to 49 inches: silty clay loam

Btk2 - 49 to 65 inches: silt loam

Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 11.7 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: Upland Loam (Mountain Big Sagebrush) (R035XY308UT)

Hydric soil rating: No

Description of Plumasano

Setting

Landform: Alluvial flats, terraces

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock

Typical profile

A - 0 to 5 inches: fine sandy loam Bw1 - 5 to 13 inches: loam

Bw2 - 13 to 36 inches: fine sandy loam Bk - 36 to 60 inches: fine sandy loam

Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: Rare Frequency of ponding: None

Calcium carbonate, maximum in profile: 10 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Moderate (about 8.8 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: Upland Loam (Mountain Big Sagebrush) (R035XY308UT)

Hydric soil rating: No

Description of Teromote Family

Setting

Landform: Alluvial flats, terraces

Landform position (three-dimensional): Tread

Down-slope shape: Linear

Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock

Typical profile

A - 0 to 6 inches: fine sandy loam Bw - 6 to 19 inches: silt loam

Bk - 19 to 32 inches: sandy clay loam 2C1 - 32 to 41 inches: silt loam 2C2 - 41 to 52 inches: silty clay loam 2C3 - 52 to 63 inches: silty clay loam

Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 10 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 11.0 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: Upland Loam (Mountain Big Sagebrush) (R035XY308UT)

Hydric soil rating: No

Description of Flatnose

Setting

Landform: Flood plains

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock

Typical profile

C1 - 0 to 2 inches: loamy fine sand C2 - 2 to 10 inches: sandy clay loam C3 - 10 to 25 inches: fine sandy loam C4 - 25 to 59 inches: gravelly loamy sand

Properties and qualities

Slope: 0 to 4 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: Frequent

Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Low (about 5.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: B

Ecological site: Upland Loam (Basin Big Sagebrush) (R035XY306UT)

Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 10 percent

55—Naplene-Teromote-Arboles-Oxyaquic Ustifluvents complex, 2 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2nczn Elevation: 6,290 to 7,250 feet

Mean annual precipitation: 14 to 17 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 100 to 119 days

Farmland classification: Prime farmland if irrigated

Map Unit Composition

Naplene and similar soils: 45 percent Teromote and similar soils: 20 percent Arboles and similar soils: 15 percent

Oxyaquic ustifluvents and similar soils: 10 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Naplene

Setting

Landform: Stream terraces Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock

Typical profile

A - 0 to 7 inches: silt loam

C1 - 7 to 12 inches: silt loam C2 - 12 to 33 inches: silt loam C3 - 33 to 43 inches: silt loam C4 - 43 to 45 inches: loam C5 - 45 to 59 inches: loam

Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.20 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: Upland Loam (Mountain Big Sagebrush) (R035XY308UT)

Hydric soil rating: No

Description of Teromote

Setting

Landform: Alluvial flats
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock

Typical profile

A - 0 to 6 inches: silt loam
Bw - 6 to 20 inches: clay loam
Bk - 20 to 36 inches: loam

C - 36 to 59 inches: fine sandy loam

Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 10.9 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: Upland Loam (Mountain Big Sagebrush) (R035XY308UT)

Hydric soil rating: No

Description of Arboles

Setting

Landform: Alluvial flats
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock

Typical profile

A - 0 to 3 inches: clay loam Bss1 - 3 to 21 inches: clay Bss2 - 21 to 30 inches: clay Ck - 30 to 32 inches: clay

2C - 32 to 43 inches: silty clay loam 3C - 43 to 59 inches: silt loam

Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 10 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 10.7 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hvdrologic Soil Group: C

Ecological site: Upland Clay Loam (Low Sagebrush) (R035XY301UT)

Hydric soil rating: No

Description of Oxyaquic Ustifluvents

Setting

Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock

Typical profile

A - 0 to 5 inches: silt loam AC1 - 5 to 11 inches: silt loam AC2 - 11 to 22 inches: silt loam

C1 - 22 to 33 inches: silt loam C2 - 33 to 39 inches: silt loam C3 - 39 to 49 inches: silt loam Cq - 49 to 59 inches: silt loam

Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Moderately well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.20 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: Frequent Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Very high (about 12.1 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6w

Hydrologic Soil Group: B

Ecological site: Semiwet Fresh Meadow (R035XY010UT)

Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 10 percent

58—Parkelei-Quagmeier-Fraguni complex, 2 to 35 percent slopes

Map Unit Setting

National map unit symbol: 2mhd4 Elevation: 6,000 to 7,580 feet

Mean annual precipitation: 14 to 17 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 100 to 119 days

Farmland classification: Farmland of statewide importance, if irrigated

Map Unit Composition

Parkelei and similar soils: 45 percent Quagmeier and similar soils: 30 percent Fraguni and similar soils: 20 percent

Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Parkelei

Setting

Landform: Fan remnants
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from limestone and sandstone

Typical profile

A - 0 to 6 inches: very fine sandy loam

Bt - 6 to 24 inches: clay loam Btk - 24 to 59 inches: loam

Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 10 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 11.2 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: Upland Loam (Mountain Big Sagebrush) (R035XY308UT)

Hydric soil rating: No

Description of Quagmeier

Setting

Landform: Fan remnants
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from limestone and sandstone

Typical profile

A - 0 to 4 inches: gravelly fine sandy loam

Btk - 4 to 17 inches: very gravelly loam

Bk1 - 17 to 25 inches: gravelly loam

Bk2 - 25 to 59 inches: very gravelly sandy clay loam

Properties and qualities

Slope: 2 to 35 percent

Percent of area covered with surface fragments: 1.0 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.20 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 47 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Moderate (about 6.6 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: Upland Stony Loam (Pinyon-Utah Juniper) (R035XY321UT)

Hydric soil rating: No

Description of Fraguni

Setting

Landform: Fan remnants
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from sandstone

Typical profile

A - 0 to 4 inches: fine sandy loam

Bt - 4 to 32 inches: fine sandy loam

Btk - 32 to 59 inches: fine sandy loam

Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.60 to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 4 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Moderate (about 8.4 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4s

Hydrologic Soil Group: A

Ecological site: Upland Loam (Mountain Big Sagebrush) (R035XY308UT)

Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 5 percent

68—Pinepoint-Waumac-Royosa complex, 0 to 4 percent slopes

Map Unit Setting

National map unit symbol: 2mz0b Elevation: 4,530 to 6,360 feet

Mean annual precipitation: 13 to 17 inches Mean annual air temperature: 47 to 52 degrees F

Frost-free period: 130 to 147 days

Farmland classification: Not prime farmland

Map Unit Composition

Pinepoint and similar soils: 50 percent Waumac and similar soils: 25 percent Royosa and similar soils: 20 percent Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pinepoint

Setting

Landform: Sand sheets on alluvial flats

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from sandstone

Typical profile

C1 - 0 to 17 inches: loamy fine sand C2 - 17 to 71 inches: fine sand

Properties and qualities

Slope: 0 to 4 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00

to 20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: Upland Sand (Mountain Big Sagebrush) (R035XY307UT)

Hydric soil rating: No

Description of Waumac

Setting

Landform: Flood plains
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from sandstone

Typical profile

C - 0 to 8 inches: loamy fine sand 2C - 8 to 17 inches: sandy clay loam 3C1 - 17 to 54 inches: fine sandy loam 3C2 - 54 to 69 inches: loamy fine sand

Properties and qualities

Slope: 0 to 4 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained

Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

very high (0.20 to 20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: Rare

Calcium carbonate, maximum in profile: 4 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Moderate (about 7.8 inches)

Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: Upland Loam (Basin Big Sagebrush) (R035XY306UT)

Hydric soil rating: No

Description of Royosa

Setting

Landform: Sand sheets on alluvial flats

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from sandstone

Typical profile

A - 0 to 4 inches: loamy fine sand C1 - 4 to 13 inches: loamy fine sand C2 - 13 to 27 inches: loamy fine sand C3 - 27 to 61 inches: loamy sand

Properties and qualities

Slope: 0 to 4 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00

to 99.90 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Low (about 5.4 inches)

Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: Upland Sand (Mountain Big Sagebrush) (R035XY307UT)

Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 5 percent

69—Pinepoint-Paria-Parkwash complex, 2 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2ml1v Elevation: 5,040 to 7,030 feet

Mean annual precipitation: 13 to 17 inches
Mean annual air temperature: 47 to 52 degrees F

Frost-free period: 130 to 147 days

Farmland classification: Not prime farmland

Map Unit Composition

Pinepoint and similar soils: 60 percent Parkwash and similar soils: 15 percent Paria and similar soils: 15 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pinepoint

Setting

Landform: Sand sheets, alluvial flats

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from sandstone

Typical profile

A - 0 to 4 inches: loamy sand

C1 - 4 to 17 inches: loamy sand C2 - 17 to 48 inches: loamy sand C3 - 48 to 62 inches: loamy sand

Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00

to 99.90 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Low (about 4.2 inches)

Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: Upland Sand (Mountain Big Sagebrush) (R035XY307UT)

Hydric soil rating: No

Description of Parkwash

Setting

Landform: Sand sheets
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from sandstone over residuum weathered from

sandstone

Typical profile

C1 - 0 to 5 inches: loamy sand C2 - 5 to 12 inches: fine sand R - 12 to 22 inches: bedrock

Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: 8 to 19 inches to lithic bedrock

Natural drainage class: Excessively drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Very low (about 0.7 inches)

Interpretive groups

Land capability classification (irrigated): 7s Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: Upland Shallow Sand (Pinyon-Utah Juniper) (R035XY314UT)

Hydric soil rating: No

Description of Paria

Setting

Landform: Sand sheets
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Eolian sands derived from sandstone

Typical profile

C1 - 0 to 7 inches: loamy fine sand C2 - 7 to 33 inches: loamy fine sand

R - 33 to 43 inches: bedrock

Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: 20 to 39 inches to lithic bedrock

Natural drainage class: Excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Very low (about 2.3 inches)

Interpretive groups

Land capability classification (irrigated): 6s Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: Upland Sand (Mountain Big Sagebrush) (R035XY307UT)

Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 10 percent

72—Quezcan, deep-Sideshow-Orderville complex, 15 to 35 percent slopes

Map Unit Setting

National map unit symbol: 2pfbl Elevation: 5,370 to 7,570 feet

Mean annual precipitation: 14 to 17 inches

Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 100 to 119 days

Farmland classification: Not prime farmland

Map Unit Composition

Quezcan, deep, and similar soils: 35 percent Orderville and similar soils: 25 percent Sideshow and similar soils: 25 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Quezcan, Deep

Setting

Landform: Structural benches Down-slope shape: Linear Across-slope shape: Linear

Parent material: Slope alluvium derived from shale over residuum weathered from

shale

Typical profile

A - 0 to 3 inches: clay loam
Bk - 3 to 20 inches: clay loam
Ck1 - 20 to 33 inches: silty clay
Ck2 - 33 to 61 inches: silty clay

Properties and qualities

Slope: 15 to 35 percent

Percent of area covered with surface fragments: 0.0 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 10.4 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: Upland Clay Loam (Pinyon - Juniper) (R035XY304UT)

Hydric soil rating: No

Description of Sideshow

Setting

Landform: Structural benches Down-slope shape: Linear Across-slope shape: Linear

Parent material: Slope alluvium derived from shale over residuum weathered from

shale

Typical profile

A - 0 to 4 inches: silty clay Bwss1 - 4 to 20 inches: clay Bwss2 - 20 to 31 inches: clay By - 31 to 53 inches: clay

C - 53 to 61 inches: silty clay loam

Properties and qualities

Slope: 15 to 35 percent

Percent of area covered with surface fragments: 0.0 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Gypsum, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 9.4 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: Upland Clay Loam (Pinyon - Juniper) (R035XY304UT)

Hydric soil rating: No

Description of Orderville

Settina

Landform: Structural benches Down-slope shape: Linear Across-slope shape: Linear

Parent material: Slope alluvium derived from shale over residuum weathered from

shale

Typical profile

A - 0 to 4 inches: silt loam

Bw - 4 to 19 inches: silty clay loam Bk1 - 19 to 46 inches: silty clay loam Bk2 - 46 to 63 inches: silty clay loam

Properties and qualities

Slope: 15 to 35 percent

Percent of area covered with surface fragments: 0.0 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None

Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 12.0 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: Upland Loam (Gambel Oak) (R035XY305UT)

Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 15 percent

94—Sili-Sideshow-Gypsic Haplustepts complex, 2 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2nd0z Elevation: 5,430 to 7,450 feet

Mean annual precipitation: 14 to 17 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 100 to 119 days

Farmland classification: Farmland of statewide importance, if irrigated

Map Unit Composition

Sili and similar soils: 40 percent Sideshow and similar soils: 35 percent

Gypsic haplustepts and similar soils: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sili

Setting

Landform: Structural benches Down-slope shape: Linear Across-slope shape: Linear

Parent material: Slope alluvium derived from shale over residuum weathered from

shale

Typical profile

Ap - 0 to 5 inches: silty clay Bw - 5 to 41 inches: silty clay By - 41 to 50 inches: silty clay Cy - 50 to 61 inches: silty clay

Properties and qualities

Slope: 2 to 15 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 10 percent

Gypsum, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 9.9 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: Upland Clay Loam (Low Sagebrush) (R035XY301UT)

Hydric soil rating: No

Description of Sideshow

Setting

Landform: Structural benches Down-slope shape: Linear Across-slope shape: Linear

Parent material: Slope alluvium derived from shale over residuum weathered from

shale

Typical profile

Ap - 0 to 7 inches: silty clay loam Bss - 7 to 17 inches: silty clay loam Bw - 17 to 44 inches: silty clay loam By1 - 44 to 56 inches: silty clay By2 - 56 to 61 inches: silty clay loam

Properties and qualities

Slope: 2 to 15 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Gypsum, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 10.1 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: Upland Clay Loam (Pinyon - Juniper) (R035XY304UT)

Hydric soil rating: No

Description of Gypsic Haplustepts

Setting

Landform: Structural benches Down-slope shape: Linear Across-slope shape: Linear

Parent material: Slope alluvium derived from shale over residuum weathered from

shale

Typical profile

A - 0 to 5 inches: clay loam
Bw - 5 to 24 inches: clay loam
By1 - 24 to 37 inches: clay loam
By2 - 37 to 63 inches: clay loam

Properties and qualities

Slope: 2 to 15 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Gypsum, maximum in profile: 15 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hvdrologic Soil Group: C

Ecological site: Upland Clay Loam (Low Sagebrush) (R035XY301UT)

Hydric soil rating: No

98—Tonalea family-Bamac complex, 15 to 65 percent slopes

Map Unit Setting

National map unit symbol: 2q7f1

Elevation: 5,190 to 5,980 feet

Mean annual precipitation: 13 to 17 inches
Mean annual air temperature: 47 to 52 degrees F

Frost-free period: 130 to 147 days

Farmland classification: Not prime farmland

Map Unit Composition

Tonalea family and similar soils: 50 percent Bamac and similar soils: 30 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tonalea Family

Setting

Landform: Ridges

Landform position (two-dimensional): Summit

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Colluvium derived from sandstone and/or residuum weathered

from sandstone

Typical profile

A - 0 to 2 inches: gravelly loamy fine sand C - 2 to 43 inches: loamy fine sand R - 43 to 53 inches: bedrock

Properties and qualities

Slope: 15 to 65 percent

Percent of area covered with surface fragments: 3.0 percent Depth to restrictive feature: 39 to 49 inches to lithic bedrock

Natural drainage class: Excessively drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 10 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Low (about 3.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: Upland Stony Loam (Pinyon-Utah Juniper) (R035XY321UT)

Hydric soil rating: No

Description of Bamac

Setting

Landform: Hillslopes

Landform position (two-dimensional): Backslope

Down-slope shape: Linear Across-slope shape: Convex

Parent material: Colluvium derived from sandstone

Typical profile

AC - 0 to 2 inches: gravelly loamy fine sand C1 - 2 to 7 inches: very gravelly loamy fine sand C2 - 7 to 63 inches: very cobbly loamy fine sand

Properties and qualities

Slope: 15 to 65 percent

Percent of area covered with surface fragments: 16.0 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00

to 20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 10 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: Upland Stony Loam (Pinyon-Utah Juniper) (R035XY321UT)

Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 20 percent

105—Wetoe family-Flugle-Royosa family-Lava flows complex, 2 to 60 percent slopes

Map Unit Setting

National map unit symbol: 2ml1y Elevation: 5,960 to 7,010 feet

Mean annual precipitation: 13 to 17 inches Mean annual air temperature: 47 to 52 degrees F

Frost-free period: 130 to 147 days

Farmland classification: Not prime farmland

Map Unit Composition

Wetoe family and similar soils: 40 percent Flugle and similar soils: 30 percent

Lava flows: 15 percent

Rovosa family and similar soils: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wetoe Family

Setting

Landform: Lava flows
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Residuum weathered from basalt

Typical profile

A - 0 to 4 inches: very cobbly fine sandy loam Bt - 4 to 21 inches: very cobbly fine sandy loam

R - 21 to 31 inches: bedrock

Properties and qualities

Slope: 2 to 35 percent

Percent of area covered with surface fragments: 25.0 percent Depth to restrictive feature: 20 to 39 inches to lithic bedrock

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.01 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Very low (about 1.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: B

Ecological site: Upland Stony Loam (Pinyon-Utah Juniper) (R035XY321UT)

Hydric soil rating: No

Description of Flugle

Setting

Landform: Lava flows
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from basalt over residuum weathered from

basalt

Typical profile

A - 0 to 4 inches: fine sandy loam Bt1 - 4 to 26 inches: loam

Bt2 - 26 to 33 inches: loam

Bt3 - 33 to 59 inches: gravelly loam

Properties and qualities

Slope: 2 to 35 percent

Percent of area covered with surface fragments: 0.0 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.20 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 10.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: Upland Loam (Mountain Big Sagebrush) (R035XY308UT)

Hydric soil rating: No

Description of Lava Flows

Setting

Landform: Lava flows

Parent material: Residuum weathered from basalt

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Description of Royosa Family

Setting

Landform: Cinder cones
Down-slope shape: Linear
Across-slope shape: Convex

Parent material: Colluvium derived from pumice over residuum weathered from

pumice

Typical profile

A - 0 to 7 inches: gravelly sandy loam C1 - 7 to 39 inches: gravelly loamy sand C2 - 39 to 59 inches: gravelly loamy sand

Properties and qualities

Slope: 35 to 60 percent

Percent of area covered with surface fragments: 25.0 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): High to very high (2.00

to 20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Low (about 3.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: Upland Stony Loam (Wyoming Big Sagebrush, Indian Ricegrass)

(R035XY318UT) Hydric soil rating: No

110—Zigzag family-Badland-Quezcan complex, 35 to 90 percent slopes

Map Unit Setting

National map unit symbol: 2nczh Elevation: 5,440 to 7,480 feet

Mean annual precipitation: 13 to 17 inches Mean annual air temperature: 47 to 52 degrees F

Frost-free period: 130 to 147 days

Farmland classification: Not prime farmland

Map Unit Composition

Zigzag family and similar soils: 35 percent Quezcan and similar soils: 25 percent

Badland: 25 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Zigzag Family

Setting

Landform: Escarpments
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Residuum weathered from shale

Typical profile

A - 0 to 4 inches: parachannery silty clay loam

Cy1 - 4 to 13 inches: very paragravelly silty clay

Cy2 - 13 to 19 inches: very paragravelly silty clay

Cr - 19 to 29 inches: bedrock

Properties and qualities

Slope: 35 to 90 percent

Percent of area covered with surface fragments: 1.0 percent Depth to restrictive feature: 12 to 19 inches to paralithic bedrock

Natural drainage class: Well drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Gypsum, maximum in profile: 5 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Very low (about 2.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D Hydric soil rating: No

Description of Quezcan

Setting

Landform: Escarpments
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Colluvium derived from shale and/or residuum weathered from

shale

Typical profile

A - 0 to 6 inches: paragravelly silty clay

C1 - 6 to 11 inches: paragravelly silty clay loam

C2 - 11 to 22 inches: silty clay Cr - 22 to 31 inches: bedrock

Properties and qualities

Slope: 35 to 90 percent

Percent of area covered with surface fragments: 10.0 percent Depth to restrictive feature: 20 to 28 inches to paralithic bedrock

Natural drainage class: Well drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Gypsum, maximum in profile: 5 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: Upland Clay Loam (Pinyon - Juniper) (R035XY304UT)

Hydric soil rating: No

Description of Badland

Setting

Landform: Escarpments
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Residuum weathered from shale

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Minor Components

Unnamed soils

Percent of map unit: 15 percent

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX D

PROJECT PHOTOGRAPHS

Figure 1: View facing north (upstream) of the upstream reaches of PJD 1 showing the clear channel and vegetation lining the banks at the OHWM.

Figure 2: View facing south (downstream) of the upstream portion of PJD 1.

Figure 3: View facing northeast showing the intermittent stream channel and canyon landscape surrounding the upstream portion of PJD 1. No water was observed flowing in PJD 1 despite heavy rains 48–72 hours prior to field surveys.

Figure 4: View facing northwest (upstream) of the lower portion of PJD 1 showing the clear channel and OHWM with evidence of recent flow of precipitation and sediment.

Figure 5: View facing southeast (downstream) of the lower portion of PJD 1 showing the surrounding valley landscape further downstream.

Figure 6: View facing northwest of the confluence of PJD 1 (left) and PJD 2 (right) at the location where the proposed dam structure would be constructed.

Figure 7: View facing west showing where sheet flow originating from the surrounding valley and PJD 3 further uphill flow along Cove Road and meet PJD 1 (right side; out of view). No OHWM was observed along the road and PJD no longer has significant surficial connectivity downstream.

Figure 8: View facing southwest of an old man-made pond feature. NWI maps indicated that this may be a wetland; however, field investigations determined that it lacked the necessary indicators characteristic of a wetland.

Figure 9: View facing southeast of a stand of coyote willow adjacent to a cattle trough south of Cove Road. Though vegetation here is FACW, the site lacked any indicators of wetland hydrology or hydric soils.

Figure 10: View facing south of Wetland 1 south of Cove Road. This man-made feature exhibited the necessary vegetation, hydrology and soil indicators to be considered a wetland.

Figure 11: View facing northwest (upstream) of PJD 1 at the southern end of the study area.

Figure 12: View facing south overlooking the proposed location of Cove Reservoir.

Figure 13: View facing northwest (upstream) of PJD 1a showing the clear channel and deposition at the OHWM.

Figure 14: View facing north (upstream) of the confluence of PJD 1 (bottom) and PJD 1a.

Figure 15: View facing east of a sediment pond just above PJD2a. The pond's basin was observed to be mostly full of sediment and does not appear to be currently functional. No wetland indicators were observed here.

Figure 16: View facing northeast (upstream) of PJD2a. The channel (not shown) was at the bottom of this approximately 50-foot canyon.

Figure 17: View facing southwest (downstream) of PJD2a.

Figure 18: View facing south (downstream) of the upper reach of PJD 2. The channel (not shown) was at the bottom of this approximately 50–60-foot

Figure 19: View facing northeast (upstream) of the lower reach of PJD 2 showing the channel and steep-walled banks. Early successional vegetation in the channel indicated that flow within PJD 2 is likely ephemeral.

Figure 20: View facing south (downstream) of the lower reach of PJD 2 showing the channel, active floodplain and steep-walled banks.

Figure 21: View facing northeast (downstream) of PJD3 west of the proposed reservoir location. PJD3 and PJD3a were small ephemeral streams, but showed to have a defined channel and OHWM.

Figure 22: View facing southwest (upstream) of PJD3.

Figure 23: View facing southeast of sheet flow along Cove Road originating from PJD 3. Here, PJD 3 loses all definition of a bed and bank.

Figure 24: View facing north upstream of PJD 4 showing where sheet flow forms from runoff from the adjacent hillsides. This sheetflow is eventually funneled into PJD 4 (south and out of view).

Figure 25: View facing northeast of PJD 4. Here, precipitation and snowmelt are funneled into a steep-walled gorge and form a well-defined OHWM and channel.

Figure 26: View facing southwest of PJD 4 showing the clear channel and OHWM

Figure 27: View facing southwest of where PJD 4 opens up and loses a defined OHWM.

Figure 28: View facing south of the uppermost sediment pond south of PJD 4. No defined inlet or outlet was observed at this pond. The second pond below is shown in the background.

Figure 29: View facing northeast showing the access to the reservoir portion of the project area at the intersection of US-89 and Cove Road (background).

Figure 30: View facing south of the lower of the three sediment ponds found below PJD 4 and west of the proposed reservoir location.

Figure 31: View facing west of the second sediment pond found below PJD 4 and west of the proposed reservoir location.

Figure 32: View facing southwest of Wetland 2. Replacement of the Glendale pipeline would occur within this wetland.

Figure 33: View facing northwest (upstream) of PJD 5 showing flowing water in the channel and matted vegetation due to high flow caused by recent heavy rains.

Figure 34: View facing southeast (downstream) of PJD 5.

Figure 35: View facing northwest (upstream) of PJD 6.

Figure 36: View facing southeast of PJD 6 showing flowing water and matted vegetation due to heavy rains prior to field surveys.

Figure 37: View facing north of the Bald Knolls Borrow Pit. No potentially jurisdictional WOTUS were observed here.

Figure 38: View facing southwest of the Bald Knolls Borrow Pit. No potentially jurisdictional WOTUS were observed here.

Figure 39: View facing north of the Lamb's Borrow Pit. No potentially jurisdictional WOTUS were observed here.

Figure 40: View facing northwest of where the Tait Borrow Pit could be expanded to. No potentially jurisdictional WOTUS were observed here.

Figure 41: View facing west of Bald Knoll Expansion borrow pit.

Figure 42: View facing northwest of the proposed Black Knoll borrow pit.

Figure 43: View facing northeast of the Tait borrow pit.

Figure 44: View facing north of the Elbow borrow pit.

Figure 45: View of the soil pit sample for Wetland 1 redox depressions and some gleyed matrix.

Figure 46: View of the soil pit for Wetland 1.

Figure 47: View of paired upland soil pit investigated for the delineation of Wetland 1.

Figure 48: View of soil pit investigated for Wetland 2.

Figure 49: View of soil sample for Wetland 2 showing redox depressions.

Figure 50: View of paired upland soil pit investigated for the delineation of Wetland 2.

NRCS Cove Reservoir Project

APPENDIX E-4

EAST FORK VIRGIN RIVER INSTREAM FLOW MEMORANDUM OF UNDERSTANDING

Draft Plan-EA October 2020

East Fork Virgin River Instream Flow

Memorandum of Understanding

Between

Kane County Water Conservancy District
Orderville Irrigation Company
Utah Division of Wildlife Resources
United States Fish and Wildlife Service

East Fork Virgin River Instream Flow Memorandum of Understanding Between

Kane County Water Conservancy District, Orderville Irrigation Company, Utah Division of Wildlife Resources, and United States Fish and Wildlife Service

This Memorandum of Understanding (MOU) between the Kane County Water Conservancy District (KCWCD), the Orderville Irrigation Company (OIC), the Utah Division of Wildlife Resources (UDWR), and the United States Fish and Wildlife Service (USFWS) is entered into for the purpose of regulating water flows on the East Fork Virgin River beginning at the OIC water diversion structure and continuing downstream for 3.2 miles to the Mt. Carmel Irrigation Company (MCIC) diversion.

Background Information

On February 17, 2000, the KCWCD filed an Application to Appropriate Water with the Utah Division of Water Rights. The application is for a non-consumptive use of water for the purpose of diverting water through a hydro-electric plant to produce electrical power. The applicant (KCWCD) proposes to divert water from the East Fork Virgin River at the point where the OIC currently diverts (N 1600 ft, E 100 ft from SW cor, sec 26, T40S, R7W, SLBM) water for their pressurized irrigation system. As a result of the application submitted to the Utah Division of Water Rights, a protest was submitted by the UDWR listing their concerns with de-watering a 3.2 mile reach of the river and the potential negative effects on the habitat of two native fish species; the speckled dace (*Rhinichthys osculus*), and desert sucker (*Catostomus clarki*). After the protest was filed with the State Engineer's office, the KCWCD met with representatives from the UDWR to discuss the protest and work out an agreement wherein the subject fish habitat could be maintained while allowing the Hydroplant project to go forward. In the meeting, both parties agreed that Watershed Systems Group, a private consulting firm from Logan, Utah with extensive knowledge of the fish species and fish habitat in the Virgin River, would be retained to prepare a report on the project proposal with recommendations for mitigation.

The KCWCD applied for and received a grant from the Utah Department of Natural Resources Species Mitigation Fund to help defer the costs of the study. A draft report was completed the second week in March of 2001, and shortly thereafter a meeting was held with representatives from the KCWCD, OIC, UDWR, USFWS, and Watershed Systems. A copy of the study entitled "East Fork Virgin River Instream Flow Study" was made available for review by all of

the affected entities. At the meeting the report was critically reviewed with Watershed Systems Group. It was agreed that the hydroelectric project could go forward with a number of stipulations in place that would mitigate potential harmful impacts to the fish habitat. In accordance with the agreements made at that March 8, 2001 meeting, the KCWCD was given the task of developing this MOU for approval by all the parties.

The Parties to the MOU agree that:

- 1. As of the date of this MOU, the parties agree that the "East Fork Virgin River Instream Flow Study" prepared by Watershed Systems Group of Logan, Utah is incorporated herein by reference and is an accurate representation of the fish habitat and flow relationships within the permanently watered section of river between the OIC diversion (N 1600 ft, E 100 ft from SW cor, sec 26, T40S, R7W, SLBM) and the MCIC diversion (S 60 ft E 260 ft from NW cor, sec9, T41S, R7W), a 3.2 mile study reach.
- 2. The data presented in the Watershed Systems Group "East Fork Virgin River Instream Flow Study" of March 2001 is accepted as the primary basis for the water discharge rates agreed to in the subject MOU, notwithstanding that further flow studies could modify the conclusions and recommendations in the report, which could then alter water discharge timing and volume.
- 3. The parties agree that to maintain stream channel dimensions and aquatic habitat features, a channel maintenance flow regime of 70% of existing bankfull flow days be maintained. Bankfull flows are approximately 33 cfs in the study reach. In order to maintain 70% of existing bankfull flow days, the KCWCD, in cooperation with the OIC, will reduce or stop diversions of water to the hydro-plant (this does not include the OIC irrigation water right of 4.7 cfs) for a 10 day period each spring (between March June) when high flows exist in the channel, thus allowing a 33 cfs in-stream flow to pass through the study reach for the ten day period. If stream flows are less than 33 cfs, all flows will be allowed to pass through the study reach (this does not include the OIC irrigation water right of 4.7 cfs). During this 10 day period, any water flows exceeding 33 cfs may be diverted to the hydro-plant, however, the diverted flows can not exceed the KCWCD water right of 18 cfs, plus the OIC water right of 4.7 cfs (total 22.7cfs). KCWCD will notify UDWR when the 10 day release period begins.
- 4. Under current Water Rights, MCIC diverts 6.58 cfs of water, or their proportional share of flows, at S 60 ft E 260 ft from NW cor, sec 9, T41S, R7W, SLBM for irrigation purposes. During the irrigation period all water appropriated to the MCIC will flow past the OIC diversion to be diverted at the MCIC diversion. When the MCIC and/or OIC is not diverting water for irrigation uses (normally during the winter period), OIC and KCWCD will allow a minimum of

- 3.5 cfs of water to flow past the OIC diversion; and if stream flows are less than 3.5 cfs, all water will be allowed to flow past the OIC diversion.
- 5. On a yearly basis several pools in the subject reach will be monitored to determine if they are maintaining their dimensions (width, depth). Relatively stable pool monitoring locations will be determined by the UDWR. A cross-sectional profile and a longitudinal transect (along the thalwag) will be measured through each pool to determine if pool dimensions are changing or the pool is moving downstream over time. If obvious changes in pool depth occur (e.g. pools begin filling in) adjustments to the channel maintenance flow regime will be made. If pools are filling with sediment, then the channel maintenance flows referred to in paragraph 3 of this MOU will be extended longer than 10 days. If no change occurs in pools, channel maintenance flows can be decreased from 10 days. The monitoring program will continue for a period of not less than three years to determine if the flow regime is working. At the end of the three year period, the program will be evaluated by all of the participants and a decision will be made to continue with monitoring at the same levels, discontinue the monitoring, or modify the monitoring. Adjustments of channel maintenance flows will continue until all parties agree on the length of time (number of days) necessary to maintain channel and pool dimensions. Monitoring of pools is the responsibility of KCWCD. Representatives from all interested parties, including the UDWR and USFWS will be invited on the field examinations of these pools. Pool monitoring will be conducted between June 15 - July 15. A yearly report of pool monitoring will be completed and sent to the Utah Division of Wildlife Resources, P.O. Box 606, Cedar City, Utah 84720, prior to January 1 of each year.
- 6. When this MOU is signed by the parties, the UDWR agrees to remove its protest on the KCWCD Application to Appropriate Water with the Utah State Engineer.
- 7. This MOU may be amended from time to time as need may arise, provided all such amendments are in writing and agreed to by all parties.
- 8. If any provision of this MOU is found to be invalid, the remaining provisions of this MOU shall not be affected thereby.
- 9. In the event UDWR becomes aware of a violation or potential violation by KCWCD or OIC of any condition or restriction in this MOU, UDWR may notify the responsible party in writing of such violation, potential violation, damage or potential damage. Upon receipt of such notice, the responsible party agrees to immediately take action to prevent or stop the activity which potentially or actually violates the terms or intent of this MOU. If the responsible party fails to take corrective action within thirty (30) days of receipt of such notice, UDWR may undertake appropriate action, including legal action, to effect such corrections.

- 10. This MOU sets forth the entire agreement of the parties. It is intended to supersede all prior discussions or understandings.
- 11. This MOU shall be effective on the date executed by the parties and shall remain in force until such time as the hydro-electric plant referred to in KCWCD's application is no longer in operation or no longer requires the appropriated 18 cfs of water, the MOU or KCWCD's 18 cfs water right is terminated by judicial or administrative order, or the MOU is terminated by mutual agreement of the parties.

This East Fork Virgin River Instream Flow MOU is entered into by representatives of the subject county, private, state, and federal entities on the dates identified below.

Side le No	10-2-2001
Miles I E No. 1 (a)	
Michael E. Noel	<u>Date</u>
Executive Director, Kane County Water Conservancy District	
1 11	
Brown th	10-2-2001
Brad Adair	Date
President, Orderville Irrigation Company	Date
1 resident, Ordervine irrigation Company	
$\Omega I + I = I$	
John Kimball	09-21-01
John Kimball	Date
	Date
Director, Utah Division of Wildlife Resources	
7/07/1/1/	-
KK. Modely	9/24/01
Henry R. Maddux	Date

Utah Field Supervisor, United States Fish and Wildlife Service

NRCS Cove Reservoir Project

APPENDIX E-5

ZION NATIONAL PARK WATER RIGHTS SETTLEMENT AGREEMENT

Draft Plan-EA October 2020

Zion National Park

Water Rights Settlement Agreement

This Agreement is made and entered into by and among the United States of America (United States), the State of Utah (Utah), the Washington County Water Conservancy District (Washington District), and the Kane County Water Conservancy District (Kane District).

RECITALS

A. Utah, pursuant to Chapter 4, Title 73, Utah Code Ann. 1953, as amended, initiated a statutory adjudication of water rights on July 21, 1980, in the Fifth Judicial District Court of the State of Utah in and for Washington County, Civil No. 800507596, which encompasses all the rights to the use of water, both surface and underground, within the drainage area of the Virgin River and its tributaries in Utah.

B. The United States has been joined as a party to this statutory adjudication pursuant to the provisions of 43 U.S.C. § 666. A "Statement of Water User's Claims on behalf of the United States of America on Lands Administered by the Department of the Interior, National Park Service, for Division No. 3," was filed on May 18, 1987.

C. In order to remove causes of present and future controversy over the waters of the Virgin River system without further litigation, the United States, Utah and the Washington and Kane Districts have conducted extensive negotiations regarding

the settlement of reserved water right claims filed by the United States for Zion National Park (or Park).

D. These negotiations have resulted in the recognition of the reserved water rights of the United States for Zion National Park and also the agreement of the United States to subordinate its reserved water rights to existing State water rights, and to allow for some potential future development of water above Zion National Park, as set forth herein.

E. Pursuant to the terms of this Agreement, the Washington District has agreed to abandon two major reservoir sites above Zion National Park, the Bullock site on the Upper North Fork Virgin River and a site in the Barracks area of Parunuweap Canyon on the East Fork Virgin River (East Fork). Steps have also been taken which have resulted in the elimination of a proposal to divert water out of the Virgin River Basin from points above the Park. The Washington District has identified potential projects below the Park, which include: (1) the Sand Hollow Reservoir Project; (2) a collection system and pipeline to divert the flows of Pah Tempe (La Verkin) Springs; (3) securing a reduction in the minimum flows required in the Virgin River from 86 to 50 cubic feet per second (cfs) during the period of November 1 to March 31; and (4) the Ash Creek Project. A more detailed description of each of these four projects is set forth in the draft Virgin River Management Plan dated May 2, 1996.

F. The terms and provisions of the Zion National Park Settlement Agreement are set forth below. NOW, THEREFORE, based on the mutual promises contained herein, the parties agree as follows:

AGREEMENT

Article 1: Federal Reserved Water Rights for Zion National Park

A. To fulfill the purposes for which lands now comprising Zion National Park were reserved from the public domain, the United States has water rights for all federal lands within the present boundaries of Zion National Park that were reserved and withdrawn from settlement, occupancy, or disposal under the laws of the United States. This federal reserved water right originates and is defined in federal law. The aliquot part descriptions of these reserved lands are set forth in the applicable proclamations, executive orders, and legislation identified below and in Appendix A. The United States has a reserved right to all water underlying, originating within or flowing through Zion National Park, including perennial, intermittent, and ephemeral streams, springs, seeps,

lakes, ponds, ground water, and other natural sources of water, pertaining or belonging to the reserved lands, that was unappropriated as of the dates of reservation of the lands now within the boundaries of the park, which waters are to remain in a free flowing condition, subject to present and future administrative uses necessary to fulfill reservation purposes. The date of priority for either in-stream or administrative uses of the United States' federal reserved water rights for Zion National Park will be the date on which the place of use was first reserved from the public domain.

- B. By virtue of mesne conveyances and appropriations, the United States also holds state appropriative rights in wells, springs and surface diversions on streams, at the locations, in the amounts, and for the uses indicated in the table attached as Appendix B. Water diverted and used for present and future administrative purposes necessary to fulfill reservation purposes will first be satisfied from existing state appropriative rights held by the United States for Zion National Park. In addition to the water provided by the state appropriative rights listed in Appendix B, at least 466 acre-feet per year (AFY) may be diverted and used from those waters reserved for Park purposes, in order to satisfy the administrative needs of the Park. At least 180 days prior to placing any increment of this federal reserved water right for administrative purposes to use or changing the use thereof, the United States agrees to provide notice to the State Engineer concerning the location and means of diversion, the source, quantity, and diversion rate of water, depth and diameter of well (if applicable), the nature of use, the anticipated effective date, and a map depicting the existing system and proposed modifications. This information will be publicly available. The total amount of water available for Park administrative purposes under state and federal reserved rights combined shall not exceed 1295 AFY. The state appropriative rights identified in this paragraph and in Appendix B, and the federal reserved water rights for administrative purposes identified in this paragraph, are not subject to the subordination set forth in Article 11.
- C. The purposes for which Zion National Park was established and priority dates to water reserved therefor are as identified in Presidential Proclamation No. 877, 36 Stat. 2498, dated July 31, 1909; Presidential Proclamation No. 1435, 40 Stat. 760, dated March 18, 1918; the Act of November 19, 1919, 41 Stat. 356; Executive Order No. 418 1, dated March 24, 1925; Executive Order No. 5037, dated January 28, 1929; the Act of June 13, 1930; 46 Stat. 582; Presidential Proclamation No. 2221, 50 Stat. 1809, dated January 22, 1937; the Act of July 11, 1956, 70 Stat. 527; the Act of February 20, 1960, 74 Stat. 4; the Antiquities Act of June 8, 1906, 59 Stat. 225, 16 U.S.C. § 431; the Act of October 21, 1976, 90 Stat. 2732; and the National Park Service Establishment Act, 64 Stat. 225, 16 U.S.C. § 1. The purposes and uses of the reserved water rights include the preservation of extraordinary examples of canyon erosion, preservation of the area for scientific research, protection of objects of historic and scientific interest and, pursuant to the National Park Service Establishment Act, conservation of "the scenery and the natural and historic objects and the wild life therein and to provide for the enjoyment of the same in such manner and by such means as will leave them unimpaired for the enjoyment of future generations." 16 U.S.C. § 1. Accordingly, for enforcement purposes, the federal reserved water right for Zion National Park shall be deemed to comprise those waters in the Virgin River Basin as set forth in Article I.A. and I.B., less those quantities subject to the subordinations set forth below. The federal reserved water rights recognized hereby include all water rights of every nature and description derived from the reserved water rights doctrine, from all sources of water, both surface and underground, and includes all types and kinds of uses whatsoever, and encompasses all claims asserted by or through the United States for Zion National Park as now constituted.

Article 11. Subordination of Federal Reserved Water Rights

A. The United States subordinates the non-administrative federal reserved water rights described in Article LA., subject to the limitations contained herein, to all valid existing perfected water rights and approved applications with priority dates prior to January 1, 1996, and to certain new diversions and depletions, as set forth more specifically below.

B. Generally

- 1. No reservoir shall be located upstream of Zion National Park on the main stems of the East Fork, the North Fork of the Virgin River (North Fork), La Verkin Creek, Deep Creek, Crystal Creek, or on any tributary of the North Fork or East Fork, except as specifically provided herein.
- 2. Any flood control structure constructed upstream of the Park shall be designed only to attenuate high flows which are dangerous to life or property. The parties agree to consult on flood control proposals and will develop operational guidelines by mutual consent which are consistent with this Agreement and which will protect the resources of Zion National Park.
- 3. A ground water protection zone shall be established as shown in Appendix C for the drainage basins of the

East and North Forks, located up gradient and within 2 miles of the park boundary. Development of ground water within this zone shall be limited to a diversion rate of 35 gallons per minute (gpm) or less per well, shall withdraw no more than 15 AFY per well, and is subject to the overall limitations on depletions contained in Articles II.C.1. and ILDA., respectively.

- C. North Fork of the Virgin River and Certain Other Streams
- 1. Subject to the limitations contained herein, the United States' subordination extends to new diversions and depletions from surface and ground water sources of up to but not to exceed a total depletion of 6,000 AFY, with no more than 2,500 AFY occurring from surface water, within the composite comprising the drainage basin of the North Fork above the southern boundary of Zion National Park near Springdale, Utah, and the portions of the drainage basins of Ash Creek, La Verkin Creek, North Creek, and Shunes Creek located upstream of Zion National Park (see Appendix D), distributed as described below.
- a) There may be up to 3,750 AFY of new depletion in the drainage basin of the Upper North Fork (North Fork Virgin River above the confluence with Deep Creek), Crystal Creek, Deep Creek, and Kolob Creek, with no more than 1,000 AFY occurring in each the Upper North Fork and Crystal Creek, no more than 2,000 AFY in Kollob Creek, and no more than 750 AFY in Deep Creek (excluding Crystal Creek) with a maximum of 250 AFY being taken from surface water in Deep Creek, resulting from the new development of water resources, except that
- i) if the Washington District develops a project which diverts Crystal Creek flows to Kolob Reservoir (Water Right Number 81-355, A29398 or other subsequent application filed to cover this project) and such diversions exceed 1,000 AFY, then no other new depletions within the Crystal Creek drainage are allowed. All depletion of water attributable to the Crystal Creek/Kolob Reservoir project shall be charged against the overall depletion limit of 6,000 AFY for the drainage basin of the North Fork Virgin River and other streams set forth in Article 11.C. 1.,
- ii) the maximum diversion rate from Crystal Creek to Kolob Reservoir shall not exceed 50 cfs,
- iii) the average annual diversion from Crystal Creek to Kolob Reservoir shall not exceed 4,000 acre-feet (AF) less any amounts exchanged to ground water development, based on a 5-year moving average,
- iv) the maximum annual diversion from Crystal Creek shall not
- exceed 6,000 AF, less any amounts exchanged to ground water development,
- v) the active storage capacity of Kolob Reservoir shall not be increased beyond its present capacity by more than 4,000 AF,
- vi) the flow of Crystal Creek immediately below its confluence with Spanish Hollow shall be maintained at no less than 0.5 cfs when diversions are being made from Crystal Creek,
- vii) new surface water diversions from Deep Creek and its tributaries downstream of the confluence of Deep Creek and Crystal Creek shall not cumulatively exceed 1 cfs,
- viii) new surface water diversions on the Upper North Fork shall not exceed the lesser of a) one-half of the existing flow, measured immediately upstream of the diversion, or b) that rate of diversion which maintains a flow of 2 cfs in the channel immediately below the diversion,
- ix) the regulated discharge from Kolob Reservoir shall not exceed 35 cfs, except for matters involving dam safety.
- b) There may be up to 750 AFY of new depletion per drainage, with no more than 250 AFY per drainage from surface water, from La Verkin Creek, North Creek, and Orderville Canyon, and up to 250 AFY of new depletion per drainage from surface and groundwater combined, from Camp Creek, Clear Creek, Goose Creek, Echo Canyon, Shunes Creek, and Taylor Creek.
- c) No new reservoirs upstream of the Park with individual total storage capacities of more than 20 AF shall be constructed in any of the drainages covered by Article II.C., with the exception of the proposed enlargement of Kolob Reservoir.
- d) New reservoirs upstream of the Park with individual total storage capacities which are less than or equal to 20 AF and located in any of the drainages covered by Article II.C. shall not be limited as to number but shall be subject to the overall limitation upon depletion contained in Article II.C.1.
- D. East Fork of the Virgin River
- 1. Subject to the limitations contained herein, the United States' subordination also extends to new diversions and depletions from surface and ground water sources in the East Fork upstream or up gradient of the eastern boundary of Zion National Park, of up to but not to exceed a total depletion of 5,000 AFY (see Appendix D), with no more than 3,250 AFY occurring from surface water, as set forth more specifically below.

- a) One or more new reservoirs with cumulative active storage capacity of up to but not to exceed 6,750 AF may be constructed on Stout Creek, Lydia's Canyon, Muddy Creek or Cove Canyon (not both), East Fork above Stout Canyon, and on other tributaries of the East Fork upstream of Glendale (see Appendix E).
- b) The number of new reservoirs at the locations described in Article II.D.l.a) above, having individual total storage capacities greater than 20 AF, shall not exceed 10.
- c) New reservoirs with individual total storage capacities which are less than or equal to 20 AF shall not be limited as to number but shall be subject to the overall limitation upon depletion in Article II.D.1.
- 2. New surface water diversions on the East Fork or its tributaries shall not cumulatively exceed 60 cfs.
- 3. The existing flow or 2 cfs, whichever is less, shall be maintained immediately below any new surface water diversion to reservoirs constructed on streams defined in Article II.D.l.a).
- 4. The existing flow or 1 cfs (including seepage), which ever is less, shall be maintained immediately below any new reservoir constructed on streams defined in 11.D.1.a).
- 5. Cumulative releases from new reservoirs constructed on streams defined in II.D.l.a) above, shall not increase the flow measured at the U.S. Geological Survey (USGS) gage on the East Fork Virgin River near Springdale (USGS No. 09404900), by more than 25 cfs during any 7-day period and shall not exceed the long-term monthly average at the Springdale gage by more than 15 cfs. As measured at said gage, the maximum instantaneous flow attributable to releases from such reservoirs shall not exceed 50 cfs, except for matters involving dam safety.
- 6. Surface water diversions to new reservoirs described in II.D.l.a) above shall not occur except during the period from November 1 to May 31, subject to the by-pass flow requirements described above.

Article III: Other Provisions

- A. During the month of March each year, a meeting will be scheduled between Zion National Park and the Washington District to discuss forecasted runoff, water levels in Kolob Reservoir and the anticipated schedule and duration for that year's reservoir releases. Other details concerning Kolob Reservoir releases will be worked out by separate agreement, if necessary.
- B. This Agreement shall be effective immediately upon the completion of a land exchange between the U.S. Bureau of Land Management (BLM) and the Washington District, whereby the Washington District acquires title to BLM public lands at the site of the proposed Sand Hollow Reservoir.
- C. If any federal legislative or administrative action hereafter prevents the State of Utah from permitting development and use of water in any drainage or subdrainage subject to the subordination of the United States' federal reserved water right for Zion National Park herein contained, the undeveloped remainder of the water herein listed as available for future development in such drainage or subdrainage shall be made available in one or more other drainages covered by this Agreement. In the event of such federal legislative or administrative action, the parties hereto shall attempt to agree as to the drainage or drainages in which any such relocated quantity may be developed and how the limitations of the United States' subordination will be modified to facilitate the transfer of such water, provided that such development must occur within the drainages herein identified, and that no party will unreasonably withhold consent to such relocation.
- D. The subordination to listed quantities and locations of future water development shall not be effective to the extent and upon proof that specific wells have caused, are causing, or may cause specific and significant adverse impacts to an identifiable resource or resources of Zion National Park. This notwithstanding, the provisions of this paragraph shall not apply to any groundwater rights presently perfected or approved under State law, with priority dates prior to January 1, 1996.
- E. If any provision of this Agreement is found to be unlawful and of no effect, the remaining provisions shall remain in effect and fully binding on the parties, and if necessary, the parties hereto shall resume negotiations to revise any such unlawful provision.
- F. Upon a proper showing of necessity, the provisions of this Agreement may be modified, with proper notice and concurrence of the Court, only upon the mutual consent of the parties to this Agreement, which consent shall not be unreasonably withheld.
- G. Because of the unique nature of Zion National Park, nothing in this Agreement shall constitute an admission, waiver or precedent as to any party for any other federal reserved water right claim in the State of Utah.
- H. Nothing in this Agreement shall be construed or interpreted to:
- 1. in any way affect the water rights of the United States in the Virgin River Basin for agencies and interests other than Zion National Park;

- 2. establish any standard to be used for the quantification of federal reserved water rights in any other judicial or administrative proceeding;
- 3. limit in any way the rights of the parties or any person to litigate any issue or question not resolved by this Agreement;
- 4. restrict the power of the United States to reserve water in the future, or to acquire additional rights to the use of water under the laws of the State of Utah; or
- 5. restrict the power of the State of Utah or the State Engineer in allocating, administering or distributing the waters of the State.
- I. Upon becoming effective, this Agreement will be the subject of a separate proposed determination of water rights issued by the State Engineer specifically covering the portion of the Virgin River Basin encompassing Zion National Park, and the parties hereto will cooperate to obtain an interlocutory decree covering same. If the parties hereto are not successful in securing such interlocutory decree, this Agreement shall nevertheless remain binding as among the parties hereto until a final decree issues covering these water rights. The water rights of the United States, as set forth and quantified herein, shall be protected under State law in the same manner as any water right originating under State law, without losing its character as or the attributes of a federal reserved water right as provided under federal law.
- J. The provisions of this Agreement, and particularly the provisions of Article 11 hereof, shall be taken into consideration by the State Engineer in acting upon applications, under State law, for new appropriations or change applications upstream or up gradient of Zion National Park and shall be afforded the same consideration in such proceedings as state appropriative rights; however, the United States shall have the primary responsibility for protecting its own rights and for filing appropriate protests in any proceedings before the State Engineer.
- K. Upon entry of a decree covering the water rights of the United States for Zion National Park, the East Entrance Well and the Taylor Creek Well, described in Appendix F, will be administered with priority dates of June 13, 1930, and January 22, 1937, respectively, pursuant to the terms of Article I.A., and the State appropriative water rights thereon will be withdrawn.
- L. Upon written request from the United States, the State Engineer will provide information regarding new diversions and total depletions of water in the respective drainages above the Park pursuant to Article 11 of this Agreement.
- M. Depletion amounts attributable to specific diversions, as well as to usage and storage patterns, shall be determined by procedures approved by the parties hereto.
- N. This Agreement is executed in quintuplicate. Each of the five copies bearing original signatures shall be deemed an original.

Article IV: Definitions

Acre-foot - The amount of water necessary to cover one acre of land to a depth of one foot, equivalent to 43,560 cubic feet or 325,851 gallons.

Active Storage Capacity - The volume of water available for release from a reservoir between the bottom of the outlet and the bottom of the spillway. This shall not include any storage designated as dead storage or a conservation pool.

Annual - Period of time which begins on October 1 and ends on September 30 (water year).

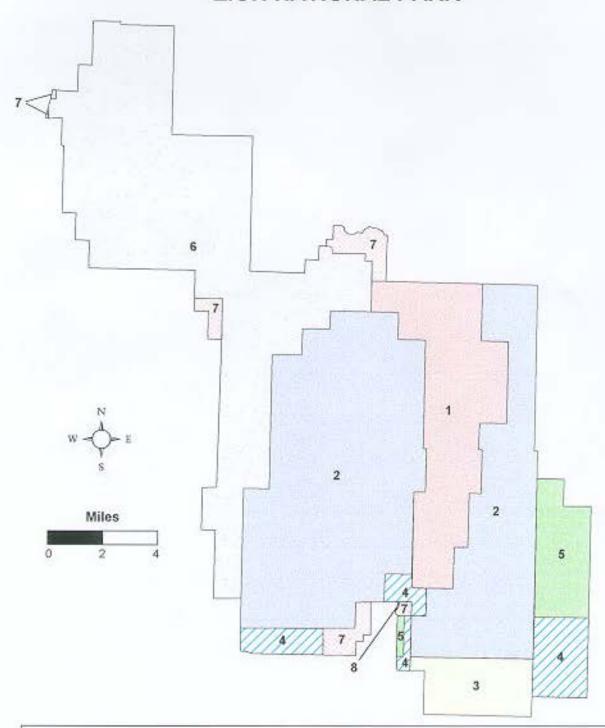
Depletion - The amount of water which is consumptively used by any action or process or otherwise removed from a drainage basin and not returned thereto.

Diversion - The removal of water from its natural source by means of a dam, ditch, canal, flume, bypass, pipeline, conduit, well, pump, or other act of man, that results in a decrease in the amount of water in the source at the point of such removal.

Existing Flow - Annual, monthly and daily flows which exist as of the effective date of this Agreement, which reflect historical diversions and depletions associated with existing perfected water rights and approved applications (except for Water Right No. 81-355, A29398 on Crystal Creek), as determined from available stream gage records and accepted hydrologic methods.

Ground Water - Water beneath the surface of the earth in pores, crevices, and space s in rock and soil, under saturated conditions and in sufficient quantities to supply water to wells, springs, seeps, rivers, streams, creeks, and natural lakes. New - After January 1, 1996.

Reservoir - A man-made impoundment for storing water from which water may be withdrawn for beneficial purposes. Impoundments constructed solely for flood control or sediment retention are specifically excluded.


Surface Water - Water on the surface of the earth in rivers, streams, creeks, channels, lakes, reservoirs and other water bodies. Wells within the 500-year floodplain of the East and North Forks of the Virgin River, Camp Creek, Clear Creek, Crystal Creek, Deep Creek, Echo Canyon, Goose Creek, Kolob Creek, La Verkin Creek, Orderville Canyon, Shunes Creek, or Taylor Creek, which are less than 100 feet in depth, shall be considered to draw from surface water.

Year - A calendar year commencing January 1 and ending December 31. It being resolved and agreed to as delineated above, the undersigned parties express their mutual agreement hereto this 4th day of December, 1996.

It being resolved and agreed to as delineated above, the undersigned parties express their mutual agreement hereto this 4th day of December, 1996.

For the State of Utah:	For the United States:
I bertool Quartes	The Fallet
Michael O. Leavitt	Bruce Babbitt
Governor, State of Utah	Secretary of the Interior
Ted Stéwart Director, Utah Department of Natural Resources	Donald Flavey Superintendent, Zion National Park
Whit X Mogan	John Testy
Robert L. Morgan, Utah State Engineer	John D. Leshy Solicitor
Otali State Engineer	Department of Interior
Mhot M. John	Low / SuleM.
Michael M. Quealy	Lois J. Schiffer
Chief, Natural Resources	Assistant Attorney General
Attorney General's Office	Department of Justice
Suttleby	appladel
John H. Mabey, Jr.	Andrew F. Walch
Assistant Attorney General	Department of Justice
For the Washington County Water Conservance	cy District:
Taxalle Shonger	
For the Kane County Water Conservancy Distr	<u>ict:</u>
() 111	

APPENDIX A DATES OF LAND RESERVATIONS ZION NATIONAL PARK

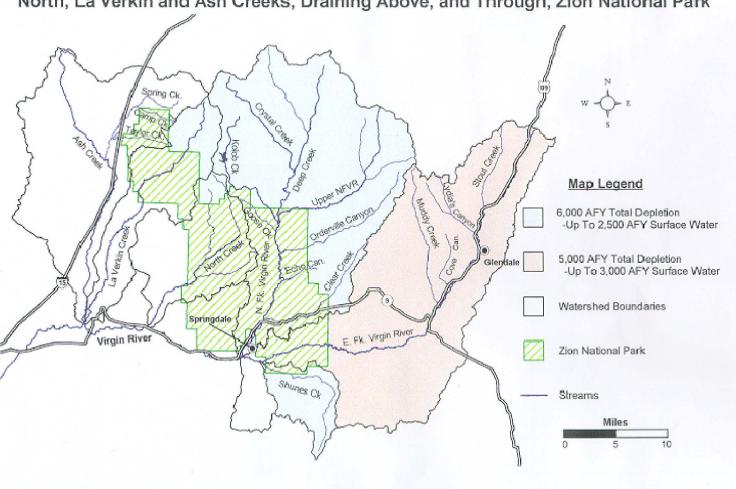
LEGEND: Lands Reserved from the Public Domain

- National Monument withdrawal by Presidential Proc. 877, dated July 31, 1909 (36 Stat. 2498).

 Designated a National Park by the Act of November 19, 1919 (41 Stat. 356).
- National Monument withdrawal by Presidential Proc. 1435, dated March 18, 1918 (40 Stat. 1760). Designated a National Park by the Act of November 19, 1919 (41 Stat. 356).
- National Monument withdrawal by Executive Order 4181, dated March 24, 1925, Designated a National Park by the Act of June 13, 1930 (46 Stat. 582).
- National Monument withdrawal by Executive Order 5037, dated January 28, 1929.
 Designated a National Park by the Act of June 13, 1930. (46 Stat. 582)
- 5 Withdrawal for National Park by the Act of June 13, 1930 (46 Stat. 582).
- National Monument withdrawal by Presidential Proc. 2221, dated January 22, 1937 (50 Stat. 1809). Designated a National Park by Act of July 11, 1958 (70 Stat. 527).
- Added to and made part of the National Park by the Act of February 20, 1960 (74 Stat. 4).
- 8 Added to and made part of the National Park by the Act of October 21, 1976 (90 Stat. 2732).

APPENDIX B STATE APPROPRIATIVE WATER RIGHTS ZION NATIONAL PARK

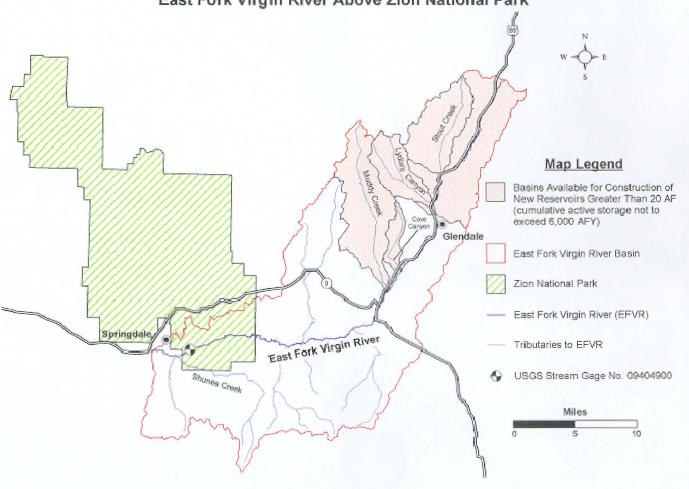
		1			ZION NATIONAL FARK			1		_
No.	Right Evidenced BY:	Priority Date	Diversion Works	Water Source	Legal Location (Salt Lake Basin & Meridian)	Type of Use	Period of Use	Diversi on Rate (cfs)	Irrigated Acres in Original Decree	Volume of Use- (acre- feet)
	CERT. a222, Award No. 66 of the Virgin River Decree	1877	Water System]* CRAWFORD DITCH GIFFORD DITCH OAK CK. SPG. AREA BIRCH CK. SPG. AREA SINAWAVA SPRINGS SCOUT LKOUT PIPELINE UPPER GROTTO SPG. A. LOWER GROTTO SPG.	Virgin R. North Fk. Virgin R. Oak Ck. Springs Birch Ck. Springs Sinawava Spg. Scout Lookout Spg. Upper Grotto Spg. Lower Grotto Spg. Wylie Retreat	N.50 deg. 29'E. 1998 ft. from NE Cor., See. 21, T41S, R10W N.41deg.28'45" E. 4233.80 ft. from NE Comer, Sec.21, T41S, R10W S.86deg.23'W. 8633.70 ft. from NE Comer, Sec. 21, T41 S, R10W N.21deg.56'E. 9151.95 ft. from NE Comer, Sec. 21, T41S, R10W N.18deg.43'E. 27901.20 ft. from NE Comer, Sec. 21, T41 S, R10W N.16deg.59'E. 25095.34 ft. from NE Comer, Sec. 21, T41S, R10W N.29deg.47'E. 17059.55 ft. from NE Comer, Sec. 21, T41S, R10W N.31deg.39'E. 18223.11 ft. from NE Comer, Sec. 21, T41S, R10W N.31deg.39'E. 18223.11 ft. from NE Comer, Sec. 21, T41S, R10W N.32deg.25'25" E. 13167.50 ft. from NE Comer, Sec. 21, T41S, R10W	MUNICIPAL	01/01- 12/31	1.21	66.7	266.8
	CERT. a224, Award No. 63 of the Virgin River Decree	1881		Same As Cert. a222	Same As Cert. a222	MUNICIPAL	01/01- 12/31	0.53	29.4	117.6
1129	CERT. a223, Award No. 65 of the Virgin River Decree	1894		Same As Cert. a222	Same As Cert. a222	MUNICIPAL	01/01- 12/31	0.53	29.0	116
81- 117	A10618 a1657 CERT. a221	05/31/29	[Zion Canyon Water System]* Same As Cert. a222		Same As Cert. a222	MUNICIPAL	01/01- 12/31	0.01	_	3.15
81- 3608	Award No. 67 of the Virgin River Decree	1880	FLANIGAN DITCH		S. 550 ft. and E. 950 ft. from the NW Comer, Sec. 22, T41N, R10W	IRRIGATIO N	01/01- 12/31	1.38	75.9	303.6


81- 728	DILIGENCE CLAIM No. 1031	1900		EARL SPRING	S. 340 ft. and E. 900 ft. from NW Comer, Sec. 9, T40S, R1 I W	DOMESTIC & STOCK WATER	03/01- 11/30	0.092	_	1.73
81- 113	A8113 CERT. 1197	05/24/19		UNNAMED SPRING	S. 957 ft. and W. 841.5 ft. from NE Comer, Sec. 5, T40S, R1 1W	DOMESTIC	01/01- 12/31	0.0002	_	0.14
81- 327	A28355 NPR	07/18/56	10 INCH DIAMETER WELL 68 FEET DEEP		N. 1700 ft. and W. 600 ft. from SE Comer, Sec. 8, T40S, R1 1W	DOMESTIC	03/01- 11/30	0.015	_	0.34
81- 514	A34269 a10851 Cert. 10754	05/03/62	8 INCH DIAMETER WELL 925 FEET DEEP		S.75 deg.54'20" W., 6382 ft. from N 1/4 cor Sec. 21 T41 S, R9W	IRRIGATIO N, STOCKWA TER, DOMESTIC & OTHER	01/01- 12/31	0.0223		10
81- 1373	A36328a a7522 Cert. 9697	0811316 4	7 INCH DIAMETER WELL 367 FEET DEEP		Sec. 8, T40S, R1 1W	IRRIGATIO N & DOMESTIC	01/01- 12/31	_	0.25	1.73
	A36782 Approved Proof filed 10/14/92	02/2316 5	6 IN H DIAMETER WELL 206 FEET DEEP	TAYLOR CREEK WELL	N. 3348 ft. and E. 2873 ft. from SW Comer, Sec. 29, T38S, R 1 2W	DOMESTIC & OTHER	01/01- 12/31	0.0688	_	7.94

Total Volume: 829 acre-fee

Water is diverted from various sources and comingled in the ZION CANYON WATER SYSTEM. The water rights, as described in each of the individual certificates, entities the United States to "...divert the water at any, each, or all of the... described points of diversion..."

Water Right Volumes are calculated using the following assumptions: -a water duty of 4 ac-ft per acre is used for irrigable land -a value of 0.45 ac-ft per year per family of four is used for domestic use -a value of 10 gallons per visitor is used for use by park visitors (EPA -570-9-82-004) -a value of 2.8 ac-ft per one-hundred head of livestock is used for stockwater use


APPENDIX D
Allowable Depletion Levels for the East and North Forks of the Virgin River, and North, La Verkin and Ash Creeks, Draining Above, and Through, Zion National Park

APPENDIX E

Basins Available for Construction of New Reservoirs (Greater Than 20 Acre-Feet)

East Fork Virgin River Above Zion National Park

APPENDIX F DIVERSION WORKS ASSOCIATED WITH FEDERAL RESERVED WATER RIGHTS ZION NATIONAL PARK

Water Source	Diversion Works	Priority Date	Legal Location Type of Use (Salt Lake Basin & Meridian)	Period of Use	Diversi on Rate (cfs)
EAST ENTRANCE WELL	8 INCH DIAMETER WELL 925 FEET DEEP	06/13/30	S.75 deg.54'20"W 63 ft. from N 1/4 cor Sec. 21 T41S, R9W IRRIGATION, STOCKWATER, DOMESTIC & OTHER	01/01- 12/31	0.0223
TAYLOR CREEK WELL	6 INCH DIAMETER WELL 206 FEET DEEP	01122/37	N. 3348 ft. and E. 2873 ft. from SW Corner, Sec. 29, T38S, R12V\ IRRIGATION, DOMESTIC & OTHER	01/01- 12/31	0.0688

NRCS Cove Reservoir Project

APPENDIX E-6

BLM INTERDISCIPLINARY TEAM ANALYSIS RECORD CHECKLIST

Draft Plan-EA October 2020

INTERDISCIPLINARY TEAM ANALYSIS RECORD CHECKLIST

Project Title: Proposed Cove Reservoir and the Bald Knoll and Black Knoll borrow pits

NEPA Log Number:

File/Serial Number:

Project Leader: James Holland (BLM project leader)

Project Proposal:

FOR EAs/CXs: NP: not present; NI: resource/use present but not impacted; PI: potentially impacted FOR DNAs only: NC: no change (anticipated resource impacts not changed from those analyzed in the

NEPA document on which the DNA is based)

STAFF REVIEW OF PROPOSAL:

NP/NI/PI NC	Resource	Date Reviewed	Signature	Review Comments (required for all NIs and PIs. PIs require further analysis.)
			CRITICAL ELEME	NTS
NI	Air Quality (C. Gubler)			Emissions would be expected as part of the project however because it is a short term project impacts to air quality would be negligible.
NP	Areas of Critical Environmental Concern (D. Gunn)	06/10/19	/s/ Dan Gunn	There are no ACEC's identified within the project area.
				A cultural resources Class III inventory (project # U18TN0544) was conducted in the Black Knoll rip rap pit project area and Bald Knoll community pit in June 2019.
NI	Cultural Resources (B.Storm)	9/13/19	/s/ Brian Storm	The June 2019 inventory resulted in the identification of two new sites (42KA8972 and 42KA8973) and two isolated finds in the Black Knoll project area. Both sites are small surface lithic scatters sans diagnostic artifacts or features; the sites are recommended not eligible for inclusion to NRHP. Isolated finds (IO-6, IO-7) consisted of one and four flakes, respectively. The isolates have been fully documented, are not eligible for inclusion to the NRHP, and no additional research or preservation is required. A cultural resources Class III inventory (project # U84BL0697) was completed in the project area in July 1984. The original inventory identified two sites (42KA2677 and 42KA2678) within the project area. Neither site was located during the June 2019 inventory or during a 2018 inventory (project # U18ES0434). The sites were recommended not eligible for inclusion to the NRHP. The June 2019 inventory resulted in no new cultural resources being identified in the Bald Knoll project area. A cultural resources Class III inventory (project # U07BL0560) was completed for the initial pit in May 2007. The inventory resulted in the identification of two new sites (42KA6331 and 42KA6332) at the south end of the project area. Both sites are recommended as eligible for inclusion to the NRHP. Site 42KA6331 was visited in 2019. Expansion of the Bald Knoll community pit to the north will result in no adverse effect to historic properties, but the boundary of the pit needs to be

NP/NI/PI NC Resource		Date Reviewed	Signature	Review Comments (required for all NIs and PIs. PIs require further analysis.)
				updated/altered to exclude these two sites to ensure adverse effects to the historic properties will be avoided by all future use of the pit.
NI	Environmental Justice (C. Stewart))	8/2/19	/s/ Clay Stewart	The proposed action would not have a disproportionate effect or low income or minority communities because these communities, in general, do not exist near the project areas.
NP	Farmlands (Prime or Unique) (J. Reese)	8/28/19	/s/ J. Reese	There are no farmlands within the proposed project area.
NI	Floodplains (J. Holland)	7/24/2019	/s/ James R Holland	No floodplains exist in the proposed project area.
NI	Invasive, Non-native Species (L. Lefevre)	7/24/19	/s/ Levi L. LeFevre	There are some invasive species present in the area, but are unlikely to be significantly impacted by the proposed action
ΡΙ	Native American Religious Concerns (B.Storm)	9/13/19	/s/ Brian Storm	Native American religious concerns will be identified by Tribal response to NEPA mailing as part of the Proposed Cove Reservoir Project EA. Such concerns are usually associated with potential impacts to prehistoric archaeological sites of their ancestors, which they consider as traditional cultural properties. As long as project stipulations are followed and traditional cultural properties including but not limited to prehistoric archaeological sites are avoided, no concerns are anticipated. Access and ceremonial use of any sacred site or traditional cultural property both known and unknown to the BLM will not be limited by proceeding with this project.
NP	Threatened, Endangered or Candidate Plant Species (C. Gubler)	08/01/2019	/s/ C. Gubler	
NI	Threatened, Endangered or Candidate Wildlife Species (L. Church)	7/24/19	/s/ L. Church	
NP	Wastes (hazardous or solid) (T. Linton)	9/9/19	/s/ T. Linton	No known or visible hazardous waste apparent at these locations.
NI	Water Quality (J. Holland)	7/24/2019	/s/ James R Holland	Because of the distance to surface water, the depth to ground water in the proposed project area, and the type of action that is being proposed, it is highly unlikely that any water resources would be affected.
	Wetlands/Riparian Zones (L. Church)	7/25/19	/s/L. Church	
NP	Wild and Scenic Rivers (D. Gunn)	6/10/19	/s/ Dan Gunn	There are no Wild and Scenic Rivers within the project area.
NP	Wilderness (D. Gunn)	6/10/19	/s/ Dan Gunn	There is no designated wilderness within the project area.
		ОТНЕ	R RESOURCES / CON	CERNS*
	Rangeland Health Standards and Guidelines (C. Gubler)	07/25/19	/s/ C. Gubler	Impacts to Rangeland health are not expected rip rap pits are in volcanic areas. Mining these areas for rock should not have an overall impact on rangeland health.
	Livestock Grazing (J. Reese)	08/28/2019	/s/ J. Reese	Impacts to Livestock grazing are expected to be minimal. The proposed sites consist mostly of Rock and do not produce enough forage to impact livestock grazing.
NI	Woodland / Forestry (J. Reese)	08/28/2019	/s/ J. Reese	Sites consist mainly of Pinyon and Juniper and are considered invaded sites not woodlands.

NP/NI/PI	Resource	Date Reviewed	Signature	Review Comments (required for all NIs and PIs.
NC				PIs require further analysis.)
NI	Vegetation (J. Reese)	08/28/2018	/s J. Reese	Impacts to vegetation would be minimal on these sites because they have mostly been invaded by Pinyon and Juniper and because of the rock content they are not expected to produce much vegetation.
NI	Fish and Wildlife (L. Church)	7/25/19	/s/ L. Church	Construction and maintenance that included vegetation removal in species that could support neotropical migratory birds should occur after neotropical Migratory bird nesting periods to prevent the potential for impacts to nesting birds April 15 —Aug 15, if clearance work by a qualified biologist precludes presence construction and maintenance outside of emergency maintenance could occur
NI	Soils (J. Reese)	08/28/2019	/s/ J. Reese	BMP's for soils should be included in the project design and stipulations. If BMP's are adhered to impacts to soils in the project areas would be minimal.
NI	Recreation (D. Gunn)	6/10/19	/s/ Dan Gunn	Recreational opportunities exist within the project area but are unlikely to be significantly impacted by approval and implementation of this project.
NI	Visual Resources (D. Gunn)	6/10/19	/s/ Dan Gunn	The project area lies within lands classified as VRI Classes III and IV, which allow for moderate to high levels of change to the characteristic landscape. The 2008 Kanab Field Office RMP states that VRM Class III and IV objectives "are applied as necessary to allow for exploration and the associated infrastructure to support mineral resource development in accordance with the Energy Policy and Conservation Act"
NI	Geology /Paleontology (J. Holland)	7/24/2019	/s/ James R Holland	No unique geology exists within the proposed project area. Because of the igneous rock type found in the proposed pit area, no paleontological resources are present.
NI	Lands / Access (Brandon Johnson)	9/11/2019	/s/ Brandon Johnson	No rights-of-way or conflicting land use authorizations exist within the proposed project area. Access to pits would be off of existing roads on the KFO travel management plan.
NI	Fuels / Fire Management (C. Gubler)	08/01/19	/s/ C. Gubler	No impacts to fuels or fire management are forseen as a result of implementation of the proposed action.
NI	Socio-economics (C. Stewart)	8/2/19	/s/ Clay Stewart	The economic base for the area is primarily ranching and some mining. Nearby communities are supported by tourism (including outdoor recreation), construction, and light industry. There would be no displacements or disruption to established business or uses of the area.
NP	BLM Natural Areas (D. Gunn)	6/10/19	/s/ Dan Gunn	There are no BLM Natural Areas within the project area.

FINAL REVIEW:

Reviewer Title	Date	Signature	Comments
NEPA Coordinator (C. Stewart)	1/24/19	Bunger	
Field Manager (W. Bunting)	9/24/19	Clay Stewart (for)	

<u>NOTE</u>: Review Comments should include information explaining how the specialist came to their conclusion - how does he/she know the element/resource is not present (site visit and date of visit, familiarity with location, etc.). For all 'NIs' give a brief explanation as to why that element/resource would not be impacted.

^{*} The list of Other Resources / Concerns to be considered may vary by individual field office. Note: Native American Trust Responsibilities should be considered for FO's with Indian Mineral interests.

NRCS Cove Reservoir Project

APPENDIX E-7PLAN OF DEVELOPMENT FOR COVE RESERVOIR

Draft Plan-EA October 2020

Plan of Development

Cove Reservoir

Draft

Kane County Water Conservancy District

Submitted to

Natural Resources Conservation Service 125 South State Street, Room 4010 Salt Lake City, Utah 84138

Submitted by

Kane County Water Conservancy District 725 E Kaneplex Drive Kanab, Utah 84741

July 2019

Table of Contents

Table of Contents	i
Part I. Introduction	1
A. Background	1
B. Diversion & Water Rights	2
Part II. Purpose and Need for Facility	6
Part III. Project Description and Land Ownership	7
A. Project Description and Land Ownership	7
B. Right of Way	7
C. Government Agencies Involved	9
Part IV. Facility Construction & Design	10
A. Schedule	10
B. Construction of Facilities	10
i. Reservoir and Dam	10
ii. Principal Spillway	11
iii. Auxiliary Spillway	12
iv. Pipeline	13
v. Hydro Plant	14
vi. Access Road	15
vii. Borrow Areas	16
C. Resource Value and Environmental Concerns	16
D. Operation and Maintenance	20
E. Termination and Restoration	21
Part V. References	22
Appendix A. Best Management Practices	23
Appendix B. Preliminary Design	28
Figure 1 - Project Location	4
Figure 2a - Overall Project Components	5
Figure 2h - Reservoir Project Components	6

Part I. Introduction

A. Background

The Kane County Water Conservancy District (KCWCD) is proposing to construct a reservoir with associated facilities on property owned by the KCWCD as well as additional private land located near Orderville, Utah. Material borrow areas for construction of the dam are located on Bureau of Land Management (BLM) lands and private land. The dam is situated 0.6 miles from Highway 89 southwest of downtown Orderville (see **Figure 1**). As proposed, the reservoir would be constructed by the KCWCD. The Washington County Water Conservancy District (WCWCD) may participate in funding a portion of the water storage created by the project. The WCWCD participation would provide for: 1) storage of their water rights at higher elevation to reduce evaporation rates; 2) water releases during periods of low stream flows to augment peak summer uses and provide in stream flows for native and threatened and endangered fish species; and 3) more efficient use of the Quail Lake and Sand Hollow pipeline delivery system by releasing water when there is excess capacity in the pipeline system. This site was identified in the mid- to late-1980s during a reconnaissance level inventory of potential dam sites associated with tributaries of the Virgin River. Starting in 1996, the KCWCD and WCWCD have further explored constructing a dam at this location.

A feasibility study of the dam was performed in 2004 by RB&G Engineering. There were five borings along the dam alignment and 13 test pits completed during the investigation. The report concluded that the site is suitable for a dam and reservoir, there are available materials within a five- to 20-mile radius and the reservoir would be cost effective to construct. A preliminary feasibility report including information from the RB&G study was performed in 2013 by Alpha Engineering for the dam and is included in **Appendix B**.

The project will serve current water right holders and store water from the East Fork of the Virgin River during months with high river flow and then provide water during months with high demand. The components of the project include (see **Figure 2a** and **Figure 2b**):

- Reservoir
- Dam
- Low Level Outlet
- Principal Spillway
- Auxiliary Spillway

- Pipeline
- Hydro plant
- Access Road
- Borrow Areas
- Recreation Area

The dam will be designed to maximize storage capacity with principal/auxiliary spillways to sustain the improvements during storm events. At full capacity, the reservoir would have a surface elevation of approximately 5545.5 feet above mean sea level (amsl) and a capacity of approximately 6,055 acre-feet. Rock, gravel, and clay borrow sources from nearby pits will be utilized to construct the facility. Approximately 3.2 miles of new and existing roads will be constructed and/or improved to provide access around the reservoir and replace access to properties surrounding the reservoir. Approximately 1.2 miles of existing roadway will be graded and improved from its current width of approximately 12 to 16 feet and improved with road base to a width of 28 feet. Approximately 2.0 miles of new roadway will be constructed to a width of 28 feet of road base.

Approximately 700 feet of large diameter pipe is required to extend from the existing irrigation transmission line, near the reservoir, to the outlet works of the reservoir. This extension will allow the use of the existing diversion dam and transmission line to fill the reservoir and allow use of the stored water during the irrigation season. This extension will also serve as the emergency drain for the reservoir. It is also proposed to replace approximately 1.7 miles of existing 4-inch to 8-inch lines in the Glendale irrigation system with a larger transmission line from the current hydro plant location to a new location next to the Orderville Diversion Dam. This will provide an additional 100 feet of head to increase the production of the hydro plant by approximately 45 kW, double its current output. Excess water from the Glendale Irrigation System will then be combined with water diverted from the Orderville Diversion Dam to provide use of the existing irrigation pipeline system to fill the Cove Reservoir.

The existing Glendale and Orderville irrigation systems have limited capacity to deliver flows from the river and no capacity for storage during non-use and high flow periods. The Orderville Hydro Plant currently uses excess head available from the piping system and will continue to be used after the construction of the Cove Reservoir. Currently the hydro plant generates power during the winter months. With the construction of the Cove Reservoir, water will be stored during the winter and released during the irrigation season as water is needed for irrigation and to generate power during the summer. The Glendale Hydro Plant will be relocated and improved to double its capacity with the proposed project. The construction of the proposed Cove Reservoir with its associated facilities provide a drought buffer, improve water quality, increase and maintain a more consistent reliable flow for the pressurized irrigation system, provide a water-energy nexus, and provide for more efficient irrigation methods. This will allow the KCWCD to take advantage of existing water rights and provide a more stable and sustainable supply of water for the area. Water storage at higher elevations also reduces evaporation losses that occur in lower reservoirs operated by the WCWCD. In addition, water can be released from the reservoir to provide for instream flows during periods of low flow in the Virgin River for endangered fish species.

This Plan of Development (POD) includes descriptions of and guidelines for the design, construction, operation, maintenance, and reclamation of the Project. The KCWCD and WCWCD would construct and operate the project in conformity with the approved POD.

B. Diversion & Water Rights

The proposed system will store water from the Glendale Irrigation Company, the Orderville Irrigation Company and the Mt. Carmel Irrigation Company. Water rights held by the respective irrigation companies include points of diversion from the East Fork Virgin River.

The water rights that would be stored in the proposed reservoir are summarized in **Table 1**. The preliminary feasibility report that has been performed for the project (**Appendix B**) includes additional information and maps regarding the water rights within its appendices.

User	Flow	Volume	Acreage
Glendale Irrigation Company	13.02 cfs	1,709.0 ac-ft*	427.26
Orderville Irrigation Company	4.685 cfs	1,144.2 ac-ft	286.05
Mt. Carmel Irrigation Company	6.58 cfs	1,583.0 ac-ft*	395.75
Total	24.285 cfs	4,436.2 ac-ft	1,109.06

Table 1 Water Rights Summary

Based on the maximum water volume dictated in the water rights, the consumptive use was calculated for each irrigation company. The consumptive use values were taken from a study by Utah State University and can be verified at http://extension.usu.edu/irrestimator. The consumptive use value for each diversion by month is shown in **Table 2**:

Diversion		Irrigation Required, acre-feet									
	Apr	May	Jun	Jul	Aug	Sep					
Glendale	3.18	370.04	359.86	500.38	264.49	202.82					
Orderville	2.13	247.74	240.93	335.00	177.08	135.79					
Mt. Carmel	2.94	342.75	333.33	463.48	244.99	187.86					

Table 2 Consumptive Use by Diversion

^{*} Where a maximum diverted volume is not dictated by the respective water right, the volume was calculated using 4 acre-feet per allowable acre outlined in the water right.

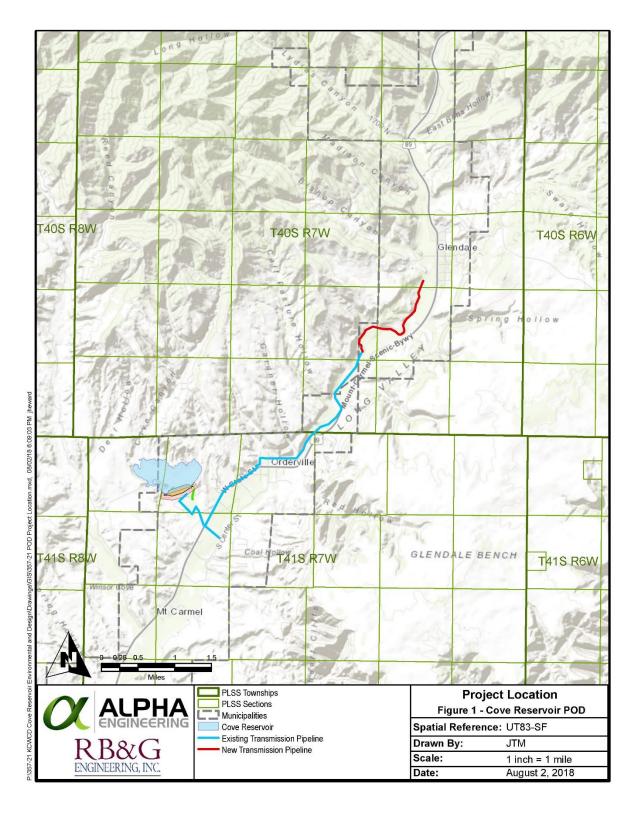


Figure 1: Project Location

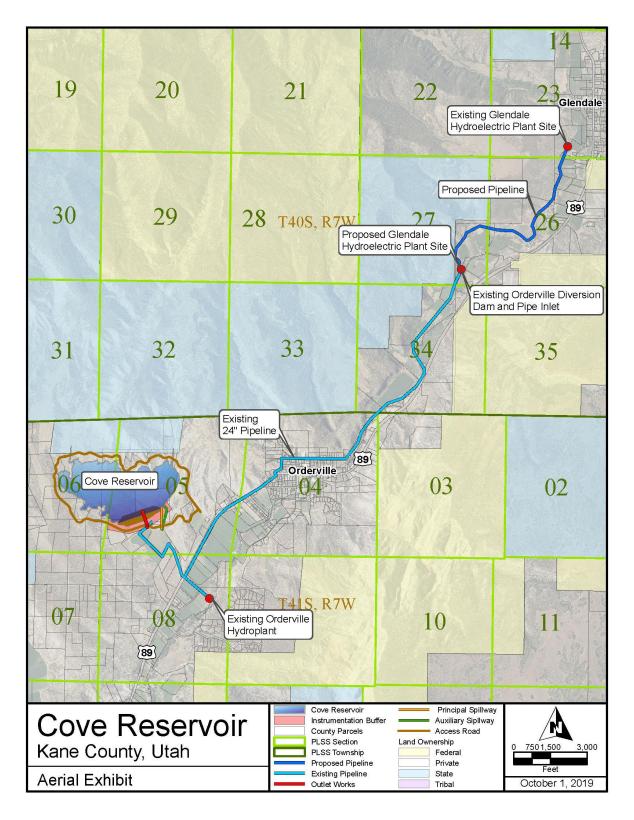


Figure 2a: Overall Project Components

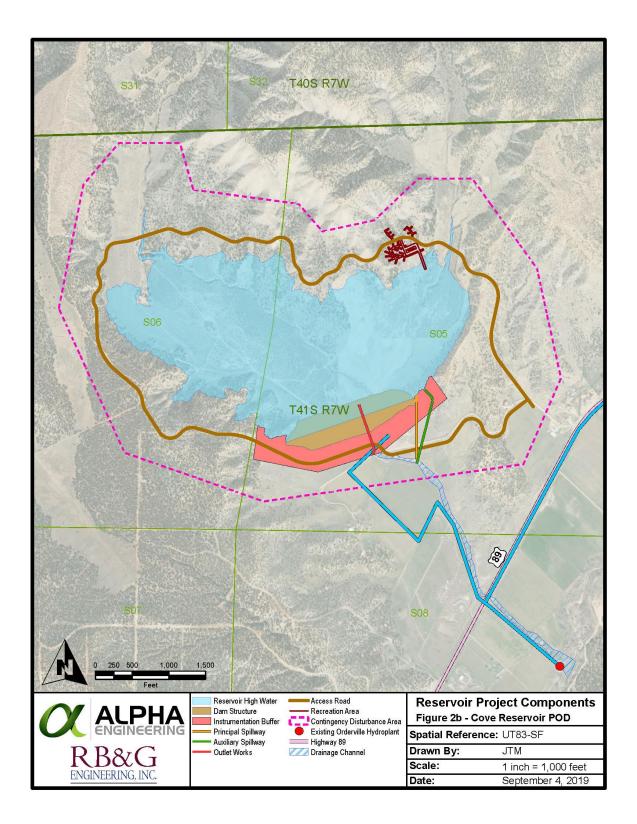


Figure 2b: Reservoir Project Components

Part II. Purpose and Need for Facility

The primary purpose of the project is to serve the current water users by providing for enhanced conservation and beneficial use of water. This purpose would be achieved by increasing water availability through collecting and storing water during non-use periods and providing flows during the irrigation season. As mentioned, the existing irrigation facilities have limited capabilities to divert water from the East Fork Virgin River and store water during high flows. This project creates a drought buffer for sustained time periods of low flows in the East Fork Virgin River. The water storage can also provide recreation opportunities for the area including fishing, camping, and small watercraft. In addition, flows from the reservoir may be released during drought conditions to provide additional instream flows in the Virgin River to help decrease high water temperatures that affect certain threatened and endangered species.

Secondary to water conservation, there are other purposes for the reservoir. The relocated hydro plant on the Glendale Irrigation system will be able to double its current output and provide increased power production. The existing Orderville Hydro Plant will also maintain a more consistent output with the creation of the reservoir to allow generation with releases from the reservoir which otherwise may not be available during drought conditions. The reservoir allows for storage of water at higher elevations, which reduces evaporation rates. The reservoir improves water conditions for water users as water quality is a concern in the area due to periodic high sediment loads from the upstream basin. Finally, the water surface elevation will provide pressure head that will increase and maintain pressures throughout the irrigation system. With improved water quality and pressure, more efficient irrigation methods are enabled for the system users.

Part III. Project Description and Land Ownership

A. Project Description and Land Ownership

The proposed reservoir and pipelines would be located on private lands. Permanent facilities would consist of a 190-acre reservoir, principal and auxiliary spillways, an access road, recreation facilities and pipelines. **Table 3** depicts the length, width and acreage for each of the facility components with permanent and temporary disturbance, including a final right-of-way required for each facility. The project layout with land ownership is shown on **Figure 2a**.

B. Right of Way

A 560-acre area would is potentially required for construction of the reservoir and dam, shown as the Contingency Disturbed Area in **Figure 1**. The temporary disturbance, permanent disturbance and right-of-ways for each component of the project are listed below.

- The reservoir area is comprised of the maximum water surface area, the dam and the low level outlet. A buffer area has been approximated to allow for instrumentation, which is also included in the reservoir area. Finally, portions of the spillways and recreation area are included in the reservoir area. The reservoir area requires 235 acres of temporary disturbance, permanent disturbance and right-of-way.
- The principal spillway is 870 lineal feet in length. 385 lineal feet of the spillway is accounted for within the reservoir disturbance and right-of-way. The principal spillway requires 100 feet of temporary disturbance and 14 feet of permanent disturbance (road) with a 50-foot right-of-way.
- The auxiliary spillway is 1,070 lineal feet in length. 355 lineal feet of the spillway is accounted for within the reservoir disturbance and right-of-way. The auxiliary spillway requires 100 feet of temporary disturbance and 30 feet of permanent disturbance (channel) with a 30-foot right-of-way.
- The pipeline is 8,980 lineal feet in length and requires 50 feet of temporary disturbance but would not create permanent disturbance or require additional right-of-way as it will be located within an existing roadway.
- The hydro plant requires an 80-foot by 80-foot, or 0.1-acre, area for temporary disturbance, permanent disturbance and right-of-way. Pertinent utility extensions, including a 700-foot power line, will be located within already disturbed areas and right-of-ways.

- The access road around the reservoir is 16,900 lineal feet in length. It will be located within existing roads where possible. Approximately 6,200 lineal feet of road will be located within existing dirt roads without a dedicated right-of-way and 10,700 lineal feet of road will be new roadway. The access road requires 100 feet for construction disturbance and 36 feet of permanent disturbance (road) with a 50-foot right-of-way.
- There are a total of five borrow areas required for the project. Two borrow areas (Lamb Pit and Tait Pit) are located on private property within existing pits and will require additional permanent disturbance and right-of-way of approximately 0.5 acres for Lamb Pit and 0.7 acres for Tait Pit. One of these pits will be selected for the project so there will be a maximum disturbance of 0.7 acres. Black Knoll Pit is located on BLM-administered property in an undisturbed area and will potentially require up to 5.0 acres of permanent disturbance and right-of-way. Elbow Pit is located on BLM-administered property within an existing pit and will not require additional permanent disturbance and right-of-way. The fifth site (Bald Knolls Pit) is located on BLM-administered property within an existing pit that will be required to be expanded with this project to include an additional 5.0 acres of permanent disturbance and right-of-way. Either the Bald Knoll or the Black Knoll Pit will be used so the maximum disturbance will be 5.0 acres.
- The recreation area will require approximately 4.3 acres of area. 0.2 acres of the recreation area is accounted for within the reservoir disturbance and right-of-way. It requires 4.1 acres of temporary disturbance, permanent disturbance and right-of-way.

Table 3 provides disturbance and right-of-way acreages for the project components. The temporary disturbance acreages shown in the table are calculated as the additional area after the permanent disturbance acreages have been calculated. The right-of-way acreages do not take into account any disturbance acreages. In total, the project requires 259.2 acres of permanent disturbance, 36.5 acres of temporary additional disturbance and 264.6 acres of right-of-way.

Component	Linear ROW	Permanent Disturbance (acres)			Add'l Temporary Disturbance (acres)			ROW (acres)			
	(feet)	Private	BLM	Total	Private	BLM	Total	Private	BLM	Total	
Reservoir	-	235.0	0.0	235.0	0.0	0.0	0.0	235.0	0.0	235.0	
Principal Spillway	385	0.1	0.0	0.1	0.8	0.0	0.8	0.1	0.0	0.1	
Auxiliary Spillway	355	0.2	0.0	0.2	0.6	0.0	0.6	0.2	0.0	0.2	
Pipeline	8,980	0.0	0.0	0.0	10.3	0.0	10.3	0.0	0.0	0.0	
Hydro Plant	-	0.1	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.1	
Access Road	16,900	14.0	0.0	14.0	24.8	0.0	24.8	19.4	0.0	19.4	
Borrow Areas	-	0.7	5.0	5.7	0.0	0.0	0.0	0.7	5.0	5.7	
Recreation Area	-	4.1	0.0	4.1	0.0	0.0	0.0	4.1	0.0	4.1	
Total	26,620	254.2	5.0	259.2	36.5	0.0	36.5	259.6	5.0	264.6	

Table 3 Summary of Surface Disturbance.

C. Government Agencies Involved

The government agencies potentially involved include:

- Kane County Water Conservancy District
- Washington County Water Conservancy District
- Bureau of Land Management
- Utah Division of Wildlife Resources
- Kane County
- Town of Orderville
- Town of Glendale
- US Army Corps of Engineers
- Utah State Division of Water Rights, Dam Safety

Part IV. Facility Construction & Design

A. Schedule

Construction would commence after necessary permits are obtained and all plans are finalized. Construction of the pipelines and reservoir is estimated to take up to 15 months to complete. Construction of the pipelines and reservoir would occur simultaneously. **Table 4** provides an estimated sequence of construction activities:

Reservoir	Other Facilities
Clear & Grub Vegetation	Access Road
Develop Staging Areas	Install Pipeline
Construct Dam Trench	Construct Hydro Plant
Install Outlet Works	Principal & Auxiliary Spillway
Construct Dam (Haul Clay, Rock and Filter)	Recreation Area

Table 4 Estimated Sequence of Construction Activities

B. Construction of Facilities

i. Reservoir and Dam

The reservoir would be created by the construction of an earthen and rock fill dam having a central clay core. The length of the dam would be approximately 1,900 feet with a maximum dam height of 90 feet and a crest elevation of 5552 feet amsl.

Staging areas for the construction of the dam would be located within the footprint of the reservoir and will eventually be covered with water. An additional 200- to 300-foot buffer downstream of the dam will be used for instrumentation and additional staging. Construction of the dam would require large earth moving machinery, a portable gravel pit operation, water and multiple personnel.

The initial phase of construction would be to prepare the foundation, which will include excavation of overburden soils to varying degrees to mitigate settlement, excavation of a cutoff trench extending into bedrock, and installation of a grout curtain where conditions warrant, expected as a minimum, to be up both abutments. Borrow sources for the materials to construct the dam are discussed in **Section vii**, and large machinery will make continual trips between the reservoir and borrow sites as the dam is constructed. Operations to separate and produce engineer-specified material to be

used for the dam will occur on-site within the project staging areas. Watering activities will continue throughout the construction of the dam as necessary to allow optimum compaction of the excavated material and maintain air quality.

A concrete encased pipeline will be used as the low level outlet works with a screened intake structure at the upstream end and an energy dissipater structure at the downstream end. The outlet works excavation will extend to bedrock through the embankment footprint, near the left abutment, and will be constructed in conjunction with the dam.

The estimated personnel and equipment required for the construction of the reservoir and dam are shown in **Table 5**.

Task	# of People	Equipment
Construction Engineering	4 - People	3 - Pickup Trucks, 1 - Four-wheeler
		1 - Bulldozer, 1 - Track hoe,
Foundation Preparation	9 - People	2 - Scrapers, 2 - Pickup Trucks
		1 - Drill, 1- Grout Plant
Dam Embankment	6 - People	1 - Bulldozer, 1 - Compactor,
Dain Embankment		1 - Grader, 1 - Water Truck
Embankment Borrow	C. Doordo	1 - Bulldozer, 1 - Track Hoe,
EIIIDalikiileiit boirow	6 - People	4 - Scrapers
Filter and Drain	3 - People	2 - Dump Trucks, 1 - Compactor
Outlet Works	4 - People	1 - Concrete Truck

Table 5 Estimated Personnel and Equipment for Reservoir and Dam Construction

ii. Principal Spillway

A pipeline will be used as the principal spillway, including an intake screen and structure at the intake and an energy dissipater structure at the outfall. The alignment for the pipeline will be located near the left abutment and will convey flows away from the dam structure. This pipeline has an approximate length of 870 lineal feet.

Pipeline installation activities would include staking, clearing and grubbing, trenching, hauling equipment and materials, pipeline assembly, backfill and access road construction, in this order. Prior to construction, the exact centerline of the pipeline ROW would be staked. The ROW boundaries would also be flagged in some areas (e.g., thick vegetation). Following staking, vegetation within the ROW would be cleared and grubbed to the extent necessary to provide for equipment clearance, construction, and maintenance operations.

The pipeline would be bedded and buried to a minimum depth of four feet to the top of pipe. The trench width and depth would vary depending upon the final design of the pipeline but will be sloped to gravity drain. The trench would generally be two feet wider than the pipe.

In areas where the pipelines would parallel or be within existing roads, the surface would be brought back to an as-good-as or better condition or replaced according to the governing agency's recommended specifications and requirements. The estimated personnel and equipment required for the construction of the principal spillway are shown in **Table 6**.

Task	# of People	Equipment
Survey and Staking	2 - People	1 - Pickup Truck
Trenching	1 - People	1 - Track Hoe
Pipe and Materials	2 - People	1 - Semi-truck and Flatbed Trailer
Hauling	2 - People	1 - Sellii-truck allu Flatbeu Trailei
Pipeline Assembly &	4 Doonlo	1 - Bulldozer, 3 - Track Hoe, 1 - Dump
Burying	4 - People	Truck, 1 - Loader, 2 - Pickup Trucks
New Road	1 Doonlo	1 - Bulldozer
Construction	1 - People	1 - Bulluozei

Table 6 Estimated Personnel and Equipment for Principal Spillway Construction

iii. Auxiliary Spillway

The auxiliary spillway will comprise a trapezoidal earthen channel, including a concrete weir structure a few hundred feet west of the left abutment of the dam. The auxiliary spillway will extend into an existing drainage channel west of the dam. Where the grade of the spillway becomes too steep for natural stabilization, additional armoring or riprap will be installed to prevent erosion of the spillway or adjacent grades.

The spillway will be constructed simultaneously with the dam as needed for additional access to the left abutment. This will allow easier access for the construction of the dam. The spillway ROW will be staked and cleared of all vegetation. The estimated personnel and equipment required for the construction of the spillway are shown in **Table 7**.

Task	# of People	Equipment
Survey and Staking	2 - People	1 - Pickup Truck
Concrete Weir	2 - People	1 - Concrete Mixer
Construction	2 - People	1 - Concrete Mixer
Channel Grading	3 - People	1 - Bulldozer, 1 - Track Hoe

Task	# of People	Equipment
Channel Armoring	2 - People	1 - Track Hoe

Table 7 Estimated Personnel and Equipment for Auxiliary Spillway Construction

iv. Pipeline

Additional pipeline is required to meet the project objectives. The additional pipeline will complete the transmission system to and from the reservoir in addition to provide a delivery system into the hydro plant. The pipeline will be located at the south end of the Town of Glendale near the East Fork Virgin River. The pipeline would replace the existing 4 to 8-inch pipelines and be installed adjacent to the existing lines.

Appropriate air valves would be installed along the pipeline at approximately 1/2-mile intervals and at major grade changes. In-line valves would be required at all pipeline intersections. Drain-lines or blow-off valves would also be located periodically along the pipeline at low points in the pipeline and would drain to existing channels. The pipeline would also be provided with tracer wire for locating the underground piping. Aboveground fiberglass markers would also be placed at strategic locations to provide public notice of the underground piping to avoid conflicts with future construction.

Pipeline installation activities would include staking, clearing and grubbing, trenching, hauling equipment and materials, pipeline assembly, and backfill, in this order. Prior to construction, the exact centerline of the pipeline ROW would be staked. The ROW boundaries would also be flagged in some areas (e.g., thick vegetation). Following staking, vegetation within the ROW would be cleared and grubbed to the extent necessary to provide for equipment clearance, construction, and maintenance operations.

Where the pipeline parallels existing utilities, care would be taken to protect existing infrastructure and coordination would take place among affected entities. Where the pipeline would be installed under existing asphalt or where it would cross paved roads, asphalt would be replaced according to the governing agency's recommended specifications and requirements.

In areas where the pipelines would parallel or be within existing non-paved roads, the surface would be brought back to an as-good-as or better condition, or replaced according to the governing agency's recommended specifications and requirements. Where there would be air valves or other pipeline appurtenances, construction would follow standard safety guidelines, including distance from roads or installation of barriers.

The pipelines would be bedded and buried to a minimum depth of three feet to the top of pipe and deeper under streambed crossings. The trench width and depth would vary depending upon the size of the pipe being installed. The trench would generally be two feet wider than the pipe. The estimated personnel and equipment required for the construction of the pipeline are shown in **Table 8**.

Task	# of People	Equipment
Survey and Staking	2 - People	1 - Pickup Truck
Trenching	1 - Person	1 - Track Hoe
Pipe and Materials	2 Doonlo	1 - Semi-truck and Flatbed Trailer
Hauling	2 - People	1 - Seilli-truck allu Flatbeu Trallei
Pipeline Assembly &	4 December	1 - Bulldozer, 3 - Track Hoe, 1 - Dump
Burying	4 - People	Truck, 1 - Loader, 2 - Pickup Trucks
New Road	1 Dayson	1 - Bulldozer
Construction	1 - Person	1 - Bulluozei

Table 8 Estimated Personnel and Equipment for Pipeline Construction

v. Hydro Plant

The existing Glendale Hydro Plant will be relocated to a point near the existing Orderville Diversion Dam. Existing 4- to 8-inch transmission lines upstream of the existing hydro plant will be replaced with a new larger transmission line and extended to the new hydro plant location. The hydro plant will consist of a small concrete building that will house the turbines and appurtenant facilities. The existing turbine, generator and switchgear will be rebuilt and used at the new location. A small parking area will be graded adjacent to the hydro plant but will otherwise use existing roads and access points to provide access to the site. Utility work, including a 700-foot long power transmission line from an existing adjacent power feed, will be installed in conjunction with the building. Drainage and erosional considerations will also be incorporated into the construction of the facility. The Orderville Hydro Plant will continue use at its present location and no further modifications will be necessary.

Construction of the hydro plant will consist of clearing and grubbing the site in preparation for the foundation and construction access. The building and parking areas will be staked. Temporary fencing will be installed around the site to prevent vandalism and for safety purposes. Watering equipment will be kept on-site for compaction and to control air quality, and SWPPP measures will be enforced to control storm water runoff. Where the site is adjacent to existing private properties, coordination with the adjacent property owners will take place to ensure smooth construction. The estimated

personnel and equipment required for the construction of the hydro plant are shown in **Table 9**.

Task	# of People	Equipment
Survey and Staking	2 - People	1 - Pickup Truck
Clearing and Grubbing	1 - People	1 - Track Hoe
Hydro Plant	4 Doorlo	1 - Concrete Mixer, 1 - Pickup Truck,
Construction	4 - People	1 - Track Hoe

Table 9 Estimated Personnel and Equipment for Hydro Plant Construction

vi. Access Road

The access road will be located around the perimeter of the reservoir using existing roads where possible. Approximately 3.2 miles of new and existing roads will be constructed and/or improved to provide access around the reservoir and replace access to properties surrounding the reservoir. Approximately 1.2 miles of existing roadway will be graded and improved from its current width of approximately 12 to 16 feet and improved with road base to a width of 28 feet. Approximately 2.0 miles of new roadway will be constructed to a width of 28 feet of road base. The cross-section of the roadway would be constructed to permit two-way traffic for the construction and access of the dam. Due to the hilly terrain, a minimal section will be used in order to reduce cuts and fills. A borrow ditch and culverts will be installed as needed to allow drainage without damage to the access road. The access road will be covered with a graded and compacted road base material.

The access road will be constructed early in the construction process to allow access for upstream property owners. This will also facilitate construction of the dam. The road ROW and grade slopes will be staked and cleared of all vegetation. Watering equipment will be kept on-site for compaction and to control air quality. The estimated personnel and equipment required for the construction of the access road are shown in **Table 10**.

Task	# of People	Equipment
Survey and Staking	2 - People	1 - Pickup Truck
Rough Grading	2 - People	1 - Track Hoe, 1 – Bulldozer, 1 - Water Truck
Final Road Grading	2 - People	1 – Bulldozer, 1 - Dump Truck

Table 10 Estimated Personnel and Equipment for Access Road Construction

vii. Borrow Areas

Borrow sources would include (1) the Lambs Pit located 0.5 miles north of Mt Carmel Junction off of Highway 89; (2) the Tait Pit located 2.0 miles north of Mt Carmel Junction off of Highway 89; (3) the Black Knoll Pit located 6.0 miles east of the Town of Glendale off of Glendale Bench Road (partial dirt road); (4) the Elbow Pit located 7.1 miles east of the Town of Glendale off of Glendale Bench Road (partial dirt road); and (5) the Bald Knolls Community Pit located 11 miles east of the Town of Glendale off of Glendale Bench Road (partial dirt road). The transportation path to and from the borrow areas will run along existing roadways, including smaller county dirt roads. Additional right-of-ways to access the borrow areas will not be required. The approximate quantities for the dam are provided in **Table 11**.

Туре	Quantity
Clay	1,080,000 cubic-yards
Earthfill	3,035,000 cubic-yards
Sand Filter	110,000 cubic-yards
Gravel Drain	66,000 cubic-yards
Riprap	28,000 cubic-yards
Total	4,319,000 cubic-yards

Table 11 Estimated Borrow Quantities

viii. Recreation Area and Boat Ramp

Initial discussions have identified the area as an overnight and day-use facility equipped with picnic tables, restrooms, campgrounds, RV hookups, a pavilion and a boat ramp for small-engine (trolling motors) boat access. A detailed recreation plan would be prepared by a committee that involves all stakeholders. The KCWCD would anticipate contracting with a separate state or local governmental entity to manage the recreation area. A parking area and boat ramp have been identified on Figure 2b. A camp host for overnight camping, who would maintain the facility, is being considered.

Approximately 1.2 miles of buried transmission line and water pipeline would be constructed to provide electricity and potable water to the recreation area. Both the transmission line and the pipeline would be buried in the borrow area of the access road. The pipeline would be an 8-inch line with fire hydrants located every 500 feet. No additional disturbance would result from the installation of the transmission line.

C. Resource Value and Environmental Concerns

KCWCD will contract the services of an environmental consultant to complete required resource surveys and to prepare National Environmental Policy Act (NEPA) related documents.

Cultural resources that would be directly or indirectly impacted would be subject to evaluation and determination through Section 106 consultation (under the National Historic Properties Act). Project engineers would work with archaeologists to avoid or minimize impacts to any identified cultural resources. As necessary, specific mitigation measures for biological resources would also be developed as part of the EA, and if necessary, additional surveys and Section 7 consultation (under the Endangered Species Act) would be conducted.

Implementation of the project would comply with all applicable federal and state laws and any local zoning and building ordinances during all phases of the project. Potential impacts to the environment are expected to be minimal as standard Best Management Practices (BMPs) would be followed (**Appendix A**) and the Environmental Protection Measures (EPMs) listed below would be implemented. EPMs would also apply to operation and maintenance of the completed facility. The NRCS is expected to inspect the project both during and after project completion to ensure compliance with EPMs and other requirements.

Air Resources: The generation of fugitive dust from surface activities, including earth moving and hauling and handling of materials, would be controlled by implementing BMPs. When needed, water would be applied during construction to control fugitive dust levels on access roads and construction sites.

Water Resources: BMPs would be used as needed to control storm water discharges. These practices would include material handling and temporary storage procedures that minimize the exposure of potential pollutants to storm water, spill prevention and response, sediment and erosion controls, and physical storm water controls. Site runoff would be controlled and managed in accordance with regulation. A Storm Water Pollution Prevention Plan would be prepared prior to construction and followed during construction.

Hazardous Materials and Wastes: Construction sites, staging areas, and access roads would be kept in an orderly condition throughout construction. Refuse and trash, including stakes and flags, would be removed and disposed. Covered dumpsters located in the Project Area would contain all refuse. Refuse would be removed on a regular basis to an approved disposal facility. No open burning of construction trash would occur. Portable toilets would be used on site, and would be maintained on a regular schedule.

No construction equipment oil or fuel would be drained on the ground. Oils or chemicals would be hauled to an approved site for disposal. The only significant sources of potential petroleum or

other hazardous material spills are from mobile equipment. If a fuel/oil or other hazardous material spill were to occur, the required regulatory agencies would be contacted as soon as possible, and actions would be taken to minimize the amount and spread of the spill material. Such measures may include straw bale plugs, earthen berms, or use of other absorbent materials. If necessary, soil remediation would be conducted and would include the removal of contaminated soils to an approved facility and a soil sample(s) would be taken to verify the success of the site remediation. In addition, the KCWCD would follow any other local, state, or Federal regulations related to the use, handling, storing, transporting, and disposing of hazardous materials.

Fire Prevention and Protection: All construction personnel would have fire tools and extinguishers available at all times for use if the occasion arises. Construction staff would adhere to any local fire prevention and suppression requirements.

Cultural Resources: If during any project activities, cultural, historical, or prehistoric resources, including any of Native American religious interest, are inadvertently discovered, the appropriate authorized officer would be notified, and all work in the area would cease. A professionally trained archeologist would work with the SHPO and affiliated or interested Tribes to determine eligibility for the National Register of Historic Places. If needed, a mitigation plan would be developed in consultation with the SHPO, KCWCD, construction crews, and interested Tribes. Construction personnel would be instructed to watch for cultural artifacts while working on the project. In the event significant vertebrate paleontological resources are discovered, including human remains, the authorized officer would be notified.

Human Health and Safety: Blasting will not be allowed at the dam site, however it may be an option for the Hydro Plant. The contractor performing blasting would comply with applicable regulations and standards established by the regulatory agencies, codes, and professional societies, including the rules and regulations for storage, transportation, delivery, and use of explosives. Whenever blasting operations are in progress, explosives would be stored, handled, and used as provided by law, including safety and health regulations for construction. No explosives would be stored on the Project Area.

Construction sites would be managed to prevent harm to any person and property. During construction, all employees, project managers, supervisors, inspectors, contractors, and subcontractors would be required to conform to contractor safety procedures. All personnel would be adequately trained to perform their tasks. Heavy equipment would be outfitted with Occupational Safety and Health Administration (OSHA) required safety devices such as backup warnings and seat belts. Hard hats, safety boots, ear and eye protection, and other personal

safety equipment would be available to any personnel requesting it. All accidents and injuries would be reported to the appropriate contractor safety officer.

Noxious Weeds/Invasive Species: All equipment, including pickup trucks and passenger vehicles, would be cleaned of soils, seeds, vegetative matter, or other debris or matter that could contain or hold noxious seeds prior to entering the Project Area. The cleaning of equipment would also be done any time thereafter if the equipment leaves the Project Area, is used on another project, and reenters the Project Area. The KCWCD would follow any regulations pertaining to control of noxious weeds on state- or federal-administered land. Vegetation in the Project Area would be monitored periodically for the establishment of noxious weeds or undesirable plant species. The KCWCD would be responsible for any future weed control work, if needed, as a result of the implementation of this Project. Any use of herbicides would comply with local requirements.

Stabilization and Rehabilitation: All areas subject to temporary ground disturbance would be restored to original contours to the extent determined by the governing agency. Temporarily disturbed areas would be seeded using a certified weed-free seed mix approved by the governing agency. Seed would be hand broadcasted and lightly covered with soil by hand using a rake or by pulling a chain-link fence with an all-terrain vehicle. All soil removed during construction would be reused. Vegetation removal would be kept to that necessary to construct the project. Any brush removed during construction would be used as mulch after reclamation activities. Any trees felled would either be left on site as down woody debris or removed if preferred by the governing agency. The reservoir area would be smoothed and cleaned up prior to filling the reservoir with water. The borrow areas would be cleaned up of all debris and smoothed out.

Raptors and Migratory Birds: In order to avoid or reduce impacts on nesting success of raptors, activities would not occur within recommended spatial and seasonal buffers, and would follow Utah BLM BMPs for Raptors and Their Associated Habitats in Utah [BLM 2006]. If existing topography limits actual line-of-sight of between an active nest (i.e., the nest has eggs or young) and construction activities, the spatial and seasonal buffer may be reduced.

To avoid or minimize potential short-term and long-term impacts to migratory birds, construction activities would be either limited during the migratory bird nesting period (generally defined as 15 May – July 15 [BLM 2008], but could start as early as March/April depending on elevation and latitude), or a migratory bird nesting survey would be completed in areas proposed for disturbance during this time period. If an active nest were discovered, the appropriate agency biologist would be notified and an appropriate buffer area around the nest would be established to prevent nest abandonment until after the migratory bird nesting period is over and/or young have fledged.

Wildlife: No firearms, air guns, or archery equipment would be allowed on the project sites. No pets would be permitted on project sites. To prevent entrapment of wildlife during construction, any open pits or trenches would be monitored throughout the construction day. Excavated pits and trenches more than 2 feet deep would be covered at the close of each day. Alternatively, fencing may be erected around open pits or trenches. At the beginning of the construction day and before pits or trenches are filled, they would be inspected for trapped animals. If any animals are found, they would be moved out of harm's way. No rodenticides would be used on project sites. Encounters with a protected species (e.g., raptors, migratory birds, listed or sensitive species) would be reported to the appropriate oversight agency (e.g., USFWS). Any contractor or employee who inadvertently kills or injures a protected species would immediately report the incident to the appropriate oversight agencies.

D. Operation and Maintenance

It is anticipated that routine maintenance would include the following, and as summarized in **Table 12**:

- The reservoir requires water management practices of maintaining water levels.
- The reservoir dam would require regular inspection and maintenance.
- A grader would be used to grade the spillway as necessary to maintain functionality.
- The pipeline air valves would need to be inspected at least annually to ensure that they are functioning properly.
- The pipeline would likely need to be cleaned with a poly pig on an annual basis.
- The pipeline system is estimated to have a 50-year life before major pipeline repair would be required.
- The hydro plant would require regular inspection and maintenance to maintain turbines, valves, and other mechanical equipment.
- The recreation area would require regular inspection and maintenance to maintain hard surfaces and erosional protection and to keep site free of debris and excessive vegetation.

Task	Number of People	Equipment
Reservoir Inspection & Maintenance	1 - Person	1 - Pickup Truck
Dam Inspection & Maintenance	1 - Person	1 - Pickup Truck
Flushing Pipeline	2 - People	1 - Pickup Truck
Road Maintenance	1 - Person	1 - Grader
Nodu Maintenance	1 - Person	1 - Pickup Truck
Pipeline Maintenance	2 - People	1 - Pickup Truck

Task	Number of People	Equipment
Hydro Plant Inspection & Maintenance	1 - Person	1 - Pickup Truck
Recreation Area	1 - Person	1 - Pickup Truck

Table 12 Estimated Personnel and Equipment to Perform Operation and Maintenance

E. Termination and Restoration

If the project is to be terminated or abandoned, a joint inspection would be held with the authorized officer(s) of the NRCS prior to termination. This would be held to agree upon an acceptable rehabilitation plan for the area.

Part V. References

Bureau of Land Management (BLM). 2006. Best management practices for raptors and their associated habitats in Utah. Recommendations for implementing the U.S. Fish and Wildlife Service, Utah Field Office's Guidelines for Raptor Protection from Human and Land Use Disturbances [Romin and Muck 2002]. BLM Utah State Office, Salt Lake City. August 2006.

Bureau of Land Management. 2008. Instruction Memorandum No. 2008-050: Migratory Bird Treaty Act – Interim Management Guidance.

Best Management Practices

As part of standard operating procedures, standard BMPs would be implemented throughout the project in order to reduce potential adverse environmental impacts. Most of the impacts are short term and generally occur during the construction period. Project design and implementation of site-specific or selectively recommended BMPs would minimize the effect of the project where the potential for long-term, adverse impacts may occur.

STANDARD BMPs

- 1. All construction vehicle movement outside of the right-of-way would be restricted to predesignated access, contractor acquired access, or public roads.
- 2. The limits of construction activities would be predetermined, with activity restricted to and confined within those limits. No paint or permanent discoloring agents would be applied to rocks or vegetation to indicate survey or construction activity limits. The right-of-way boundary would be flagged in environmentally sensitive areas described in the plan of development to alert construction personnel that those areas would be avoided.
- 3. In construction areas where re-contouring is not required, vegetation would be left in place wherever possible to avoid excessive root damage and allow for re-sprouting.
- 4. In construction areas where ground disturbance is significant or where re-contouring is required, surface restoration would occur as required by the landowner or land management agency. The method of restoration typically would consist of returning disturbed areas to their natural contour (to the extent practical) and reseeding or re-vegetating with native plants. Seed viability would be tested and seed mixes would be certified to contain no noxious weeds.
- 5. Prior to construction, all construction personnel would be instructed on the protection of cultural, paleontological, and ecological resources. To assist in this effort, the construction contract would address (a) federal and state laws regarding antiquities, fossils, and plants and wildlife, including collection and removal; and (b) the importance of these resources and the purpose and necessity of protecting them.
- 6. An initial intensive cultural resource inventory survey would be conducted prior to construction. Impact avoidance and mitigation measures developed in consultation with appropriate land management and regulatory agencies and other interested parties would be implemented subsequent to the completion of the NEPA compliance document.
- 7. Any cultural and/or paleontological resource discovered during construction by the KCWCD or any person working on their behalf on public or federal land would be reported immediately to the authorized officer. The KCWCD would suspend operations in the area until an evaluation is completed to prevent the loss of cultural or scientific values.
- 8. All construction and maintenance activities would be conducted in a manner that would minimize disturbance to vegetation, drainage channels, and intermittent and perennial stream banks. In addition, dust-control measures would be utilized as necessary during construction in sensitive areas. Any used existing roads would be left in a condition equal to or better than their condition prior to construction.

STANDARD BMPs

- 9. All requirements of those entities having jurisdiction over air quality matters would be adhered to and any necessary permits for construction activities would be obtained. Open burning of construction trash (cleared trees, etc.) would not be allowed on BLM- or USFS-administered lands.
- 10. Fences and gates, if damaged or destroyed by construction activities, would be repaired or replaced to their original pre-disturbed condition as required by the landowner or the land management agency. Temporary gates would be installed only with the permission of the landowner or the land management agency.
- 11. Totally enclosed containment would be provided for all hazardous materials (if needed) and trash. All construction waste including trash, litter, garbage, other solid waste, petroleum products, and other potentially hazardous materials would be removed to a disposal facility authorized to accept such materials.
- 12. Third-party environmental contractors would be used throughout the construction effort, from clearing through rehabilitation.
- 13. The KCWCD would trim trees in preference to cutting trees, and would cut trees in preference to bulldozing them.
- 14. Construction holes left open overnight would be covered to prevent livestock or wildlife from harm.
- 15. The contractor would clean off-road equipment (power or high-pressure cleaning) of all mud, dirt, and plant parts prior to moving equipment onto public land.

ADDITIONAL STIPULATIONS

The following additional stipulations would be implemented throughout the construction and operation of the project and would be included as part of the standard operating procedures.

STIPULATIONS – STANDARD OPERATING PROCEDURES

- 1. KCWCD would construct, operate, and maintain the facilities, improvements, and structures within this ROW in strict conformity with the plan of development as it is approved. Any relocation, additional construction, or use that is not in accord with the approved plan of development would not be initiated without the prior written approval of the authorized officer. A copy of the complete ROW grant or acknowledgment, including all stipulations and approved plan of development, would be made available on the ROW area during construction, operation, and maintenance to the authorized officer. Noncompliance with the above shall be grounds for an immediate temporary suspension of activities if it constitutes a threat to public health and safety or a material threat to the environment.
- 2. This plan of development describes in detail the construction, operation, maintenance of the ROW and its associated improvements and/or facilities. An approved plan of development may be referred to for interpretation of the right-of-way grant.
- 3. KCWCD would contact the authorized officer at least 10 days prior to the anticipated start of construction and/or any surface-disturbing activities. The authorized officer may require and

STIPULATIONS – STANDARD OPERATING PROCEDURES

schedule a preconstruction conference with the KCWCD prior to commencement of construction and/or surface-disturbing activities on the ROW. The KCWCD, its contractor(s), or agents involved with the construction and/or surface-disturbing activities on the ROW should attend this conference to review the stipulations of the grant and the plan(s) of development.

- 4. KCWCD would designate a representative(s) who would have the authority to act upon and implement instructions from the authorized officer within a reasonable time when construction or other surface-disturbing activities are underway.
- 5. KCWCD would protect all survey monuments found within the right-of-way. Survey monuments include but are not limited to General Land Office and BLM Cadastral Survey Corners, reference corners, witness points, U.S. Coastal and Geodetic benchmarks and triangulation stations, military control monuments, and recognizable civil (both public and private) survey monuments. In the event of obliteration or disturbance of any of the above, the KCWCD would immediately report the incident, in writing, to the authorized officer and the respective installing authority, if known. Where General Land Office or BLM ROW monuments or references are obliterated during operations, KCWCD shall secure the services of a registered land surveyor or a BLM cadastral surveyor to restore the disturbed monuments and references using surveying procedures found in the *Manual of Surveying Instructions for the Survey of the Public Lands of the United States*, latest edition. KCWCD shall record such survey in the appropriate county and send a copy to the authorized officer. If the BLM cadastral surveyors or other federal surveyors are used to restore the disturbed survey monument, KCWCD would be responsible for the survey cost.
- 6. The KCWCD or the successor in interest shall comply with Title VI of the Civil Rights Act of 1964 (42 U.S.C. 2000d et. seq.) and the regulations of the Secretary of Interior issued pursuant hereto.
- 7. KCWCD would mark the exterior boundaries of the ROW with a stake and/or lath. The intervals may be varied at the time of staking at the discretion of the authorized officer. The tops of the stakes and/or laths would be painted and the laths flagged in a distinctive color as determined by the holder. The survey station numbers would be marked on the boundary stakes and/or laths at the entrance to and exit from public land. Holder would maintain all boundary stakes and/or laths in place until final cleanup and restoration are completed and approved by the authorized officer. The stakes and/or laths would then be removed at the direction of the authorized officer.
- 8. KCWCD would conduct all activities associated with the construction, operation, and maintenance of the right-of-way within the authorized limits of the ROW and approved plan of development.
- 9. KCWCD would survey and clearly mark the centerline and/or exterior limits of the ROW, as determined by the authorized officer.
- 10. All design, material, and construction, operation, maintenance, and termination practices would be in accordance with safe and proven engineering practices.
- 11. KCWCD would inform the authorized officer within 48 hours of any accidents on federal lands that require reporting to the Department of Transportation as required by 49 CFR Part 195.
- 12. During conditions of extreme fire danger, operations may be suspended or limited in certain areas.
- 13. KCWCD would be liable for damage or injury to the United States to the extent provided by 43 CFR Sec. 2803.1-4. KCWCD would be held to a standard of strict liability for damage or injury to the

STIPULATIONS – STANDARD OPERATING PROCEDURES

United States resulting from fire or soil movement (including landslides and slumps as well as wind and water-caused movement of particles) caused or substantially aggravated by any of the following within the ROW or permit area:

- Activities of the holder including but not limited to construction, operation and maintenance of the facility.
- Activities of other parties acting under color of authority from the KCWCD, including but not limited to:
 - land clearing
 - earth-disturbing and earth-moving work
 - blasting
- 14. Within 30 days of completion, KCWCD would submit to the authorized officer, as-built drawings and a certification of construction verifying that the facility has been constructed (and tested) in accordance with the design, plans, specifications, and applicable laws and regulations.
- 15. Construction sites would be maintained in a sanitary condition at all times; waste materials at those sites would be disposed of promptly at an appropriate waste disposal site. "Waste" means all discarded matter including but not limited to human waste, debris, garbage, refuse, oil drums, petroleum products, ashes, and equipment.
- 16. Prior to preconstruction activities on the subject parcel, KCWCD would identify all noxious weeds present. A list of the weeds would be provided to the authorized officer. A determination would be made by the authorized officer of any noxious weeds that may require flagging for treatment. KCWCD shall treat the noxious weeds as required by the authorized officer.
- 17. KCWCD would clean off-road equipment (power or high-pressure cleaning) of all mud, dirt, and plant parts prior to moving equipment onto public land authorized under this lease.
- 18. Gravel and/or fill material to be placed in relatively weed-free areas must come from weed-free sources. Prior to obtaining gravel and/or fill material, the authorized officer would inspect the source for weeds and determine adequacy of site.
- 19. KCWCD would identify a road maintenance program, which would include monitoring for noxious weeds. If KCWCD identifies any noxious weeds, KCWCD would notify the authorized officer immediately. A treatment program would be identified and KCWCD would be responsible for weed abatement.

APPENDIX E-8

KCWCD PL83-566 FUNDING REQUEST PROPOSAL

"Developing and protecting our water resources one drop at a time."

August 25, 2017

Mr. Tim Wilson State Conservationist Natural Resources Conservation Service (NRCS) Wallace F. Bennett Federal Building 125 South State Street Room 4010 Salt Lake City, UT 84138-1100

RE: Watershed Protection and Flood Prevention – Funding Assistance Request for Cove Reservoir

Dear Mr. Wilson,

Congress provided \$150 million in new funding to the NRCS through the PL83-566 Watershed Protection and Flood Prevention program (Watershed Act). The Kane County Water Conservancy District (KCWCD) requests Federal assistance under the provisions of this act to construct a water storage reservoir near Orderville, Utah in Kane County, Utah. This area is subject to extreme drought on occasion and the proposed reservoir will provide a full water right to the agricultural users in the area as well as augment flows in the Virgin River for protection of endangered fish species. Side benefits will also include the generation of power through an existing hydroelectric facility to provide additional green power for the area, and an additional recreation facility for boating and fishing.

As an existing project sponsor, the KCWCD is committed to undertake all of the sponsor responsibilities for the project. The diversion and water conveyance facilities to the reservoir have already been constructed. Ground for the dam and reservoir has already been purchased and the project is shovel ready without extensive environmental issues.

We were recently successful in completing the Jackson Flat Reservoir near Kanab, Utah and have the necessary personnel in place to complete this project. Please feel free to contact me at any time regarding this critical project for the KCWCD.

Sincerely,

Mike Noel, Director

Kane County Water Conservancy District

Cc: Bronson Smart, Norm Evenstad, Lance Smith, NRCS

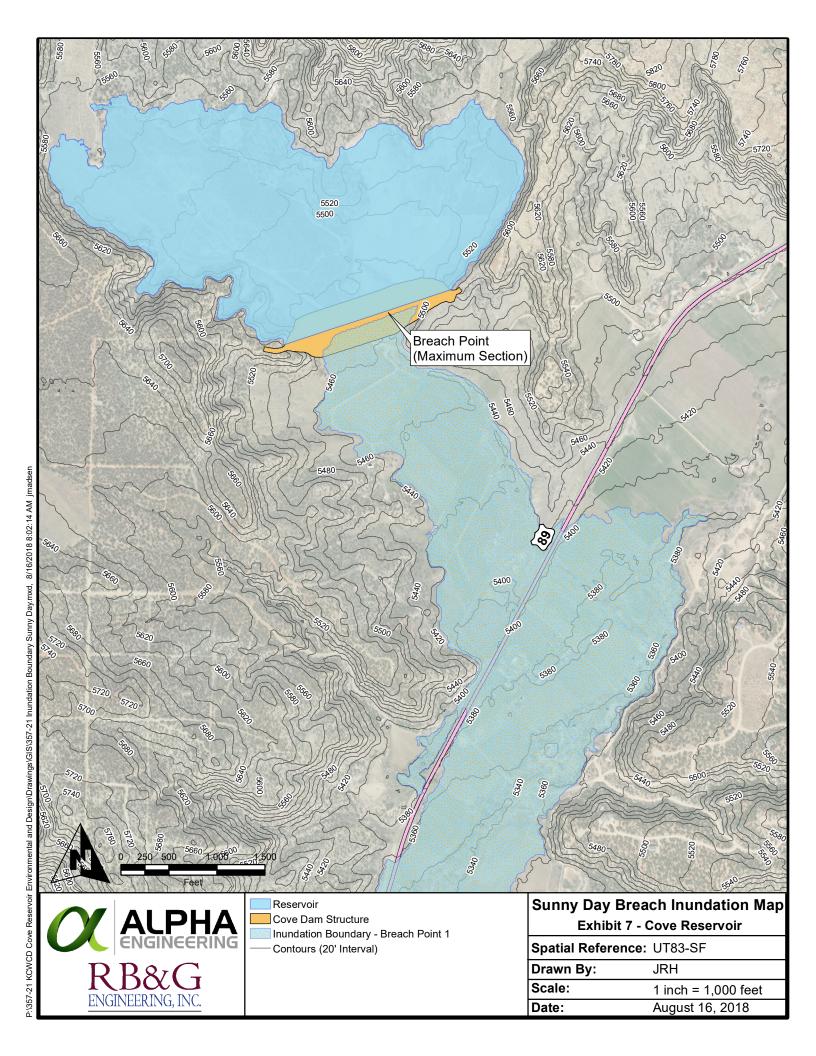
UTAH - WFPO-2017 - COVE RESERVOIR PROPOSAL - KANE COUNTY WATER CONSERVANCY DISTRICT

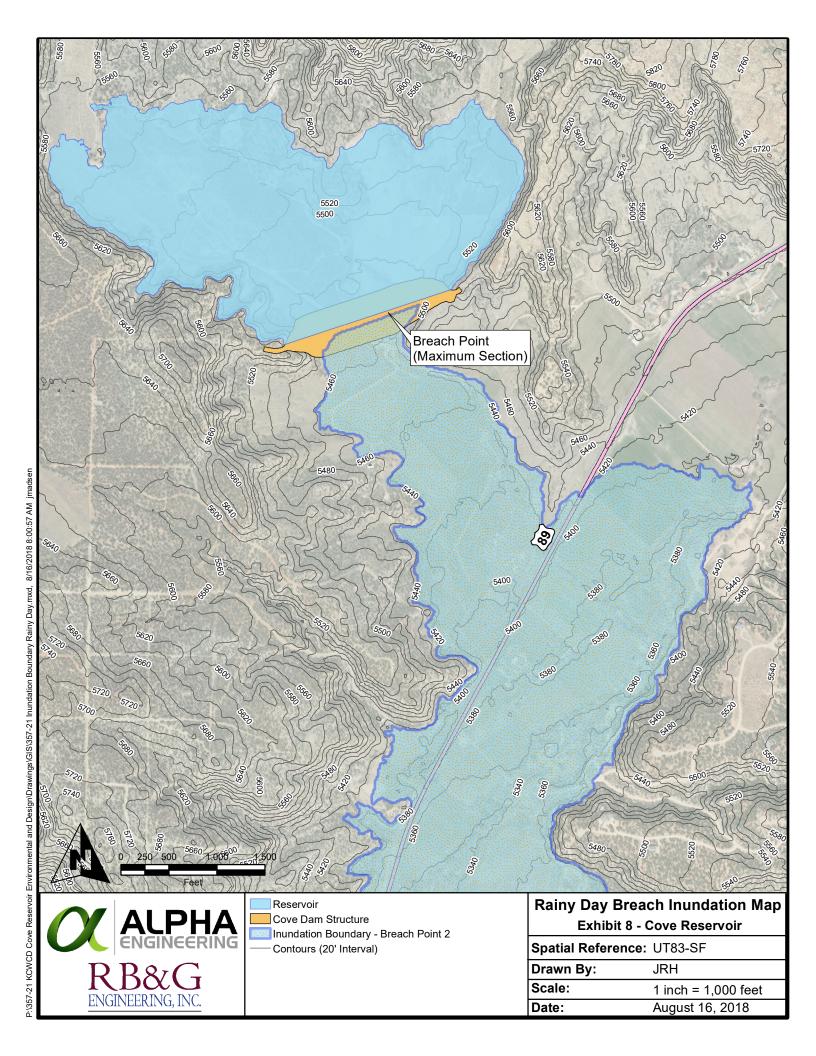
Item or Concern	No Action	Alternative 1
Fluctuating flows in East Fork Virgin River	Low flow seasons for irrigators and endangered fish; warmer river temperatures	Provide water storage for irrigators to aid in providing full water rights; augment stream flows for endangered fish; reduce river water temperature to improve conditions for endangered fish
	INSTALLATION COSTS	
NRCS Contribution	\$0	\$14,400,000
Sponsor(s) Contribution	\$0	\$4,800,000
Total	\$0	\$19,200,000
	ENVIRONMENTAL IMPACTS	
Soil	No direct effect	SHORT TERM:
		Off stream construction disturbance areas will re-vegetate.
		LONG TERM:
		No effect
Potable water supply forecast	No direct effect	No direct effect
Surface - Quantity	No direct effect	SHORT/LONG TERM:
		The reservoir will release water to increase stream flow during low flow periods.
Wetlands	No direct effect	Potential for wetlands may exist. A wetland delineation will be completed prior to permitting
Air Quality	No direct effect	SHORT TERM:
		Fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dirt roads; LONG TERM: No direct effect
Plants	SHORT TERM:	SHORT TERM:
	Existing management and land use practices would continue. LONG TERM: Future cutbank areas of the East Fork Virgin River would be vulnerable to establishment of noxious and/or invasive plants. There is a system in place for the public to identify noxious/invasive weeds and report them to the state for authentication.	Disturbed areas would be temporarily exposed to some invasive growth. Disturbed areas would be re-seeded per NRCS guidelines with an approved seed mix. LONG TERM: No Effect. Equipment brought into the area would be cleaned prior to commencing work to minimize the risk of spreading invasive plants. There is a system in place for the public to identify noxious/invasive weeds and report them to the state for authentication.
Threatened and endangered species	No direct effect	No Adverse Impacts to federal or state sensitive species are expected.
Historic and cultural resources	No direct effect	Impacts to cultural resource artifacts potentially in the vicinity of the proposed reservoir will be avoided as much as practical or mitigated.

Item or Concern	No Action	Alternative 1
Public Land Use	No direct effect	Green energy will be produced from water released from the reservoir as well as benefits derived from the addition of a recreational facility for boating, fishing and swimming.
Tribal, religious, or sacred site	No direct effect	Impacts to cultural resource artifacts potentially in the vicinity of the proposed reservoir will be avoided as much as practical or mitigated.

APPENDIX E-9

CPA-52 ENVIRONMENTAL EVALUATION WORKSHEET

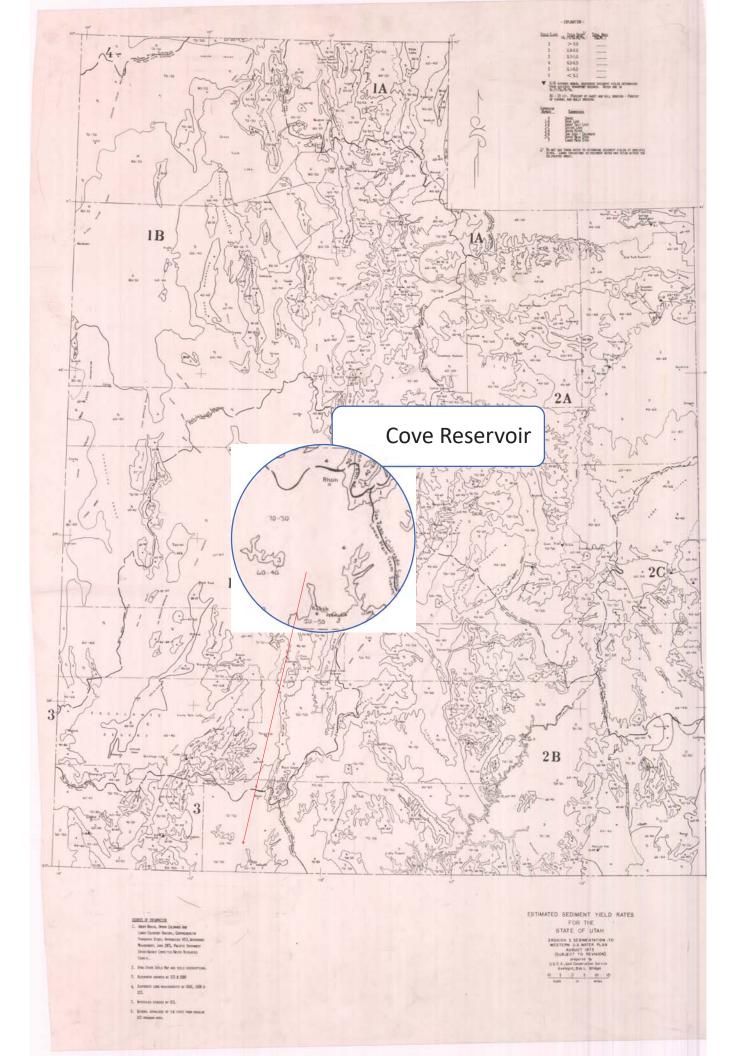

U.S. Department of Agriculture	NRCS-	CPA-52	* Ollent Name: Kono (n6	Material Company and District	
Natural Resources Conservation S	ervice	6/2010			y Water Conservancy District	
ENVIRONMENTAL E	VALUATION WORKSHE	ET	B. Conservation Plan ID # (as Program Authority (option		icable): Cove Reservoir 2 PL 83-566 - WFPO 2017	2017
D. Client's Objective(s) (pu			C. Identification # (farm, trac	t, field	#, etc as required):	
	provide water storage for the KCWC to the irrigators in the area as well a				e, Utah, Sections 5 & 6, Township 4 d Meridian. Section within the East	
	eam flows during low flow periods in		Virgin River PL566 Watershed, Ka			
E. Need for Action:	G. Alternatives					
The proposed Cove Reservoir	No Action √ if RMS		Alternative 1 √ if RMS		Alternative 2 √ if RMS	
will release stored water, to minimize water shortages,	No Federal Assistance. Not accept as the water storage is necessary		<u>Preferred:</u> 1) Construct ~6,032 ac storage capacity reservoir. Estima		Several alternative dam alignments considered in the project area but t	
during the summer months to	sustain agricultural production and	the	Cost:		proposed alternative was selected	based
meet consumptive use requirements for agriculture as	system will also provide additional stream flow for endangered fish sp		Total Cost: \$19,200,000 PL 83-566 Funds: \$14,400,000 (75	(%)	on geologic conditions of the site a construction cost of the reservoir.	ind
well as supplement flows to the Virgin River for endangered	in the Virgin River when flows are I		Other Funds - KCWCD \$4,800,000			
openies fish habitat	normal.		(25%)			
2 - 4 UE!! balow engly			rce Concerns	1		
	ze, record, and address cond ource Quality Criteria for qui		identified through the Resour	ces II	iventory process.	
F. Resource Concerns	H. Effects of Alternatives					
and Existing / Benchmark	No Action		Alternative 1		Alternative 2	
Conditions (Analyze and record the existing/benchmark conditions for each identified concern) SOIL	Amount, Status, Description (short and long term)	√if does NOT meet QC	Amount, Status, Description (short and long term)	√if does NOT meet QC	Amount, Status, Description (short and long term)	√ if does NOT meet QC
No resource concern identified	No direct effect	NOT	Short term: Off stream	NOT	Same as Alternative #1	NOT
		meet	construction disturbance areas will re-vegetate. Long term: no	meet		meet
			direct effect.			
		QC		QC		QC
		i i		i i		
		٦		ĵ]
WATER	A COURT OFFI A		Ci. 10 Laur Trans Woter		C Alternative #4	
Quantity (Insufficient Flows in Water Courses)	No direct effect		Short & Long Term: Water released from the reservoir will		Same as Alternative #1	
Storm events will continue to be conveyed through the existing		□т	increase stream flow during low	דת		□т
river channel. The proposed off		meet	flow periods.	meet		meet
stream reservoir will augment flows in the Virgin River						
drainage during low flow		QC		QC		QC
	1					
periods.		 				
periods. F. Resource Concerns	H. (continued)					
periods. F. Resource Concerns and Existing / Benchmark	H. (continued) No Action		Alternative 1		Alternative 2	
periods. F. Resource Concerns		√ if does NOT meet QC	Alternative 1 Amount, Status, Description (short and long term)	√if does NOT meet QC	Alternative 2 Amount, Status, Description (short and long term)	√ if does NOT meet QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR	No Action Amount, Status, Description (short and long term)	does NOT meet	Amount, Status, Description (short and long term)	does NOT meet	Amount, Status, Description (short and long term)	does NOT meet
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10µm diameter ("PM 10")]	No Action Amount, Status, Description	does NOT meet QC	Amount, Status, Description (short and long term) Short term: fugitive dust	does NOT meet QC	Amount, Status, Description	does NOT meet QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10µm	No Action Amount, Status, Description (short and long term)	does NOT meet QC	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment	does NOT meet QC	Amount, Status, Description (short and long term)	does NOT meet QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10µm diameter ("PM 10")]	No Action Amount, Status, Description (short and long term)	does NOT meet QC NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dirt	does NOT meet QC NOT meet	Amount, Status, Description (short and long term)	does NOT meet QC NOT meet
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Qualty [Particulate Matter < 10 µm diameter ("PM 10")] No Effect	No Action Amount, Status, Description (short and long term)	does NOT meet QC NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment	does NOT meet QC	Amount, Status, Description (short and long term)	does NOT meet QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10µm diameter ("PM 10")]	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of	does NOT meet QC NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravelfdir roads; Long term: no effect Short term: Impact to area for	does NOT meet QC NOT meet	Amount, Status, Description (short and long term)	does NOT meet QC NOT meet
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10µm diameter ("PM 10")] No Effect PLANTS Other Flowering Plants in work area: Jones	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at	NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and	NOT meet	Amount, Status, Description (short and long term) Same as Alternative #1	does NOT meet QC NOT meet QC QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10 µm diameter ("PM 10")] No Effect PLANTS Other	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long	does NOT meet QC NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravelfdir roads; Long term: no effect Short term: Impact to area for	NOT meet QC QC	Amount, Status, Description (short and long term) Same as Alternative #1	does NOT meet QC NOT meet
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Qualty [Particulate Matter < 10µm diameter ("PM 10")] No Effect PLANTS Other Flowering Plants in work area: Jones Cyclandia = critical habitat, Siler Pincushion Cactus = critical habitat, (IPAC Report access = 802417).	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to	NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas	NOT meet	Amount, Status, Description (short and long term) Same as Alternative #1	does NOT meet QC NOT meet QC QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10 µm diameter ("PM 10")] No Effect PLANTS Other Flowering Plants in work area: Jones Cyclandia = critical habitat; Sier Pincushion Cactus = critical habitat.	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long	does NOT meet QC NOT meet QC	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas	does NOT meet QC NOT meet QC	Amount, Status, Description (short and long term) Same as Alternative #1	does NOT meet QC NOT meet QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Qualty [Particulate Matter < 10µm diameter ("PM 10")] No Effect PLANTS Other Flowering Plants in work area: Jones Cyclandia = critical habitat, Siler Pincushion Cactus = critical habitat, (IPAC Report access = 802417).	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long	NOT meet QC NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas	NOT meet QC QC	Amount, Status, Description (short and long term) Same as Alternative #1	NOT meet QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Qualty [Particulate Matter < 10µm diameter ("PM 10")] No Effect PLANTS Other Flowering Plants in work area: Jones Cyclandia = critical habitat, Siler Pincushion Cactus = critical habitat, (IPAC Report access = 802417).	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long	NOT meet QC QC	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas	NOT meet QC QC	Amount, Status, Description (short and long term) Same as Alternative #1	does NOT meet QC NOT meet QC NOT MOT NOT
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Qualty [Particulate Matter < 10µm diameter ("PM 10")] No Effect PLANTS Other Flowering Plants in work area: Jones Cyclandia = critical habitat, Siler Pincushion Cactus = critical habitat, (IPAC Report access = 802417).	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long	NOT meet QC NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas	NOT meet QC QC	Amount, Status, Description (short and long term) Same as Alternative #1	NOT meet QC QC QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Qualty [Particulate Matter < 10µm diameter ("PM 10")] No Effect PLANTS Other Flowering Plants in work area: Jones Cyclandia = critical habitat, Siler Pincushion Cactus = critical habitat, (IPAC Report access = 802417).	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long	NOT meet QC NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas	NOT meet QC QC	Amount, Status, Description (short and long term) Same as Alternative #1	NOT meet QC QC QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10µm diameter ("PM 10")] No Effect PLANTS Other Flowering Plants in work area: Jones Cyclandia = critical habitat, Siler Pincushion Cactus = critical habitat. (IPaC Report access - 8/24/17). https://ecos.fws.gov/ipac/	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long term: no effect	NOT meet QC NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dir roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas will re-vegetate with seedings.	NOT meet QC QC	Amount, Status, Description (short and long term) Same as Alternative #1 Same as Alternative #1	NOT meet QC QC QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10 µm diameter ("PM 10")] No Effect PLANTS Other Flowering Plants in work area: Jones Cyclandia = critical habitat; Sier Pincushion Cactus = critical habitat, (IPaC Report access - 8/24/17). https://ecos.fws.gov/ipac/	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long term: no effect Short Term: Existing management	NOT meet QC NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on graveldirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas will re-vegetate with seedings.	NOT meet QC QC	Amount, Status, Description (short and long term) Same as Alternative #1	NOT meet QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Outlety [Particulate Matter < 10 µm diameter ("PM 10")] No Effect PLANTS Other Flowering Plants in work area: Jones Cyclandia = critical habitat. Siler Pincushion Cactus = critical habitat. (IPaC Report access - 8/24/17). https://ecos.fws.gov/ipac/	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long term: no effect Short Term: Existing management and land use spractices would continue. Long Term: Future	NOT meet QC NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dit roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas will re-vegetate with seedings. Short term: Disturbed areas would be temporarily exposed to some invasive growth. Disturbed	NOT meet QC QC	Amount, Status, Description (short and long term) Same as Alternative #1 Same as Alternative #1	NOT meet QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10µm diameter ("PM 10")] No Effect PLANTS Other Plowering Plants in work area: Jones Cyclandia = critical habitat, Siler Pincushion Cactus = critical habitat, ("PAC Report access - 8/24/17). https://ecos.fws.gov/ipac/	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long term: no effect Short Term: Existing management and land use practices would	ocs NOT meet CAC NOT meet CAC CAC NOT MEET CAC CAC NOT MEET CAC CAC NOT MEET CAC CAC CAC CAC CAC CAC CAC CAC CAC CA	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas will re-vegetate with seedings. Short term: Disturbed areas would be temporarily exposed to	NOT meet	Amount, Status, Description (short and long term) Same as Alternative #1 Same as Alternative #1	NOT meet QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10µm diameter ("PM 10")] No Effect PLANTS Other Flowering Plants in work area: Jones Cyclandia = critical habitat; Siler Pincushion Cactus = critical habitat; (IPaC Report access - 8/24/17). https://ecos.fws.gov/ipac/ Condition (Noxious and Invasive Plants) Kane County Noxious Weed = Russian Olive Class 18: Coatsrue, Elongated mustard, Common St. Johnswort, Cutleaf vipergrass // Class 2: Spotted knapweed; Purple	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long term: no effect Short Term: Existing management and land use practices would continue. Long Term: Future cutbank areas of the East Fork Vitgank River would be vulnerable to establishment of noxious	does NOT meet GC	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas will re-vegetate with seedings. Short term: Disturbed areas would be temporarily exposed to some invasive growth. Disturbed areas would be re-seeded per NRCS guidelines with an approved seed mix. Long term:	does NOT meet GC	Amount, Status, Description (short and long term) Same as Alternative #1 Same as Alternative #1	does NOT meet ac
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Ouality [Particulate Matter < 10µm diameter ("PM 10")] No Effect PLANTS Other Flowering Plants in work area: Jones Cyclandia = critical habitat; Siler Plicushion Cactus = critical habitat, (IPaC Report access - 80/24/17). https://ecos.fws.gov/ipac/	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long term: no effect Short Term: Existing management and land use practices would continue. Long Term: Future cutbank areas of the East Fork Virgin River would be vulnerable	does NOT meet QC QC QC	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on graveldirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas will re-vegetate with seedings. Short term: Disturbed areas will re-vegetate with seedings.	doesa NOT meet QC QC	Amount, Status, Description (short and long term) Same as Alternative #1 Same as Alternative #1	NOT meet QC
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10µm diameter ("PM 10")] No Effect PLANTS Other Plowering Plants in work area: Jones Cyclandia = critical habitat. Siler Pincushion Cactus = critical habitat. (IPaC Report access - 8/24/17). https://ecos.fws.gov/ipac/	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long term: no effect Short Term: Existing management and land use practices would continue. Long Term: Future cutbank areas of the East Fork Virgin River would be unlorusal and/or invasive plants. There is a system in place for the public to identify noxious/invasive weeds	does NOT meet GC	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dir roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas will re-vegetate with seedings. Short term: Disturbed areas would be temporarily exposed to some invasive functions of the reservoir and provided areas would be re-seeded per NRCS guidelines with an approved seed mix. Long term: No Effect. Equipment brought into the freet. Equipment brought into the metal would be cleaned prior to commencing work to minimize the	does NOT meet GC	Amount, Status, Description (short and long term) Same as Alternative #1 Same as Alternative #1	does NOT meet ac
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10µm diameter ("PM 10")] No Effect PLANTS Other Plowering Plants in work area: Jones Cyclandia = critical habitat, Siler Pincushion Cactus = critical habitat, Siler Pincushion Cactus = critical habitat, Pincushion Cactus = critical habitat, Siler Pincushion (Pac Report Pincushion Cactus = Cactus Pincushion Pinc	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long term: no effect Short Term: Existing management and land use practices would continue. Long Term: Future cutbank areas of the East Fork Virgin River would be valierable to establishment of noxious and/or invasive plants. There is a system in place for the public to	does NOT meet QC QC QC	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas will re-vegetate with seedings. Short term: Disturbed areas would be temporarily exposed to some invasive growth. Disturbed areas would be re-seeded per NRCS guidelines with an approved seed mix. Long term: No Effect. Equipment brought into the area would be cleaned prior to	doesa NOT meet QC QC	Amount, Status, Description (short and long term) Same as Alternative #1 Same as Alternative #1	NOT meet
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10 µm diameter ("PM 10")] No Effect PLANTS Other Flowering Plants in work area: Jones Cyclandia = critical habitat; Siler Pincushion Cactus = critical habitat; (IPaC Report access - 8/24/17). https://ecos.fws.gov/ipac/	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long term: no effect Short Term: Existing management and land use practices would continue. Long Term: Future cutbank areas of the East Fork Virgin River would be vulnerable to establishment of noxious and/or invasive plants. There is a system in place for the public to identify noxious/invasive weeds and report them to the state for	NOT meet QC NOT meet QC NOT meet NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on graveldirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas will re-vegetate with seedings. Short term: Disturbed areas would be temporarily exposed to some invasive growth. Disturbed areas would be re-seeded per NRCS guidelines with an approved seed mix. Long term: No Effect. Equipment brought into the area would be cleaned prior to commencing work to minimize the risk of spreading invasive plants. There is a system in place for the public to identify noxious/invasive	odoes NOT meet acc	Amount, Status, Description (short and long term) Same as Alternative #1 Same as Alternative #1	NOT meet QC NOT meet NOT meet NOT meet NOT meet NOT meet
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10µm diameter ("PM 10")] No Effect PLANTS Other Flowering Plants in work area: Jones Cyclandia - critical habitat. Siler Pincushion Cactus = critical habitat. (IPaC Report access - 8/24/17). https://ecos.fws.gov/ipac/	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long term: no effect Short Term: Existing management and land use practices would continue. Long Term: Future cutbank areas of the East Fork Virgin River would be vulnerable to establishment of noxious and/or invasive plants. There is a system in place for the public to identify noxious/invasive weeds and report them to the state for	NOT meet QC NOT meet QC NOT meet NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas will re-vegetate with seedings. Short term: Disturbed areas would be temporarily exposed to some invasive growth. Disturbed areas would be re-seeded per NRCS guidelines with an approved seed mix. Long term: No Effect. Equipment brought into the area would be cleaned prior to commencing work to minimize the risk of spreading invasive plants. There is a system in place for the	odoes NOT meet acc	Amount, Status, Description (short and long term) Same as Alternative #1 Same as Alternative #1	NOT meet
periods. F. Resource Concerns and Existing / Benchmark Conditions (Analyze and record the existing/benchmark conditions for each identified concern) AIR Quality [Particulate Matter < 10µm diameter ("PM 10")] No Effect PLANTS Other PLANTS Other Plowering Plants in work area: Jones Cyclandia = critical habitat, Siler Pincushion Cactus = critical habitat, (IPAC Report access - 8/24/17). https://ecos.fws.gov/ipac/ Condition (Noxious and Invasive Plants) Kane County Noxious Weed = Russian Oilve. Class 1B: Goatsrue, Elongated mustard, Common St. Johnswort, Cutleaf vipergrass // Class 2: Spotted knapweed; Puple loosestrie; Yellow starthistle; Diffuse knapweed; Clasmain to perpensed (Tall whitetop); Tamarisk (Saltcedar); Hoary cress; Canada napweed (Tall whitetop); Tamarisk (Saltcedar); Hoary cress; Canada napweed; Houndstounge; Perennial pepperweed (Tall whitetop); Tamarisk (Saltcedar); Hoary cress; Canada napweed; Houndstounge; Perennial pepperweed (Tall whitetop); Tamarisk (Saltcedar); Hoary cress; Canada napweed; Houndstounge; Perennial pepperweed (Tall whitetop); Tamarisk (Saltcedar); Hoary cress; Canada napweed; Houndstounge; Perennial pepperweed (Tall whitetop); Tamarisk (Saltcedar); Hoary cress; Canada napweed; Houndstounge; Perennial pepperweed (Tall whitetop); Tamarisk (Saltcedar); Hoary cress; Canada napweed; Houndstounge; Perennial pepperweed (Tall whitetop); Tamarisk (Saltcedar); Hoary cress; Canada napweed; Houndstounge; Perennial pepperweed (Tall whitetop); Tamarisk (Saltcedar); Hoary cress; Canada napweed; Houndstounge; Perennial pepperweed; Houndstounge; Perennial pepperweed; Houndstounge; Perennial pepperweed; Houndstounge; Perennial pepperweed; Houndstounge; Pe	No Action Amount, Status, Description (short and long term) No Effect Short term: Minor loss of vegetation (grasses, shrubs) at channel cutbank areas due to lateral bank recession; Long term: no effect Short Term: Existing management and land use practices would continue. Long Term: Future cutbank areas of the East Fork Virgin River would be vulnerable to establishment of noxious and/or invasive plants. There is a system in place for the public to identify noxious/invasive weeds and report them to the state for	NOT meet QC NOT meet QC NOT meet NOT meet	Amount, Status, Description (short and long term) Short term: fugitive dust expected during construction activities - mostly from equipment accessing the site on gravel/dirt roads; Long term: no effect Short term: Impact to area for construction of the reservoir and piping. Long term: disturbed areas will re-vegetate with seedings. Short term: Disturbed areas will re-vegetate with seedings. Short term: Disturbed areas would be temporarily exposed to some invasive growth. Disturbed areas would be re-seeded per NRCS guidelines with an approved seed mix. Long term: No Effect. Equipment brought into the area would be cleaned prior to commencing work to minimize the risk of spreading invasive plants. There is a system in place for the public to identify noxious/invasive weeds and report them to the	odoes NOT meet acc	Amount, Status, Description (short and long term) Same as Alternative #1 Same as Alternative #1	NOT meet QC


ANIMALS						
Fish and wildlife (Impacts to Endangered or Threatened Animals) Flow will continue to be conveyed through the existing river channel. The proposed off stream reservoir will augment flows in the Virgin River drainage during low flow periods, to improve aquatic habit for endangered species. HUMAN - Economic and So Land Use The proposed reservoir will create energy and outdoor recreatein.	Federal Species = No effect State Species = No effect State Species = No effect State Species = No effect	meet	Federal Species = No effect State Species 1) Bald Eagle= No nesting habitat present-however birds may fly over the project area & likely forage in suitable habitat adjacent to the proposed reservoir; 2) Black swift = No nesting or foraging habitat present; 3) Smooth glenwood pyrg = Only occurs in two spring sites in Utah- No suitable habitat present; 4) Carinate glenwood pyrg = Only occurs in two spring sites in Utah- No suitable nesting period to the control Townsends big-eared bat = No suitable nesting habitat in project area - suitable foraging habitat exists above and along the river - no meaningful impact anticipated to their preferred food source (insects) – little risk of disturbance during construction Green energy will be produced fro water released from the reservoir a se benefits derived from the additi- recreational facility for boating, fist	s well on of a	(Same as Alt-1). Same as Alternative #1	NOT meet
Special Envi In Section "I" complete and a federal permit or consultation	ronmental Concerns: Er ttach applicable Environmental l/coordination between the lead on with another agency. Planning	Proce agend	onmental Laws, Executive dures Guide Sheets for documental and another government age	ve Orentation	on. Items with a "•" may require n these cases, effects may nee	
consultation	J. Impacts to Special Enviro					
Concerns	No Action		Alternative 1		Alternative 2	
(Document compliance with Environmental Laws, Executive Orders, policies, etc.)	Status and progress of compliance. (Complete and attach Guide Sheets as applicable)	√ if needs further action	Status and progress of compliance. (Complete and attach Guide Sheets as applicable)	√ if needs further action	Status and progress of compliance. (Complete and attach Guide Sheets as applicable)	√ if needs further action
<u>●Clean Air Act</u> No effect.	Upon Review, No Action Needed		Upon Review, No Effect		Upon Review, No Effect	
Clean Water Act / Waters of the U.S. No effect.	Upon Review, No Action Needed		Upon Review, No Effect		Upon Review, No Effect	
Coastal Zone Management	Upon Review, Not Applicable		Upon Review, Not Applicable		Upon Review, Not Applicable	
Coral Reefs	Upon Review, Not Applicable		Upon Review, Not Applicable		Upon Review, Not Applicable	
Cultural Resources / Historic Properties	Upon Review, No Action Needed		Other Not anticipated but full evaluation to be completed with Plan-EA NEPA process if funded.		Upon Review, Not Applicable	
■Endangered and Threatened Species Ref. PaC Rpt 5/26/17: BIRDS: California Condor(EXPN-no critical habitat); Mexican Spotted Ow (T-loc outside critical habitat); Southwest Willow Flycatcher (E-loc overlaps designated critical habitat); Yellow-billed Cuckoo(T-loc outside critical habitat); Yellow-billed Cuckoo(T-loc outside critical habitat); Woundfin (E) = both outside critical habitat); The Verying River Chub (E), Woundfin (E) = both outside critical habitat // PLANTS: Jones Cycladenia(T)-no crit hab; Siler Pincushion(E)-no crit	See Attached Documentation		See Attached Documentation Updated Consult to be completed with USFWS before construction if funding approved. No critical habitat in the general project area (PaC Report access - 726/17). To be addressed in further NEPA documentation and consultation.		See Attached Documentation Updated Consult to be completed with USFWS before construction if funding approved. No critical habitat in the general project area (PaC Report access - 726/17). To be addressed in further NEPA documentation and consultation.	א
Environmental Justice	Upon Review, No Action Needed		No Effect-see documentation		No Effect-see documentation	
Essential Fish Habitat Floodplain Management	Upon Review, Not Applicable Upon Review, No Action Needed		Upon Review, Not Applicable No Effect-see documentation		Upon Review, Not Applicable No Effect-see documentation	
- Sapan Managerient						
Invasive Species	No Effect-see documentation		See Attached Documentation Disturbed areas will be replanted- reseeded per agency/partner consultation. To be addressed in further NEPA doc.	7	See Attached Documentation Disturbed areas will be replanted- reseeded per agency/partner consultation. To be addressed in further NEPA doc.	ি
		[Hi	nal]			

			-					0 40 1 18 10	
Migrator Golden E Ref. IPaC Eagle (W Thrasher Rosy-finc Black-chi Sparrow(I) Sparrow(I) Sparrow(I) Calliope Humming Cassin's Costa's H round Ferruginc Flammula Golden E Grace's V Gray Vire Juniper T Lewis's W round	agle Processing agle Processing agle Processing (Breeding (Breeding Sparrows) of Owl (Breeding Sparrow	otection 24/17: ; Bend ; Bend grating grating gear-rou gear-rou (Breec ar-rour Breedi ((Year-rour grating); ((Year-rour grating);	n Act Bald diire's ack ; ding);); ind); earround); ding); nd); ng); round) ear-	Upon Review, No Action Needed		See Attached Documentation If work is required during the migratory bird breeding/nesting period, a site specific survey for nesting birds will be performed starting at least 2 weeks prior to vegetation treatments. If nesting birds are found during the survey, appropriate spatial buffers will be established around nests in coordination with USFWS and UDWR. Established nests with eggs or young will not be moved, and the birds will not be moved, and the birds will not be harassed until all young have fledged and are capable of leaving the nest site. Confirmation that all young have fledged will be made by a qualified biologist prior to construction.	9	See Attached Documentation If work is required during the migratory bird breeding/nesting period, a site specific survey for nesting birds will be performed starting at least 2 weeks prior to vegetation treatments. If nesting birds are found during the survey, appropriate spatial buffers will be established around nests in coordination with USFWS and UDWR. Established nests with eggs or young will not be moved, and the birds will not be moved, and the birds will not be harassed until all young have fledged and are capable of leaving the nest site. Confirmation that all young have fledged will be made by a qualified biologist prior to construction.	5
Prime and No effect	d Unique	e Farm	lands	Upon Review, Not Applicable		Upon Review, Not Applicable		Upon Review, Not Applicable	
Riparian East Fork perennial	Area Virgin I		s a	See Attached Documentation		See Attached Documentation Diversion structure will be constructed at the East Fork Virgin River. Some channel protection measures may be needed in the vicinity of the structure.	Ŋ	See Attached Documentation Diversion structure will be constructed at the East Fork Virgin River. Some channel protection measures may be needed in the vicinity of the structure.	\
Wetland No effect				No Effect-see documentation Waters of the U.S channel		See Attached Documentation Waters of the U.S present. Detailed check will be carried out with planning process - NEPA Plan-EA.	א	Upon Review, Not Present Waters of the U.S. present. Detailed check will be carried out with planning process - NEPA Plan-EA.	V
•Wild and Virgin Riv designate in Utah.	er is the	only	_	Upon Review, Not Applicable		Upon Review, Not Applicable		Upon Review, Not Applicable	
K. Othe				No Action		Alternative 1		Alternative 2	
Broad Public Concerns Easements, Permissions, Public Review, or Permits Required and Agencies Consulted. Coordinate with the Utah Division of Wildlife Res. & USFWS for alternatives. BLM SF-299/Spec Use Permit needed.		Itah es. &	None needed		USFWS: T&E species; UDIWWIIC Coord for other alternatives to prot road; UDWaterRts: Stre Permit-contact C.Williamson; State Status Species: See attached Tab UDNR: Aquatic Info - Matt Briggs- 340-0140. Native American. consultation. ACOE consultation & WO/NPDES Cert: To be complete before construction.	ect am Alt e Sp lle; 435-	Same as Alt -1.		
K. (con Other A	gencie	s and	l Broad	No Action		Alternative 1		Alternative 2	
Public C Cumulative Narrative cumulative including known fut of who pe	ive Effe e (Desc re impac past, pr ture acti	ribe the cts con esent a ons re	sidered, and gardless	None needed		Based on review of the Proposed A it is determined this action would n have a significant adverse cumulat effect on any resources.	ot	Based on review of the Proposed it is determined this action would n have a significant adverse cumula effect on any resources.	ot
L. Mitig	ation			one		TBD with USFWS consultation		TBD with USFWS consultation	
M. Prefe Alternat		√ pret altern	ferred ative			✓			
Altomat		Supp	orting on	Not acceptable		This alternative is the most cost effective location for the reservoir.		Not acceptable	
				of alternatives analysis)	local	local		local	h a
affected	interes	ts, an	d the lo	cality.		s such as society as a whole (hu	ıman,	national), the affected region, the	ne
Intensity agency lit down i	y: Reference of the series of	ers to s that all cor ANY	the seve on balar apponent of the be	nce the effect will be beneficial parts. elow questions "yes" then	e both al. Sign	nces beneficial and adverse. A signifi ificance cannot be avoided by te the State Environmental Liais specific NEPA analysis may	erming	an action temporary or by breasthere may be extraordinary	
	V		Is the p	referred alternative expected ty to historic or cultural resour	to signi	e significant effects on public he ficantly effect unique characteris rk lands, prime farmlands, wetla	stics of	f the geographic area such as	ically
	✓	•	Are the	effects of the preferred alterr	native or	n the quality of the human enviro	onmen	t likely to be highly controversia	al?
	V			ne preferred alternative have h		n the quality of the human environ			al?

	v v	Is the preferred alternative known or reasona quality of the human environment either indiv Will the preferred alternative likely have a sig Use the Evaluation Procedure Guide Sheets concerns such as cultural or historical resour wetlands, floodplains, coastal zones, coral re natural areas and invasive species Will the preferred alternative threaten a violal environment?	ridually or cumulatively over time? nificant adverse effect on ANY of the to assist in this determination. This in cres, endangered and threatened spe- ers, essential fish habitat, wild and so tion of Federal, State, or local law or n	special environmental concerns? ncludes, but is not limited to, cies, environmental justice, enic rivers, clean air, riparian areas,		
In the	case whe	ntion recorded above is based on the best avail re a non-NRCS person (i.e. a TSP) assists with pla k as the responsible federal agency for the plannin Tingimeering-B, Gardmer	anning they are to sign the first signate	ure block and then NRCS is to sign 8/24/2017		
	- Opru	Signature (TSP if applicable) Norm EvenStad	Title WRC	Date 8/25/2017		
	TI	Signature (NRCS) ne following sections are to be completed.	Title	Date eral Official (RFO)		
	NEPA Com	pliance Finding (check one)	and the second s			
The p	oreferred a	alternative:		Action required Document in "R.1" below.		
		1) is not a federal action where the agency has	· · · · · ·	No additional analysis is required		
		 is a federal action that is categorically exclud analysis <u>and</u> there are no <u>extraordinary circumstant</u> 		Document in "R.2" below. No additional analysis is required		
		 is a federal action that has been sufficiently a regional, or national NEPA document and there are environmental effects or extraordinary circumstance 	re no predicted <u>significant adverse</u> ces.	Document in "R.1" below. No additional analysis is required.		
		4) is a receral action that has been sufficiently and NEPA document (EA or EIS) that addresses the peffects and has been formally adopted by NRC publish the agency's own Finding of No Significant Decision for an EIS when adopting another agency box is not applicable to FSA.	oroposed NRCS action and its' S. NRCS is required to prepare and the Impact for an EA or Record of	Contact the State Environmental Liaison for list of NEPA documents formally adopted and available for tiering. Document in "R.1" below. No additional analysis is required		
	V	 is a federal action that has NOT been sufficien significant adverse environmental effects or extrace require an EA or EIS. 		Contact the State Environmental Liaison. Further NEPA analysis required.		
R. R	ationale S	upporting the Finding Plan-EA or EIS will be required for this project	et using PI 566 Watershed Program a	uthorities policies and regulations		
	ngs mentation	outlined in the National Watershed Program				
Exclu	gorical ision(s) than one m	ay				
Envir	I have considered the effects of the alternatives on the Resource Concerns, Economic and Social Considerations, Special Environmental Concerns, and Extraordinary Circumstances as defined by Agency regulation and policy. S. Signature of Responsible Federal Official: Signature Title Date					
		· · ·				
		Addit	tional notes			

APPENDIX E-10BREACH INUNDATION SIMULATION MAPS


APPENDIX E-11SEDIMENT SUPPLEMENTAL DOCUMENTATION

Erosion and Sedimentation Manual

Table 2.9. List of drainage basin characteristics and possible range of numerical ratings (modified from Pacific Southwest Interagency Committee, Water Management Subcommittee, 1968)

Drainage basin		Sediment yield leve	ls
characteristics	High rating	Moderate rating	Low rating
Surface geology	narine shales and related mudstones and siltstones	5: rocks of medium hardness moderately weathered and fractured	0: massive hard formations
Soils	fine textured and easily dispersed or single grain salts and fine sands	5: medium textured, occasional rock fragments, or caliche crusted layers	0: frequent rock fragments, aggregated clays, or high organic content
Climate	10: frequent intense convective storms	S:)infrequent convective storms, moderate intensity	0: humid climate with low intensity rainfall, arid climate with low intensity rainfall, or arid climate with rare convective storms
Runoff	10: high flows or volume per unit area	(5:) moderate flows or runoff volume per unit area	0: low flows or volume per unit area or rare runoff events
Topography	20) steep slopes (in excess of 30%), high relief, little or no flood plain development	10: moderate slopes (about 20%), moderate flood plain development	0: gentle slopes (less than 5%), extensive flood plain development
Ground cover	ground cover less than 20%, no rock or organic litter in surface soil	0: ground cover less than 40%, noticeable organic litter in surface soil	-10: area completely covered by vegetation, rock fragments, organic litter with little opportunity for rainfall to erode soil
Land use	10: more than 50% cultivated, sparse vegetation, and no rock in surface soil	0: less than 25% cultivated, less than 50% intensively grazed	(-10) no cultivation, no recent logging, and only low intensity grazing, if any
Upland erosion	25: rill, gully, or landslide erosion over more than 50% of the area	10: rill, gully, or landslide erosion over about 25% of area	0: no apparent signs of erosion
Channel erosion	25: continuous or frequent bank erosion, or active headcuts and degradation in tributary channels	10 occasional channel erosion of bed or banks	0: wide shallow channels with mild gradients, channels in massive rock, large boulders, or dense vegetation or artificially protected channels

	Drainage basin		Annual sediment yield
	classification number	Total rating	(ac-ft/mi ²)
	4	> 100	>3
	2	75 to 100	1.0 to 3.0
->	3	50 to 75	0.5 to 1.0
	4	25 to 50	0.2 to 0.5
	5	0 to 25	<0.2

APPENDIX E-12

PRELIMINARY DESIGN REPORT

Preliminary Design Report Cove Reservoir

Kane County
Water Conservancy District

PRELIMINARY

August 2020

Table of Contents

Table of Contents	i
Part I. Introduction	1
Part II. Hydrology Analysis	3
A. Site Location and Existing Conditions	3
B. Design Criteria	3
C. Precipitation Values	5
D. Drainage Basin Parameters	6
i. Land Use	6
ii. Lag Times	7
iii. Initial Abstraction	7
iv. Reach Parameters	8
E. Storm Hydrographs	8
F. Results	8
Part III. Hydraulic Analysis	9
A. Spillway Analysis	9
B. Spillway Parameters	10
C. Emergency Drain and Outlet Works	11
Part IV. Freeboard Analysis	13
A. Storm and Wind Events	13
B. Maximum Wave Runup	13
C. Results	13
Part V. Breach Analysis	15
A. Criteria	15
B. Methodology	16
C. Results	16
Appendix A. Exhibits	
Appendix B. Calculations	
Appendix C. Model Output	

Part I. Introduction

The Kane County Water Conservancy District (KCWCD) is proposing to install a new reservoir known as Cove Reservoir with associated facilities to be located near Orderville, Utah. The reservoir is a joint venture between KCWCD and the Washington County Water Conservancy District (WCWCD). The system will store water rights from local irrigation companies for use throughout the year.

The engineering design is being performed by Alpha Engineering Company (Alpha) out of St. George, Utah, and RB&G Engineering, Inc., (RB&G) out of Provo, Utah. Alpha is responsible for providing hydraulic analyses and spillway and water conveyance facility design, and RB&G is responsible for providing geologic investigations and dam structure design.

The project includes the construction of an off-stream reservoir less than one mile off the main drainage course, East Fork Virgin River (see **Figure 1** below). The reservoir is designed to hold approximately 6,000 acre-feet of water. The dam will be an earthen structure with primary and emergency spillways adjacent to the left abutment. To convey flows to and from the reservoir, new piping will be installed to tie into existing water transmission facilities. Due to immediately downstream homes, this dam is classified as High Hazard.

This report is being prepared as a comprehensive analysis of the design elements associated with the construction and operation of Cove Reservoir. The project location is shown below and overall exhibits of the project components—which include the dam structure, primary and auxiliary spillways, outlet works, an access road around the reservoir and a water conveyance system that ties the reservoir into the existing water system—are shown in **Appendix A**, **Exhibits 1 and 2**.

Figure 1 Cove Reservoir Location

This study references the following sources in the analysis of the hydrologic conditions at the Cove Reservoir:

- Technical Release 210-60 (TR-60), USDA 2019
- Technical Release 55 (TR-55), USDA 1986
- Technical Release 56 (TR-56), USDA 2014
- Utah Administrative Code Rule R655-11 (UAC), utah.gov 2020
- Hydrometeorological Report 49 (HMR-49), USACE 1984
- PMP Studies by Donald T. Jensen (Jensen), USU 1995 and 2003
- National Engineering Handbook, Section 4 (NEH-4), Mockus 1965 and 1972
- NOAA Atlas 14 (NWS), NWS 2018
- National Land Cover Database (NLCD), MRLC 2011
- Web Soil Survey (WSS), NRCS 2018
- National Engineering Handbook Part 630 (NEH), USDA 2019
- Flood Hydrology Manual (USBR), USBR 1989

The following software programs were used in modeling the hydrologic/hydraulic conditions and breach analysis:

- HEC-1 version 4.1 (HEC-1), USACE 1998
- USDA Water Resource Site Analysis version 2005.1.8 (SITES), USDA 2005
- HEC-RAS version 5.0.5 (HEC-RAS), USACE 2016
- Bentley FlowMaster version V8i (FlowMaster), Bentley 2009

Part II. Hydrology Analysis

A. Site Location and Existing Conditions

The Cove Reservoir dam is located 0.6 miles west of Highway 89 along Cove Road due southwest of the town of Orderville, Utah, or 37.269° North Latitude and 112.661° West Longitude. The reservoir surface area generated with the construction of the dam is approximately 186 acres and is comprised of undisturbed shrub ground cover, natural drainage channels, dirt roads and a section of ranch land used for grazing.

An aerial drone survey was performed across the anticipated footprint of the reservoir and was used to generate a 3D model of the existing surface with an approximate one-foot vertical accuracy and six inch horizontal accuracy. This surface model was used in designing the different components of the project and are shown at 10-foot contour intervals on **Appendix A, Exhibit 2**.

Using available USGS DEM data, the area upstream of the proposed reservoir was delineated to determine the drainage area tributary to the reservoir. The drainage basin tributary to the Cove Reservoir site is 3,034 acres, or 4.7 square miles, and is generally comprised of undeveloped shrub and evergreen forest ground cover. The centroidal location of the tributary drainage basin is 37.305° North Latitude and 112.662° West Longitude. The mean basin elevation is 6271′. The average annual temperature for the area is 51.2°F (NWS, Climate Monitoring) with an average annual precipitation of 15.6 inches (USGS, StreamStats). The Climatic Index calculates to 0.6 (NEH 630, Equation 21-1). An exhibit of the Cove Reservoir and its tributary drainage basin is shown in Appendix A, Exhibit 3. This exhibit also shows delineated subbasins of the overall tributary drainage basin as will be discussed later in this report.

B. Design Criteria

The hydrographs analyzed in this study, as required by NRCS and Utah Dam Safety, are summarized in **Table 1**. The NRCS requires hydrograph analyses for the Principal Spillway, Auxiliary Spillway and Freeboard (TR-60, Part 2). The Utah State Engineers Office requires hydrograph analyses for probable maximum flood events (general and local storms) and for 100-year events with saturated soil conditions (UAC, Section 11-4A). As directed by the NRCS, additional hydrographs with varying return frequencies are being analyzed for informational purposes.

Hydrograph	Frequency	Duration	Precipitation		
NRCS Required Hydrographs					
Principal Spillway Hydrograph	100-year	10-day	TR-60, Fig 2-1 (NWS)		
Auxiliary Spillway Hydrographs	Maximum	6- & 24-hour	TR-60, Fig 2-2		
Freeboard Hydrographs	Maximum	6- & 24-hour	TR-60, Fig 2-2		
Varying Frequency Hydrographs	2-, 5-, 10-, 25-, 50-, 100- & 500-year	24-hour	NWS		
Utah State Required Hydrographs					
SEP Hydrographs	Maximum	6- & 72-hour	Jensen		
100-year (AMC III) Hydrographs	100-year	6- & 72-hour	NWS		

Table 1 Summary of Design Hydrographs

Each of the above hydrographs is included in this analysis as separate Storm Events. For purposes of this analysis, **Table 2** assigns numbers to each Storm Event.

	Storm Event	Duration	Frequency	AMC
01	2-year 24-hour	24-hour	2-year	Ш
02	5-year 24-hour	24-hour	5-year	II
03	10-year 24-hour	24-hour	10-year	II
04	25-year 24-hour	24-hour	25-year	II
05	50-year 24-hour	24-hour	50-year	II
06	100-year 24-hour	24-hour	100-year	II
07	500-year, 24-hour	24-hour	500-year	II
08	100-year 6-hour AMC III	6-hour	100-year	III
09	100-year 24-hour AMC III	24-hour	100-year	III
10	Local SEP Hydrograph (SEP-L)	6-hour	Maximum	II
11	General SEP Hydrograph (SEP-G)	72-hour	Maximum	II
12	Principal Spillway Hydrograph (PSH)	10-day	100-year	_1
13	Local Auxiliary Spillway Hydrograph (ASH-L)	6-hour	Maximum	II
14	General Auxiliary Spillway Hydrograph (ASH-G)	24-hour	Maximum	II
15	Local Freeboard Hydrograph (FBH-L)	6-hour	Maximum	Ш
16	General Freeboard Hydrograph (FBH-G)	24-hour	Maximum	П

Table 2 Summary of Storm Events

The Principal Spillway Hydrograph (Storm Event 12) will be used in designing the Principal spillway. The most critical of the Auxiliary Spillway, Freeboard and SEP Hydrographs (Storm Events 10, 11, 13, 14, 15 and 16) will be used in designing the auxiliary spillway and establishing the top-of-dam elevation. The Local Auxiliary Spillway Hydrograph (Storm Event 13) is used to check the stability of auxiliary spillway.

¹ As directed in NEH 630.2102(a)(1), Curve Numbers reflected in NEH 630.2102, Table 21-2, are used for the PSH because the precipitation value exceeds 6 inches.

C. Precipitation Values

The precipitation values for the 2- to 500-year, 24-hour and the 100-year, 10-day storm events (Storm Events 01 through 09 and 12) are taken from NWS. For the PSH (Storm Event 12), see also TR-60, Figure 2-1. Fourteen evenly spaced points throughout the drainage basin were taken and averaged out to calculate a single overall precipitation value for each storm frequency. An exhibit reflecting these points is included in **Appendix A, Exhibit 4**, and calculations are included in **Appendix B**.

The precipitation values for the SEP storms (Storm Events 10 and 11) are taken from HMR-49 and Jensen. It is noted that HMR-49 outlines the method used in calculating the Probable Maximum Precipitation (PMP) values for this drainage basin. Jensen has been accepted by the Utah State Engineer's Office and further updates the PMP values. PMP values that have been updated by Jensen are referred to as Spillway Evaluation Precipitation (SEP) values and are used in lieu of the PMP values. Calculations for the SEP values are included in **Appendix B**.

The precipitation value for the ASH and FBH storm events (Storm Events 13 through 16) are taken from TR-60, Figure 2-2. The precipitation values are calculated using the NWS 100-year and Jensen SEP precipitation values. Calculations for the ASH and FBH values are included in **Appendix B**.

The precipitation values for each storm event are summarized in **Table 3**.

	Storm Event	Precipitation Value
01	2-year 24-hour	1.61 in
02	5-year 24-hour	2.01 in
03	10-year 24-hour	2.34 in
04	25-year 24-hour	2.79 in
05	50-year 24-hour	3.14 in
06	100-year 24-hour	3.51 in
07	500-year, 24-hour	4.69 in
80	100-year 6-hour AMC III	2.75 in
09	100-year 24-hour AMC III	3.51 in
10	Local SEP Hydrograph (SEP-L) ²	7.67 in
11	General SEP Hydrograph (SEP-G)	12.50 in
12	Principal Spillway Hydrograph (PSH)	6.83 in
13	Local Auxiliary Spillway Hydrograph (ASH-L)	4.03 in
14	General Auxiliary Spillway Hydrograph (ASH-G)	5.85 in
15	Local Freeboard Hydrograph (FBH-L)	7.67 in
16	General Freeboard Hydrograph (FBH-G)	10.20 in

Table 3 Storm Event and Precipitation Values

² As allowed by UAC, SEP values are used in this analysis and are updated values (Jensen) to PMP values calculated in HMR-49. For comparison purposes, the Local PMP Precipitation Value is 9.46 inches and the General PMP Precipitation Value is 12.50 inches.

D. Drainage Basin Parameters

The 4.7-square mile tributary drainage basin for the Cove Reservoir was divided into 12 smaller subbasins, ranging in size from 0.13 square miles to 1.01 square miles, to facilitate calculations of the overall basin and account for the varying land cover conditions across each subbasin. The subbasin characteristics are summarized in **Table 4** and discussed in following sections.

Sub- basin	Area (sq mi)	CN, AMC	Flow Length (ft)	Ave Slope (%)	Lag Time, AMC II/III (hr)	Time of Conc, AMC II/III (hr)	Initial Abst, AMC II/III (in)
1	0.503	72.8/86.0	7,814	44.5	0.30/0.20	0.51/0.34	0.75/0.32
2	0.436	72.5/85.8	7,709	42.1	0.31/0.21	0.52/0.34	0.76/0.33
3	0.279	71.0/84.9	5,069	42.6	0.23/0.15	0.39/0.25	0.82/0.36
4	0.453	73.3/86.3	7,181	42.1	0.29/0.19	0.48/0.32	0.73/0.32
5	0.805	74.1/86.8	10,349	42.7	0.38/0.25	0.63/0.42	0.70/0.30
6	0.150	84.3/92.5	3,221	36.9	0.12/0.08	0.19/0.14	0.37/0.16
7	0.327	75.7/87.8	7,022	39.6	0.27/0.18	0.46/0.31	0.64/0.28
8	1.012	84.0/92.4	11,194	23.1	0.40/0.29	0.67/0.48	0.38/0.17
9	0.242	85.5/93.1	4,699	34.4	0.16/0.11	0.26/0.19	0.34/0.15
10	0.129	86.7/93.7	3,010	33.3	0.11/0.08	0.18/0.14	0.31/0.13
11	0.279	84.8/92.8	6,019	24.0	0.23/0.17	0.39/0.28	0.36/0.16
12	0.127	81.2/90.9	3,485	12.0	0.24/0.17	0.40/0.28	0.46/0.20
Total ³	4.742	77.8/88.9	33,591	35.4	0.95/0.65	1.58/1.09	0.57/0.25

Table 4 Drainage Subbasin Parameters

i. Land Use

Land use and soil data were obtained from NLCD and WSS. The majority of the basin is comprised of 42-Evergreen Forest, with portions of 52-Shrub/Scrub and smaller portions of 41-Deciduous Forest, 21/22-Developed Open Space/Low Intensity and 31-Barren Land. An exhibit of the land use is included in **Appendix A, Exhibit 5**. The soil data for the site classifies the basin to have a relatively even mixture of all four hydrologic soil groups. An exhibit of the hydrologic soil groups is included in **Appendix A, Exhibit 6**.

Each subbasin is assigned a Soil Conservation Service Curve Number (CN) that associates the land use with the soil data. As different types of soil cover exist throughout a subbasin, CNs have been prorated on an area-weighted basis. CNs for each subbasin are taken from NEH, Tables 9-2 and 9-5. Because NLCD land use designations do not directly correspond to NEH land cover descriptions, **Table 5** demonstrates how each correspond for this analysis.

NLCD Land Use Designation	NEH Land Cover Designation	
21/22-Developed Open Space/Low Intensity	Open Space, Poor (Table 9-5)	
31-Barren Land	Desert Shrub, Fair (Table 9-2)	

³ While the Area for the Overall basin is a sum of each of the subbasins, the flow length is derived from portions of Subbasins B1, B2, B4, B6 and B8, which comprise the longest path through the Overall basin and is used to calculate the lag time and time of concentration. The average slope, curve number and initial abstraction were calculated based on the Overall basin.

41-Deciduous Forest	Pinyon-Juniper, Fair (Table 9-2)
42-Evergreen Forest	Pinyon-Juniper, Poor (Table 9-2)
52-Shrub/Scrub	Desert Shrub, Good (Table 9-2)

Table 5 NLCD Land Use to NEH Land Cover Designations

CNs for the individual subbasins are summarized in **Table 4** and range between 71.0 and 86.7 for AMC II and between 84.9 and 93.7 for AMC III. CNs used for the PSH (Storm Event 12) are modified per NEH 630.2102, Table 21-2, and range between 53.0 and 75.4. The overall basin CN is 77.8 for AMC II and 88.9 for AMC III. NLCD Land Use descriptions and curve number calculations are included in **Appendix B**.

ii. Lag Times

Lag times and times of concentration for the subbasins were calculated using methodology outlined in NEH Chapter 15, which estimates the lag time, TLAG, and time of concentration, T_c, for large drainage basins as:

$$TLAG = \frac{l^{0.8} \left(\left(\frac{1000}{CN} - 10 \right) + 1 \right)^{0.7}}{1,900Y^{0.5}}$$
$$T_c = \frac{TLAG}{0.6}$$

Paths for the basin lengths (*l*) are shown in **Appendix A, Exhibit 3**. Criteria and calculated lag times and times of concentration for the individual subbasins are summarized in **Table 4**. The overall time of concentration for the entire tributary basin—having a basin length of 33,591 feet, an average CN of 77.8/88.9 (AMC II/III), and an average watershed land slope of 35.4%—are 1.58 hours for AMC II and 1.09 hours for AMC III. For the PSH (Storm Event 12), which uses a CN based on NEH 630.2102, Table 21-2, the average CN is 71.8 and the overall time of concentration is 1.88 hours.

iii. Initial Abstraction

Initial abstraction depths for the subbasins were calculated using methodology outlined in TR-55, which estimates the initial abstraction depth, I_a, as:

$$I_a = 0.2 \times \left(\frac{1000}{CN} - 10\right)$$

Initial abstraction depth for the individual subbasins are summarized in **Table 4**. The overall basin initial abstraction depth equates to 0.57 inches for AMC II and 0.25 inches for AMC III. For the PSH (Storm Event 12), which uses a CN based on NEH 630.2102, Table 21-2, the initial abstraction for the overall basin is 0.79 inches.

iv. Reach Parameters

In developing the hydrologic models of the drainage basin, accumulating flows were routed along reach paths as shown in **Appendix A, Exhibit 3**. The geometry and characteristics of these reaches were based on field observations and engineering judgment. A trapezoidal channel was assumed along the reaches in conformance with field measurements having an increasing flow width, ranging from 20 to 40 feet wide, and a roughness coefficient of 0.30.

E. Storm Hydrographs

For the PSH, ASH and FBH (Storm Events 12-16), the hydrographs were developed using NEH 630.2102 and 2103. For all other storm events (Storm Events 01-11), a dimensionless design storm distribution (NEH 630.2103, Figure 21-9) was applied and modeled using HEC-1 software. The dimensionless storm distribution and calculated storm hydrographs are shown in tabular form with calculations in **Appendix B**.

F. Results

As mentioned, Storm Events 01 through 10 were modeled using HEC-1 software to determine the hydrographs. Each of the storm events were setup as separate models, and model output for the models is included in **Appendix C**. Storm Events 12-16 were developed using NEH 630.2103 and 2103 but were also modeled using HEC-1 software for comparison purposes, the calculations for which can also be found in **Appendix C**. The most conservative value between the NEH 630 results and HEC-1 model was used for these storm events. The peak inflows into the reservoir and total inflow volumes for each storm event are summarized in **Table 6**.

	Storm Event	Peak Inflow	Volume		
01	2-year 24-hour	89 cfs	77 af		
02	5-year 24-hour	175 cfs	130 af		
03	10-year 24-hour	261 cfs	178 af		
04	25-year 24-hour	396 cfs	254 af		
05	50-year 24-hour	506 cfs	317 af		
06	100-year 24-hour	632 cfs	387 af		
07	500-year, 24-hour	1,064 cfs	624 af		
80	100-year 6-hour AMC III	2,280 cfs	425 af		
09	100-year 24-hour AMC III	1,031 cfs	601 af		
10	Local SEP Hydrograph (SEP-L)	6,395 cfs	1,286 af		
11	General SEP Hydrograph (SEP-G)	1,587 cfs	2,439 af		
12	Principal Spillway Hydrograph (PSH)	850 cfs	749 af		
13	Local Auxiliary Spillway Hydrograph (ASH-L)	2,180 cfs	498 af		
14	General Auxiliary Spillway Hydrograph (ASH-G)	1,766 cfs	868 af		
15	Local Freeboard Hydrograph (FBH-L)	6,395 cfs	1,286 af		
16	General Freeboard Hydrograph (FBH-G)	3,524 cfs	1,880 af		
Table 6 Peak Flows by Storm Event					

Part III. Hydraulic Analysis

A. Spillway Analysis

The principal spillway (PS)—which will be an inlet and pipe carrying the flows away from the dam structure—is sized based on TR-60, Section 2-1 and Part 6. The auxiliary spillway (AS)—which will be a broad-crested weir discharging into a trapezoidal open channel—is sized based on TR-60, Section 2-2 and Part 7. The hydrographs analyzed in designing the spillway configuration are the Principal Spillway Hydrograph (PSH), Auxiliary Spillway Hydrographs (ASH) and the Freeboard Hydrographs (FBH) (Storm Events 12-16). The remaining storm events are being analyzed for comparison purposes and to ensure they are routed adequately through the principal and auxiliary spillways configuration.

SITES was used to model the PSH, ASH and FBH (Storm Events 12-16). Iteratively designed primary and auxiliary spillways were used in the model to accurately reflect conditions. A conservative auxiliary spillway crest elevation was used and each of the storm events were attenuated accordingly through the reservoir using HEC-1 modeling. A summary of the maximum water surface elevations produced in the HEC-1 models is shown in **Table 7**.

	Storm Event	Maximum Water Elevation
01	2-year 24-hour	5546.0'
02	5-year 24-hour	5546.4'
03	10-year 24-hour	5546.7'
04	25-year 24-hour	5547.3'
05	50-year 24-hour	5547.7'
06	100-year 24-hour	5548.1'
07	500-year, 24-hour	5548.9'
80	100-year 6-hour AMC III	5548.3
09	100-year 24-hour AMC III	5548.8'
10	Local SEP Hydrograph (SEP-L)	5551.0'
11	General SEP Hydrograph (SEP-G)	5551.6'
12	Principal Spillway Hydrograph (PSH)	5548.2'
13	Local Auxiliary Spillway Hydrograph (ASH-L)	5548.6'
14	General Auxiliary Spillway Hydrograph (ASH-G)	5549.6'
15	Local Freeboard Hydrograph (FBH-L)	5551.0'
16	General Freeboard Hydrograph (FBH-G)	5551.8′

Table 7 Maximum Water Surface Elevation by Storm Event

The worst-case scenario storm event is the General Freeboard Hydrograph (Storm Event 16). This storm event is also referred to as the Inflow Design Flood (IDF).

A comparative analysis was performed to see the changes in hydrologic flows during the higher frequency storm events with construction of the proposed reservoir, a summary of which is included in **Table 8**.

	Storm Event	Peak Flow <i>before</i> Proposed Reservoir	Peak Flow <i>after</i> Proposed Reservoir
01	2-year 24-hour	89 cfs	16 cfs
02	5-year 24-hour	175 cfs	22 cfs
03	10-year 24-hour	261 cfs	26 cfs
04	25-year 24-hour	396 cfs	31 cfs
05	50-year 24-hour	506 cfs	35 cfs
06	100-year 24-hour	632 cfs	38 cfs
07	500-year, 24-hour	1,064 cfs	43 cfs

Table 8 Peak Flows Before and After the Proposed Reservoir

B. Spillway Parameters

Models were setup in SITES based on the governing storm events for the PSH, ASH and FBH (Storm Events 12-16). The inflow hydrographs produced in the Hydrology Analysis section was input into the model. Output for the model is included in **Appendix C**. The results from the SITES model, which incorporate the principal and auxiliary spillway parameters at an AS width of 30 feet, include the following:

Peak Inflow (ASH-L): 2,180 cfsPeak Inflow (FBH-G): 6,395 cfs

Primary Spillway Crest Elevation: 5545.5'
Auxiliary Spillway Crest Elevation: 5548.5'
Maximum Water Surface (ASH-L): 5548.7'
Maximum Water Surface (FBH-G): 5552.3'

Peak reservoir outflow (FBH-G): 648 cfs (PS: 127 cfs, AS: 521 cfs)

• Maximum depth above AS crest: 3.8 feet

Additional constraints are considered in the design of the primary and auxiliary spillways. A riser is proposed to be installed at the inlet to the primary spillway. The riser shall have a larger cross-sectional area to reduce excessive surging, noise, vibration and vortex action. Per TR-60, Section 6-2, this cross-sectional area shall be a minimum of 2.5' x 7.5' (L x W). A trash rack shall be incorporated into the riser structure to avoid clogging, and an anti-vortex device (i.e. anti-vortex baffle plate) shall also be incorporated to prevent a vortex condition as water spills into the riser. An air vent is also added to the inlet to remove air and improve hydraulic performance.

It is noted that the SITES model maximum water surface elevation of 5552.3'. A more conservative auxiliary spillway crest elevation was chosen at elevation 5549.2'. All storm event hydrographs

were modeled in HEC-1 using this elevation. Based on the HEC-1 model results and the site and code constraints, the following spillway parameters were selected:

Primary Spillway (Pipe)

Crest Elevation: 5545.5'

o Pipe Material: Ductile Iron Encased in Concrete

o Pipe Diameter: 30 inches

Auxiliary Spillway (Trapezoidal Channel)

Crest Elevation: 5549. 2'
 Material: Earthen
 Base Width: 30 feet
 Bank Slopes: 2:1 (H:V)

The HEC-1 results are summarized as follows:

Peak Inflow: 3,524 cfsPeak Outflow: 404 cfs

Maximum Water Surface: 5551.8'

• Maximum depth above AS crest: 2.6 feet

Time to Maximum Water Surface: 19.2 hours (0.8 days)
 Time to first flow in auxiliary spillway: 10.2 hours (0.4 days)
 Time to zero flow in auxiliary spillway: 105.8 hours (5.4 days)

C. Emergency Drain and Outlet Works

The emergency drain pipeline is required in order to drain the water supply storage in case of emergency. According to Utah State Code R655-11-7A, the pipeline is required to drain 90% of the storage volume within 30 days neglecting reservoir inflows.

Due to geographical constraints, the proposed drain is approximately 675 feet in length. The water discharges approximately 300 feet from the base of the dam into an existing ephemeral drainage channel. The maximum water surface elevation is 5545.5 feet (principal spillway crest elevation providing for 6,055 acre-feet of storage), and the outlet works discharge elevation is 5497.5 feet, which provides for 600 acre-feet of storage. A minimum 24-inch pipeline is required to drain the Cove Reservoir within the required amount of time.

A 24-inch ductile iron (DI) pipeline encased in concrete has been selected to be installed through the dam section in order to withstand bearing pressures and minimize thermal expansion. A riser is proposed to be installed at the inlet to the emergency drain pipeline with a control valve to allow use as needed. The riser shall have a larger cross-sectional area to reduce excessive surging, noise, vibration and vortex action. A trash rack shall be incorporated into the riser structure to avoid clogging, and an anti-vortex device (i.e. anti-vortex baffle plate) shall also be incorporated

to prevent a vortex condition as water spills into the riser. An air vent is also added to the inlet to remove air and improve hydraulic performance. Once the emergency drain pipeline exits through the dam section, a pipeline will be upsized to 30 inches to allow the reservoir to drain in the appropriate amount of time. An energy dissipation structure and trash rack will be installed at the outlet of the pipe as it discharges into the existing channel.

Different configurations of the riser, valve and pipe inlet were evaluated, including:

- 1. A sloping structure constructed on the upstream face of the dam that extends to the dam crest with a stem-operated gate.
- 2. A shorter vertical structure with one slide gate. This structure would be partially submerged under normal reservoir operation and would not extend to the dam crest.

Of the two configurations considered, it was decided that the first configuration consisting of a sloping structure and stem operated gate would best meet the needs of the project. The second configuration was not used due to cost considerations and functionality of the valve. A stem for the gate will extend up along the face of the dam and will be supported on concrete blocks spaced every 10 feet. The blocks will have adjustable stem guides to allow for re-alignment, as required.

Reservoir discharge data has been determined by combining the amount of head in the reservoir combined with losses from the entrance, pipe friction, and other minor losses. Calculations are included in **Appendix A**. **Table 9** summarizes the discharge data:

Water Surface Elevation (ft)	Water Storage (ac-ft)	Discharge Time (days)
5545.5	6055	0.0
5530	3542	10.1
5514	1737	18.1
5797	587	23.9

Table 9 Emergency Drain Discharge Rating

The emergency drain pipeline will be also used as the feed into the reservoir. The pipeline will tie into the existing irrigation system. A new pump station will be installed on the existing irrigation system that will pump flows from the East Fork Virgin River into the reservoir. Valving will be installed to allow pressurized flows to fill the reservoir while stopping flows from discharging into the existing channel. During emergencies, pumping will stop and the valving will be opened to allow flows to discharge into the existing channel and drain the reservoir.

Part IV. Freeboard Analysis

A. Storm and Wind Events

The Administrative Rules for Dam Safety and TR-60, Part 5, state that the freeboard above the principal spillway crest elevation must exceed the values produced by the scenarios given below. In analyzing a permeable and an impermeable dam, a range of freeboard is given for the first and second condition. The dam is considered to be semi-permeable, and therefore, the actual freeboard requirement is adjusted within this range.

- 1. 100-year, 24-hour storm (AMC III) in conjunction with a 50-mph wind.
- 2. 100-mph wind without any significant rainstorm.
- 3. IDF (or FBH-G) without any significant windstorm.
- 4. ASH with Wave Action (TR-60)

B. Maximum Wave Runup

Historic data for the design wind for the Cove Reservoir area is not available. As required, wind speeds of 50 mph and 100 mph were analyzed. For these two wind speeds, the wind setup, wave height, and total wave runup was calculated as summarized in **Table 10**. Calculations are included in **Appendix B**.

Wind Velocity	Wave Runup	Wind Setup	Wave Freeboard
50 mph	2.8 ft	0.1 ft	2.9 ft
100 mph	5.8 ft	0.1 ft	5.9 ft

Table 10 Wave Runup by Wind Speed

Wave Action was further calculated using procedures outlined in TR-56. The maximum overwater wind velocity calculated to 87 mph and produced a significant wave height 1.8 ft. Calculations are included in **Appendix B**.

C. Results

The total required freeboard for each storm and wind event is summarized in **Table 11**. The Storm Freeboard is taken from the difference between the primary spillway crest elevation and the maximum water surface elevation produced by the respective storm events. The Total Freeboard is the sum of the Storm Freeboard plus the Wave Freeboard.

Scenario	Wave Freeboard	Storm Freeboard	Total Freeboard
1	2.9 ft	3.3 ft	6.2 ft
2	5.9 ft	0.0 ft	5.9 ft
3	0.0 ft	6.3 ft	6.3 ft
4	1.8 ft	4.1 ft	5.9 ft

Table 11 Total Freeboard Requirements

The governing total freeboard requirement is 6.3 feet as taken from Scenario 3. With a primary spillway crest elevation of 5545.5', the minimum top of dam elevation allowing for adequate freeboard is 5551.8'. The proposed top of dam elevation is 5552.0'.

Part V. Breach Analysis

A. Criteria

Breach simulations were completed for "Sunny Day" and "Rainy Day" scenarios. Both scenarios assume the water level is at the auxiliary spillway crest elevation (5549') at the start of the model. The "Sunny Day" scenario breaches immediately with no storm event attenuating through the reservoir. The "Rainy Day" scenario attenuates the worst-case storm event and breaches as the water surface elevation approaches the top of the dam.

A sensitivity analysis was performed to determine the most extreme breach within NRCS parameters. Per TR-60, the minimum peak discharge of the breach hydrograph is:

$$Q_{max} = 1,100 \left(\frac{V_s H_w}{A}\right)^{1.35} = 1,100 \left(\frac{(7,245)(85.5)}{20,400}\right)^{1.35} = 110,305 cfs$$

But not less than:

$$Q_{max} = 3.2H_w^{2.5} = 3.2(85.5^{2.5}) = 216,304 \, cfs$$

Nor more than:

$$Q_{max} = 65H_w^{1.85} = 65(85.5^{1.85}) = 243,810 \ cfs$$

As a result of the analysis, the most extreme breach occurred under the following breach parameter

- Storm Event: Local Freeboard Hydrograph (Storm Event 15)
- Depth of water at breach: 85.5'
- Water surface elevation: 5551.5'
- Bottom width: 427.5' (water depth multiplied by 5)
- Side slope: 1:1 (H:V)
- Time to develop: 0.95 hours
- Storm event for "Rainy Day" scenario
 - o Peak inflow: 6,395 cfs
 - o Inflow volume: 1,286 af
- Manning's 'n': 0.05
- Width of the downstream valley: approx. 1,100'
- Breach location at maximum section of dam
- Cross-sectional area of dam embankment at breach location: approx. 20,400 sf
- Reservoir storage at breach: 7,245 af

B. Methodology

Separate HEC-RAS models were setup for the "Sunny Day" and "Rainy Day" scenarios. Constraints were input based on the Hydrology, Hydraulic and Freeboard Analyses of this report. The terrain downstream of the dam structure was imported into the HEC-RAS geometry editor using USGS DEM files to simulate a 2D breach for each scenario.

C. Results

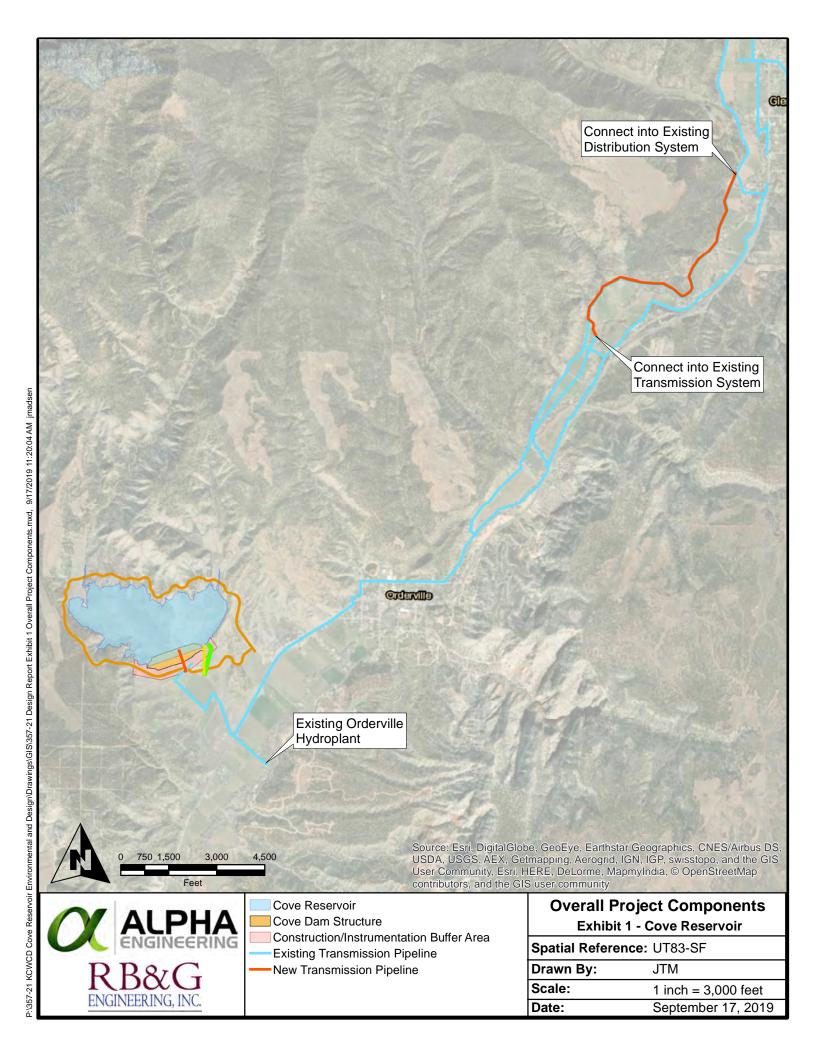
Inundation maps have been prepared based on the results of the HEC-RAS models, as shown in **Appendix A, Exhibits 7 and 8**. Model output from the HEC-RAS models are included in **Appendix D**. The results of the models are summarized below.

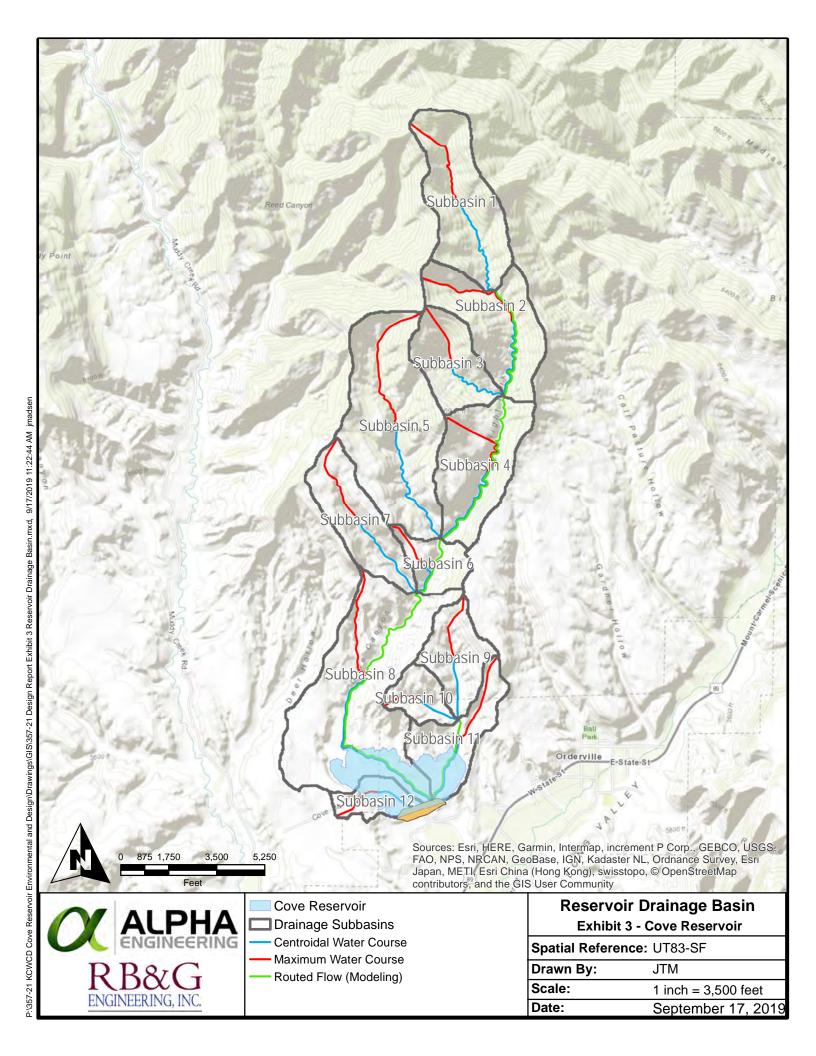
Sunny Day

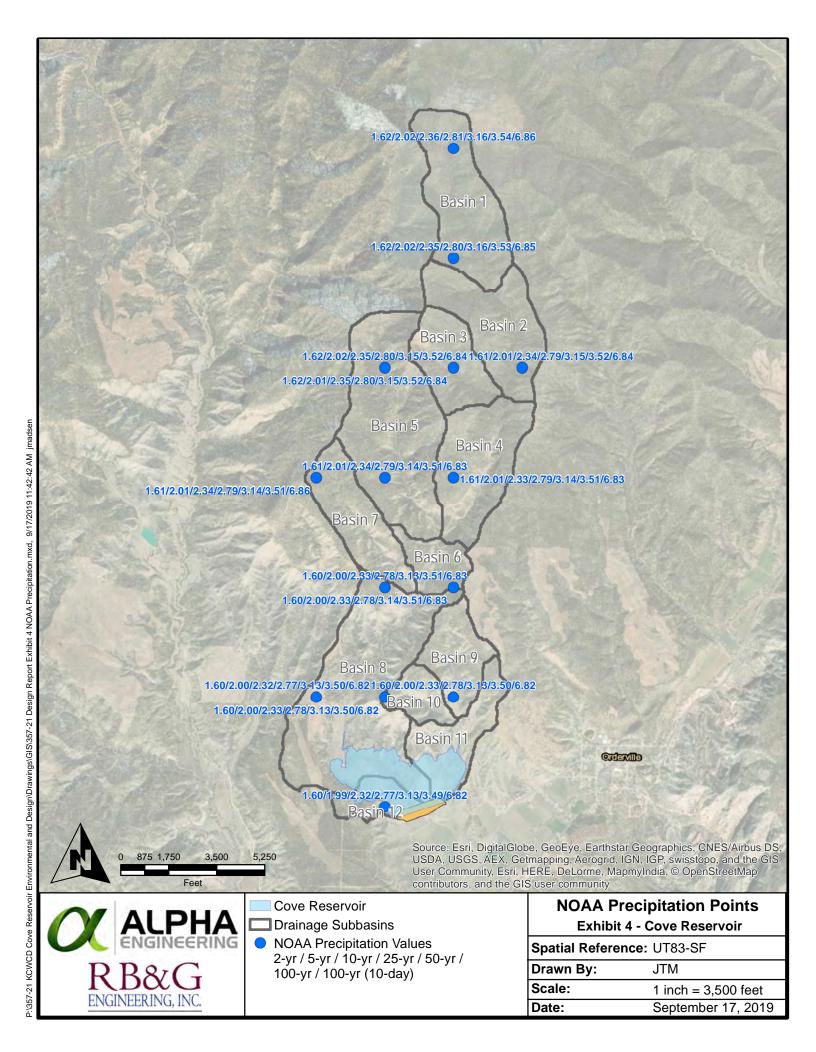
o Maximum outflow: 205,567 cfs

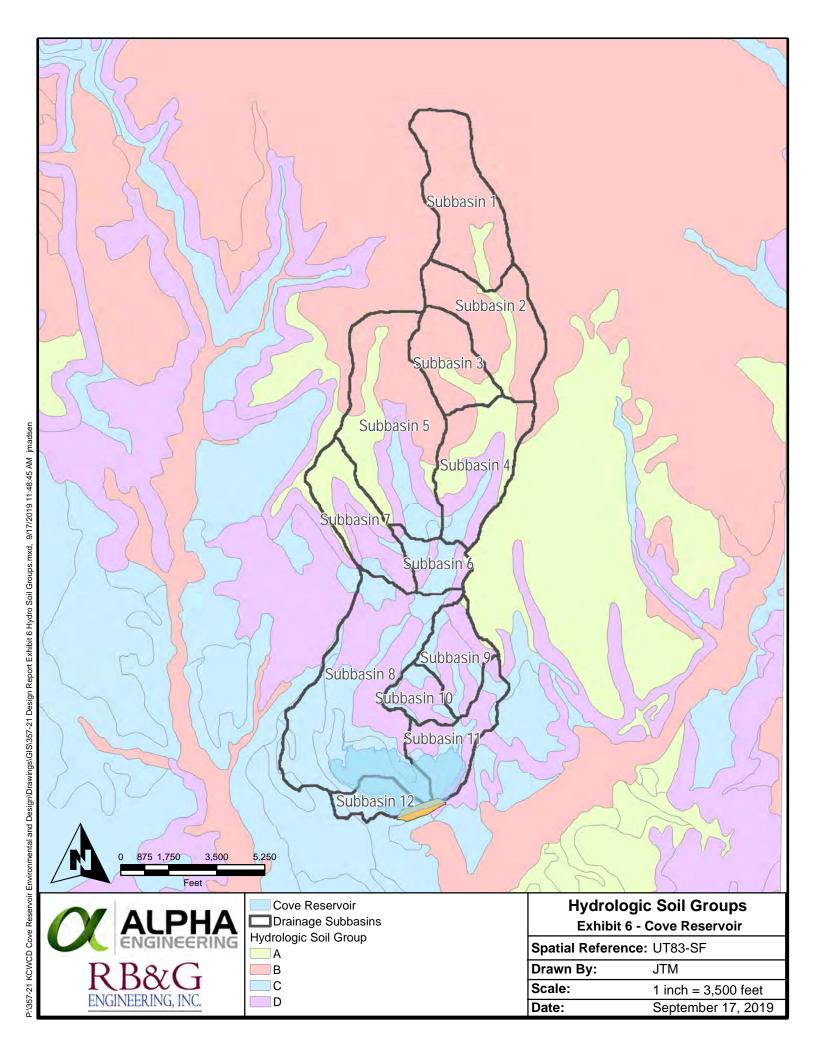
Rainy Day

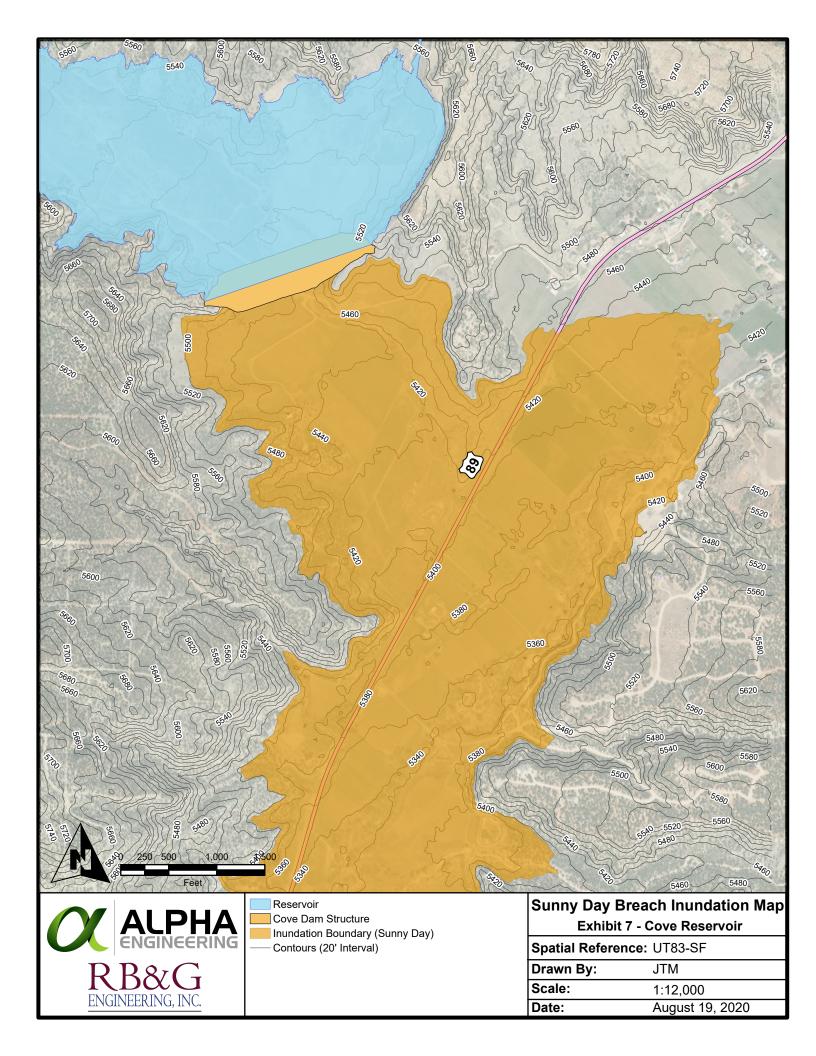
o Maximum outflow: 243,575 cfs

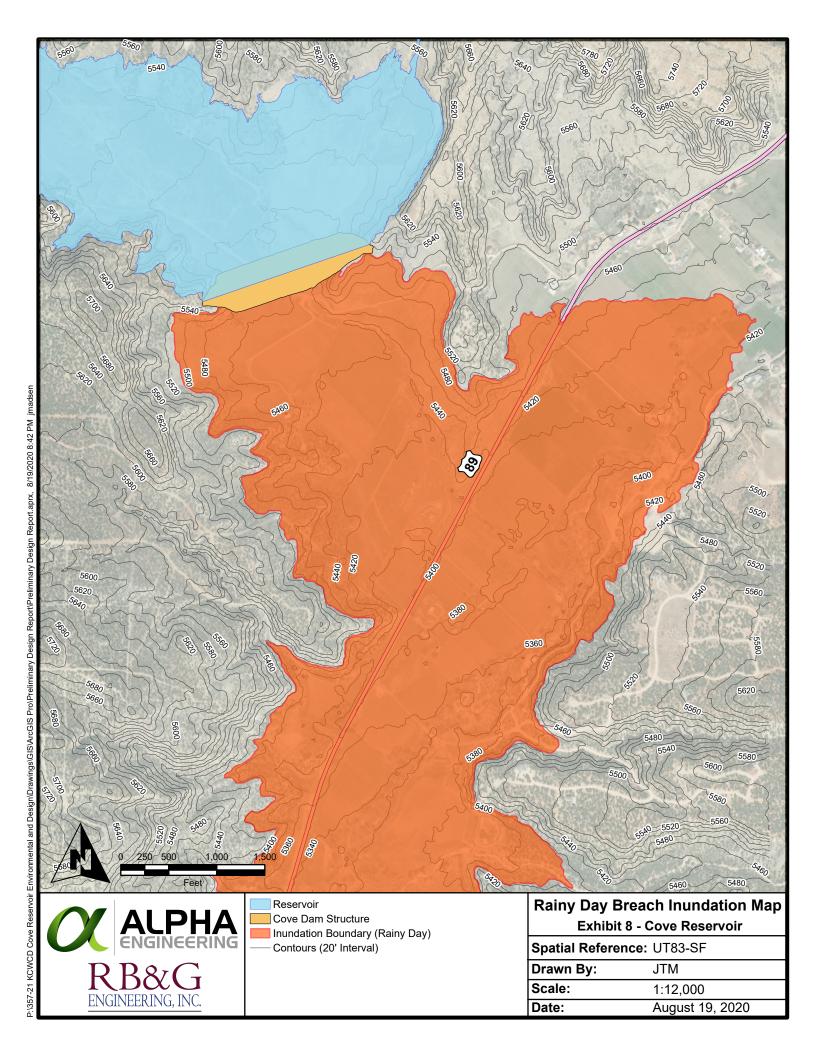



Appendix A. Exhibits


- Exhibit 1. Overall Project Components
- Exhibit 2. Reservoir Project Components
- Exhibit 3. Reservoir Drainage Basin
- Exhibit 4. NWS Precipitation Points
- Exhibit 5. NLCD Soil Data
- Exhibit 6. Hydrologic Soil Groups
- Exhibit 7. Sunny Day Breach Inundation Map
- Exhibit 8. Rainy Day Breach Inundation Map







Appendix B. Calculations

Section 1. Soil Data and Curve Numbers

Section 2. Storm Distributions

Section 3. Precipitation Values

Section 4. Wave Runup

Section 5. Emergency Drain

Section 1. Soil Data and Curve Numbers


```
*************************
* Program written in ANSI-C by J. Heward
* June 21 2018
* Alpha Engineering
* 43 S. 100 E.
* St. George, Utah 84770
* 435-628-6500
* Calculates curve number within basin
 based on NLCD Data & Soil Data
 The following curve numbers are assumed for each
 NLCD Landcover Class and Hydrologic Soil Group:
  NLCD Group A Group B Group C Group D
    11
         98.0
                 98.0
                        98.0
                                98.0
         98.0
    12
                 98.0
                        98.0
                                98.0
                        86.0
    21
         68.0
                 79.0
                                89.0
    22
         68.0
                79.0
                        86.0
                                89.0
              75.0
92.0
                      83.0
    23
         61.0
                               87.0
         89.0
                      94.0
    24
                               95.0
         55.0
    31
              72.0 81.0
                               86.0
    41
        36.0
              58.0
                      73.0
                               80.0
              75.0
60.0
                      85.0
    42
        58.0
                               89.0
    43
        36.0
                      73.0
                                79.0
    51
        35.0
                56.0
                      70.0
                               77.0
    52
         49.0
                68.0
                       79.0
                               89.0
         39.0
    71
                        74.0
                61.0
                               80.0
                        74.0
         39.0
              61.0
    72
                               80.0
                             80.0
    73
        39.0
              61.0 74.0
    74
        39.0
              61.0
                      74.0
                             80.0
    81
        49.0
              69.0
                      79.0
                             84.0
              70.0
                      77.0
                             80.0
    82
        61.0
              55.0
                      70.0
    90
        30.0
                                77.0
         30.0
                 55.0
                        70.0
                                77.0
******************************
<<Basin 1>>
     NLCD, Soil_Group, %_Watershed, CN, Weighted_CN
       41,
                         4.5, 58.0, 2.6
            В,
                  Α,
       42,
                             8.0,
                                  58.0,
                                              4.7
       42,
                  Β,
                            85.9, 75.0,
                                             64.4
                            1.6, 68.0,
                                             1.1
       52,
                               Composite CN = **72.8**
<<Basin 2>>
     NLCD, Soil Group, % Watershed, CN, Weighted CN
                  Α,
       42,
                            14.5, 58.0,
                                          8.4
       42,
                   Β,
                            85.1, 75.0,
                                             63.8
                   Β,
                            0.4, 68.0,
       52,
                                             0.3
                               Composite CN = **72.5**
<<Basin 3>>
     NLCD, Soil Group, % Watershed,
                                  CN, Weighted CN
                            19.6, 58.0,
       42,
                  Α,
                                             11.4
                            71.4, 75.0,
       42,
                   Β,
                                              53.6
       52,
                   Β,
                            9.0,
                                  68.0,
                                              6.1
                               Composite CN = **71.0**
```

<<Basin 4>>

```
output-curve-number-calcs.txt
        NLCD, Soil_Group, %_Watershed, CN, Weighted_CN
                      C, 0.0, 81.0, 0.0
           31,

      1.8, 86.0,
      1.6

      38.7, 58.0,
      22.5

      19.0, 75.0,
      14.2

      7.9, 85.0,
      6.7

                         D,
           31,
                         А,
В,
          42,
           42,
                       В,
С,
Д,
В,
С,
           42,
                                      18.2, 89.0, 16.2

0.3, 49.0, 0.2

0.4, 68.0, 0.3

4.5, 79.0, 3.6

9.2, 89.0, 8.2
           42,
          52,
           52,
           52,
           52,
                                            Composite CN = **73.3**
<<Basin 5>>
        NLCD, Soil_Group, %_Watershed, CN, Weighted_CN
                 C, 0.0, 81.0, 0.0
           31,
                                      0.0, 81.0, 0.0
0.9, 86.0, 0.8
25.5, 58.0, 14.8
38.5, 75.0, 28.8
10.3, 85.0, 8.8
12.9, 89.0, 11.5
0.0, 49.0, 0.0
4.1, 68.0, 2.8
3.1, 79.0, 2.4
4.7, 89.0, 4.2
                    D,
A,
B,
C,
D,
A,
B,
C,
           31,
                         D,
           42,
          42,
42,
           42,
           42,
           52,
           52,
           52,
           52,
                                            Composite CN = **74.1**
<<Basin 6>>
        NLCD, Soil_Group, %_Watershed, CN, Weighted_CN
                 A, 0.5, 58.0, 0.3
           42,
                         C,
D,
A,
C,
                                       49.2, 85.0,
23.0, 89.0,
3.0, 49.0,
                                                                 41.8
          42,
                                      23.0, 89.0, 20.4
3.0, 49.0, 1.5
13.9, 79.0, 11.0
10.3, 89.0, 9.2
           42,
           52,
           52,
           52,
                                              Composite CN = **84.3**
<<Basin 7>>
        NLCD, Soil_Group, %_Watershed, CN, Weighted_CN
                C, 0.0, 81.0, 0.0

D, 2.6, 86.0, 2.3

A, 41.1, 58.0, 23.8

C, 7.4, 85.0, 6.3

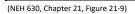
D, 29.4, 89.0, 26.2

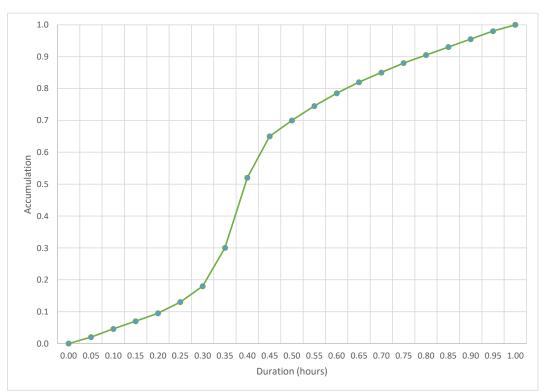
A, 0.0, 49.0, 0.0

C, 1.7, 79.0, 1.4

D, 17.7, 89.0, 15.7
                                       0.0, 81.0,
2.6, 86.0, 2.3
41.1, 58.0, 23.8
7.4, 85.0, 6.3
24.2, 89.0, 26.2
           31,
           31,
           42,
          42,
           42,
          52,
           52,
           52,
                                            Composite CN = **75.7**
<<Basin 8>>
        NLCD, Soil_Group, %_Watershed, CN, Weighted_CN
          21, C, 0.0, 86.0, 0.0
           42,
                                         0.0, 58.0,
                         Α,
                                                                   0.0
                         С,
                                       26.9, 85.0,
           42,
                                                                 22.9
                         D,
A,
                                                                 9.3
                                       10.5, 89.0,
           42,
                                         0.0, 49.0,
           52,
                                     39.4, 79.0, 31.1
23.2, 89.0, 20.6
           52,
                          С,
                         D,
           52,
                                              Composite CN = **84.0**
```

```
<<Basin 9>>
     NLCD, Soil_Group, %_Watershed, CN, Weighted_CN
                 Α,
                                        0.3
       42,
                             0.6, 58.0,
                   С,
                             20.7, 85.0,
       42,
                                              17.6
                                             24.7
       42,
                   D,
                           27.7, 89.0,
                  Α,
       52,
                            3.7, 49.0,
                                             1.8
       52,
                  С,
                            10.4, 79.0,
                                              8.2
                            36.9, 89.0,
                                             32.8
       52,
                   D,
                                Composite CN = **85.5**
<<Basin 10>>
     NLCD, Soil_Group, %_Watershed,
                                   CN, Weighted_CN
                           27.5, 85.0,
       42,
                 С,
                                              23.4
       42,
                   D,
                            32.1, 89.0,
                                              28.5
                   С,
                            12.4, 79.0,
28.1, 89.0,
       52,
                                              9.8
       52,
                   D,
                                             25.0
                                Composite CN = **86.7**
<<Basin 11>>
     NLCD, Soil_Group, %_Watershed, CN, Weighted_CN
                  Α,
                          0.2, 58.0, 0.1
       42,
                   С,
                            9.1, 85.0,
       42,
                                              7.7
                  D,
       42,
                           18.0, 89.0,
                                             16.0
                  Α,
       52,
                            0.0, 49.0,
                                             0.0
                           37.4, 79.0,
                 С,
                                             29.5
       52,
                           35.3, 89.0,
                                             31.4
       52,
                   D,
                                Composite CN = **84.8**
<<Basin 12>>
     NLCD, Soil_Group, %_Watershed,
                                   CN, Weighted_CN
                          0.1, 86.0,
0.4, 86.0,
       21,
                 С,
                                         0.0
                   С,
       22,
                                               0.4
       42,
                   С,
                            35.0, 85.0,
                                             29.7
                           64.0, 79.0,
                  С,
                                             50.6
       52,
                                             0.5
       52,
                   D,
                                Composite CN = **81.2**
```


Section 2. Storm Distributions



Dimensionless Hydrograph

Hours	Accumulation
0.00	0.000
0.05	0.020
0.10	0.046
0.15	0.070
0.20	0.095
0.25	0.130
0.30	0.180
0.35	0.300
0.40	0.520
0.45	0.650
0.50	0.700
0.55	0.745
0.60	0.785
0.65	0.820
0.70	0.850
0.75	0.880
0.80	0.905
0.85	0.930
0.90	0.955
0.95	0.980
1.00	1.000

PSH Hydrograph

Characteristics

Drainage Area	4.742 sq mi
Time of Concentration	1.88 hr
Ave. Annual Precipitation	15.6 in
Ave. Annual Temperature	51.2 °F
Curve Number	71.8
100-yr, 24-hr Precipitation	3.51 in
100-yr, 10-day Precipitation	6.83 in
Structure Hazard Classification	High
Climatic Index	0.6

Principal Spillway Mass Curve

Adjusted Areal Rainfall

Not Applicable (<10 sq mi)

Adjusted 10-day Curve Numbers (Table 21-2)

CN _{1-day}	77.8
CN _{10-day}	71.8

Direct Runoff (NEH, Appendix 10A)

Q_{1-day}	1.49 in
Q _{10-day}	3.66 in

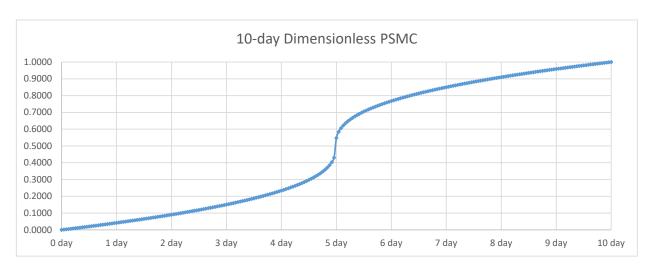
Net Runoff (Table 21-4)

 $\begin{array}{ll} \text{Channel Loss Reduction Factor} & 0.84 \\ \text{$Q_{1\text{-day net}}$} & 1.25 \text{ in} \\ \text{$Q_{10\text{-day net}}$} & 3.08 \text{ in} \end{array}$

Mass Curve (Equation 21-2)

a 0.3903 Qd (1-hour) 0.3625

Time		Inc.		Inc.	Inc.		Inc.		Dimensio
(days)	Qd (inches)	Volumes	Rank	Volume	Arrangem	Time (hrs)	Volumes	PSMC	nless
(days)		(inches)		Ranked	ent		Rearrange		PSMC
0.0000	0.0000	-	-	-	-	0	-	0.0000	0.0000
0.0417	0.3624	0.3624	1	0.3624	239	1	0.0050	0.0050	0.0016
0.0833	0.4749	0.1126	2	0.1126	237	2	0.0051	0.0101	0.0033
0.1250	0.5564	0.0814	3	0.0814	235	3	0.0051	0.0152	0.0049
0.1667	0.6225	0.0661	4	0.0661	233	4	0.0051	0.0203	0.0066
0.2083	0.6792	0.0567	5	0.0567	231	5	0.0051	0.0254	0.0082
0.2500	0.7293	0.0501	6	0.0501	229	6	0.0052	0.0305	0.0099
0.2917	0.7745	0.0452	7	0.0452	227	7	0.0052	0.0357	0.0116
0.3333	0.8159	0.0414	8	0.0414	225	8	0.0052	0.0409	0.0133
0.3750	0.8543	0.0384	9	0.0384	223	9	0.0052	0.0462	0.0150
0.4167	0.8902	0.0359	10	0.0359	221	10	0.0053	0.0515	0.0167
0.4583	0.9239	0.0337	11	0.0337	219	11	0.0053	0.0568	0.0184
0.5000	0.9558	0.0319	12	0.0319	217	12	0.0053	0.0621	0.0202
0.5417	0.9862	0.0303	13	0.0303	215	13	0.0054	0.0674	0.0219
0.5833	1.0151	0.0289	14	0.0289	213	14	0.0054	0.0728	0.0237
0.6250	1.0428	0.0277	15	0.0277	211	15	0.0054	0.0783	0.0254


0.0007	1.0004	0.0266	1.0	0.0266	200	1.0	0.0055	0.0027	0.0272
0.6667 0.7083	1.0694 1.0950	0.0266	16 17	0.0266 0.0256	209 207	16 17	0.0055	0.0837	0.0272
		0.0256					0.0055	0.0892	0.0290
0.7500	1.1197	0.0247	18	0.0247	205	18	0.0055	0.0947	0.0308
0.7917	1.1436	0.0239	19	0.0239	203	19	0.0056	0.1003	0.0326
0.8333	1.1667	0.0231	20	0.0231	201	20	0.0056	0.1059	0.0344
0.8750	1.1892	0.0224	21	0.0224	199	21	0.0056	0.1115	0.0362
0.9167	1.2110	0.0218	22	0.0218	197	22	0.0057	0.1171	0.0381
0.9583	1.2322	0.0212	23	0.0212	195	23	0.0057	0.1228	0.0399
1.0000	1.2528	0.0206	24	0.0206	193	24	0.0057	0.1285	0.0418
1.0417	1.2729	0.0201	25	0.0201	191	25	0.0058	0.1343	0.0436
1.0833	1.2926	0.0196	26	0.0196	189	26	0.0058	0.1401	0.0455
1.1250	1.3117	0.0192	27	0.0192	187	27	0.0058	0.1459	0.0474
1.1667	1.3305	0.0188	28	0.0188	185	28	0.0059	0.1518	0.0493
1.2083	1.3488	0.0183	29	0.0183	183	29	0.0059	0.1577	0.0513
1.2500	1.3668	0.0180	30	0.0180	181	30	0.0060	0.1637	0.0532
1.2917	1.3844	0.0176	31	0.0176	179	31	0.0060	0.1697	0.0551
1.3333	1.4017	0.0173	32	0.0173	177	32	0.0060	0.1757	0.0571
1.3750	1.4186	0.0169	33	0.0169	175	33	0.0061	0.1818	0.0591
1.4167	1.4352	0.0166	34	0.0166	173	34	0.0061	0.1879	0.0611
1.4583	1.4516	0.0163	35	0.0163	171	35	0.0062	0.1941	0.0631
1.5000	1.4676	0.0160	36	0.0160	169	36	0.0062	0.2003	0.0651
1.5417	1.4834	0.0158	37	0.0158	167	37	0.0063	0.2065	0.0671
1.5833	1.4989	0.0155	38	0.0155	165	38	0.0063	0.2129	0.0692
1.6250	1.5142	0.0153	39	0.0153	163	39	0.0063	0.2192	0.0712
1.6667	1.5292	0.0150	40	0.0150	161	40	0.0064	0.2256	0.0733
1.7083	1.5441	0.0148	41	0.0148	159	41	0.0064	0.2320	0.0754
1.7500	1.5586	0.0146	42	0.0146	157	42	0.0065	0.2385	0.0775
1.7917	1.5730	0.0144	43	0.0144	155	43	0.0065	0.2451	0.0796
1.8333	1.5872	0.0142	44	0.0142	153	44	0.0066	0.2517	0.0818
1.8750	1.6012	0.0140	45	0.0140	151	45	0.0067	0.2583	0.0839
1.9167	1.6150	0.0138	46	0.0138	149	46	0.0067	0.2650	0.0861
1.9583	1.6286	0.0136	47	0.0136	147	47	0.0068	0.2718	0.0883
2.0000	1.6420	0.0134	48	0.0134	145	48	0.0068	0.2786	0.0905
2.0417	1.6553	0.0133	49	0.0133	143	49	0.0069	0.2855	0.0928
2.0833	1.6684	0.0131	50	0.0131	141	50	0.0069	0.2924	0.0950
2.1250	1.6814	0.0129	51	0.0129	139	51	0.0070	0.2994	0.0973
2.1667	1.6942	0.0128	52	0.0128	137	52	0.0071	0.3065	0.0996
2.2083	1.7068	0.0126	53	0.0126	135	53	0.0071	0.3136	0.1019
2.2500	1.7193	0.0125	54	0.0125	133	54	0.0072	0.3208	0.1042
2.2917	1.7317	0.0124	55	0.0124	131	55	0.0073	0.3281	0.1066
2.3333	1.7439	0.0122	56	0.0122	129		0.0073	0.3354	0.1090
2.3750	1.7560	0.0121	57	0.0121	127	57	0.0074	0.3428	0.1114
2.4167	1.7679	0.0120	58	0.0120	125	58		0.3503	0.1138
2.4583	1.7798	0.0118	59	0.0118	123	59		0.3578	0.1163
2.5000	1.7915	0.0117	60	0.0117	121	60	0.0076		0.1187
2.5417	1.8031	0.0116	61	0.0116	119	61	0.0077	0.3731	0.1212
2.5833	1.8145	0.0115	62	0.0115	117	62	0.0078	0.3809	0.1238
2.6250	1.8259	0.0114	63	0.0114	115	63	0.0079	0.3888	0.1263
2.6667	1.8372	0.0113	64	0.0113	113	64	0.0079	0.3967	0.1289
2.7083	1.8483	0.0112	65	0.0112	111	65	0.0080	0.4047	0.1315
2.7500	1.8594	0.0110	66	0.0110	109	66	0.0081	0.4129	0.1341
2.7917	1.8703	0.0109	67	0.0109	107	67	0.0082	0.4211	0.1368
2.8333	1.8812	0.0108	68	0.0108	105	68		0.4294	0.1395
2.8750	1.8919	0.0108	69	0.0108	103	69	0.0084	0.4378	0.1422
2.9167	1.9026	0.0107	70	0.0107	101	70		0.4463	0.1450
2.5107	1.5020	0.0107	70	0.0107	101	70	0.0003	0.4403	0.1400

2.0502	1.0131	0.0106	74	0.0100	00	74	0.0000	0.4540	0.1470
2.9583	1.9131	0.0106	71	0.0106	99	71	0.0086	0.4549	0.1478
3.0000	1.9236	0.0105	72	0.0105	97	72	0.0087	0.4636	0.1506
3.0417	1.9340	0.0104	73	0.0104	95	73	0.0088	0.4725	0.1535
3.0833	1.9443	0.0103	74	0.0103	93	74	0.0090	0.4814	0.1564
3.1250	1.9545	0.0102	75 - a	0.0102	91	75	0.0091	0.4905	0.1594
3.1667	1.9646	0.0101	76	0.0101	89	76	0.0092	0.4997	0.1624
3.2083	1.9747	0.0101	77	0.0101	87	77	0.0093	0.5090	0.1654
3.2500	1.9847	0.0100	78	0.0100	85	78	0.0095	0.5185	0.1685
3.2917	1.9946	0.0099	79	0.0099	83	79	0.0096	0.5281	0.1716
3.3333	2.0044	0.0098	80	0.0098	81	80	0.0097	0.5378	0.1747
3.3750	2.0141	0.0097	81	0.0097	79	81	0.0099	0.5477	0.1780
3.4167	2.0238	0.0097	82	0.0097	77	82	0.0101	0.5578	0.1812
3.4583	2.0334	0.0096	83	0.0096	75	83	0.0102	0.5680	0.1845
3.5000	2.0429	0.0095	84	0.0095	73	84	0.0104	0.5784	0.1879
3.5417	2.0524	0.0095	85	0.0095	71	85	0.0106	0.5889	0.1914
3.5833	2.0618	0.0094	86	0.0094	69	86	0.0108	0.5997	0.1948
3.6250	2.0711	0.0093	87	0.0093	67	87	0.0109	0.6106	0.1984
3.6667	2.0803	0.0093	88	0.0093	65	88	0.0112	0.6218	0.2020
3.7083	2.0895	0.0092	89	0.0092	63	89	0.0114	0.6331	0.2057
3.7500	2.0987	0.0091	90	0.0091	61	90	0.0116	0.6447	0.2095
3.7917	2.1077	0.0091	91	0.0091	59	91	0.0118	0.6566	0.2133
3.8333	2.1168	0.0090	92	0.0090	57	92	0.0121	0.6687	0.2173
3.8750	2.1257	0.0090	93	0.0090	55	93	0.0124	0.6810	0.2213
3.9167	2.1346	0.0089	94	0.0089	53	94	0.0126	0.6937	0.2254
3.9583	2.1434	0.0088	95	0.0088	51	95	0.0129	0.7066	0.2296
4.0000	2.1522	0.0088	96	0.0088	49	96	0.0133	0.7199	0.2339
4.0417	2.1609	0.0087	97	0.0087	47	97	0.0136	0.7335	0.2383
4.0833	2.1696	0.0087	98	0.0087	45	98	0.0140	0.7475	0.2429
4.1250	2.1782	0.0086	99	0.0086	43	99	0.0144	0.7618	0.2475
4.1667	2.1868	0.0086	100	0.0086	41	100	0.0148	0.7767	0.2524
4.2083	2.1953	0.0085	101	0.0085	39	101	0.0153	0.7919	0.2573
4.2500	2.2037	0.0085	102	0.0085	37	102	0.0158	0.8077	0.2624
4.2917	2.2122	0.0084	103	0.0084	35	103	0.0163	0.8240	0.2678
4.3333	2.2205	0.0084	104	0.0084	33	104	0.0169	0.8410	0.2733
4.3750	2.2288	0.0083	105	0.0083	31	105	0.0176	0.8586	0.2790
4.4167	2.2371	0.0083	106	0.0083	29	106	0.0183	0.8769	0.2849
4.4583	2.2453	0.0082	107	0.0082	27	107	0.0192	0.8961	0.2912
4.5000	2.2535	0.0082	108	0.0082	25	108	0.0201	0.9162	0.2977
4.5417	2.2616	0.0081	109	0.0081	23	109	0.0212	0.9374	0.3046
4.5833	2.2697	0.0081	110	0.0081	21	110	0.0224	0.9599	0.3119
4.6250	2.2777	0.0080	111	0.0080		111	0.0239	0.9838	0.3196
4.6667	2.2857	0.0080	112	0.0080		112	0.0256	1.0094	0.3280
4.7083	2.2936	0.0079	113	0.0079		113		1.0371	0.3370
4.7500	2.3015	0.0079	114	0.0079		114	0.0303	1.0674	0.3468
4.7917	2.3094	0.0079	115	0.0079		115	0.0337	1.1011	0.3578
4.8333	2.3172	0.0078	116	0.0078		116	0.0384	1.1395	0.3703
4.8750	2.3250	0.0078	117	0.0078		117	0.0452	1.1848	0.3850
4.9167	2.3327	0.0077	118	0.0077	5	118		1.2414	0.4034
4.9583	2.3404	0.0077	119	0.0077	3	119	0.0814	1.3229	0.4298
5.0000	2.3481	0.0077	120	0.0077	1	120	0.3624	1.6852	0.5476
5.0417	2.3557	0.0076	121	0.0076		121	0.1126	1.7978	0.5842
5.0833	2.3633	0.0076	122	0.0076		122	0.0661	1.8639	0.6056
5.1250	2.3708	0.0075	123	0.0075	6	123		1.9140	0.6219
5.1667	2.3783	0.0075	124	0.0075		124	0.0414	1.9555	0.6354
5.2083	2.3858	0.0075	125	0.0075		125	0.0359	1.9913	0.6470
5.2063	2.3038	0.0073	123	0.0075	10	125	0.0559	1.2213	0.0470

5.2500	2.3932	0.0074	126	0.0074	12	126	0.0319	2.0232	0.6574
5.2917	2.4006	0.0074	127	0.0074	14	127	0.0289	2.0522	0.6668
5.3333	2.4080	0.0074	128	0.0074	16	128	0.0266	2.0788	0.6755
5.3750	2.4153	0.0073	129	0.0073	18	129	0.0247	2.1035	0.6835
5.4167	2.4226	0.0073	130	0.0073	20	130	0.0231	2.1266	0.6910
5.4583	2.4298	0.0073	131	0.0073	22	131	0.0218	2.1484	0.6981
5.5000	2.4371	0.0072	132	0.0072	24	132	0.0206	2.1690	0.7048
5.5417	2.4443	0.0072	133	0.0072	26	133	0.0196	2.1887	0.7112
5.5833	2.4514	0.0072	134	0.0072	28	134	0.0188	2.2074	0.7173
5.6250	2.4585	0.0071	135	0.0071	30	135	0.0180	2.2254	0.7231
5.6667	2.4656	0.0071	136	0.0071	32	136	0.0173	2.2427	0.7287
5.7083	2.4727	0.0071	137	0.0071	34	137	0.0166	2.2593	0.7341
5.7500	2.4797	0.0070	138	0.0070	36	138	0.0160	2.2753	0.7393
5.7917	2.4867	0.0070	139	0.0070	38	139	0.0155	2.2909	0.7444
5.8333	2.4937	0.0070	140	0.0070	40	140	0.0150	2.3059	0.7493
5.8750	2.5006	0.0069	141	0.0069	42	141	0.0146	2.3205	0.7540
5.9167	2.5075	0.0069	142	0.0069	44	142	0.0142	2.3347	0.7586
5.9583	2.5144	0.0069	143	0.0069	46	143	0.0138	2.3485	0.7631
6.0000	2.5213	0.0068	144	0.0068	48	144	0.0134	2.3619	0.7675
6.0417	2.5281	0.0068	145	0.0068	50	145	0.0131	2.3750	0.7717
6.0833	2.5349	0.0068	146	0.0068	52	146	0.0128	2.3878	0.7759
6.1250	2.5416	0.0068	147	0.0068	54	147	0.0125	2.4003	0.7799
6.1667	2.5484	0.0067	148	0.0067	56	148	0.0122	2.4125	0.7839
6.2083	2.5551	0.0067	149	0.0067	58	149	0.0120	2.4245	0.7878
6.2500	2.5618	0.0067	150	0.0067	60	150	0.0117	2.4362	0.7916
6.2917	2.5684	0.0067	151	0.0067	62	151	0.0115	2.4477	0.7953
6.3333	2.5750	0.0066	152	0.0066	64	152	0.0113	2.4589	0.7990
6.3750	2.5816	0.0066	153	0.0066	66	153	0.0110	2.4700	0.8026
6.4167	2.5882	0.0066	154	0.0066	68	154	0.0108	2.4808	0.8061
6.4583	2.5948	0.0065	155	0.0065	70	155	0.0107	2.4915	0.8096
6.5000	2.6013	0.0065	156	0.0065	72	156	0.0105	2.5020	0.8130
6.5417	2.6078	0.0065	157	0.0065	74	157	0.0103	2.5123	0.8163
6.5833	2.6142	0.0065	158	0.0065	76	158	0.0101	2.5224	0.8196
6.6250	2.6207	0.0064	159	0.0064	78	159	0.0100	2.5324	0.8228
6.6667	2.6271	0.0064	160	0.0064	80	160	0.0098	2.5422	0.8260
6.7083	2.6335	0.0064	161	0.0064	82	161	0.0097	2.5519	0.8292
6.7500	2.6399	0.0064	162	0.0064		162	0.0095		
6.7917	2.6462	0.0063	163	0.0063	86	163	0.0094		0.8353
6.8333	2.6526	0.0063	164	0.0063	88	164	0.0093		0.8383
6.8750	2.6589	0.0063	165	0.0063	90		0.0091		0.8413
6.9167	2.6651	0.0063	166	0.0063	92	166	0.0090		0.8442
6.9583	2.6714	0.0063	167	0.0063	94		0.0089		0.8471
7.0000	2.6776	0.0062	168	0.0062	96		0.0088		0.8500
7.0417	2.6838	0.0062	169	0.0062	98		0.0087		0.8528
7.0833	2.6900	0.0062	170	0.0062	100	170	0.0086		0.8556
7.1250	2.6962	0.0062	171	0.0062	102	171	0.0085		0.8583
7.1250	2.7023	0.0061	172	0.0061	104	172	0.0084		0.8610
7.2083	2.7085	0.0061	173	0.0061	106	173	0.0083		0.8637
7.2500	2.7146	0.0061	174	0.0061	108	174	0.0082	2.6663	0.8664
7.2917	2.7206	0.0061	175	0.0061	110	175	0.0081	2.6744	0.8690
7.3333	2.7267	0.0061	176	0.0061	112	176	0.0080		0.8716
7.3750	2.7327	0.0060	177	0.0060	114	177	0.0079		0.8741
7.4167	2.7387	0.0060	178	0.0060	116	178	0.0078		0.8767
7.4583	2.7447	0.0060	179	0.0060	118		0.0077	2.7058	0.8792
7.5000	2.7507	0.0060	180	0.0060	120		0.0077	2.7135	0.8732
7.5000	2.7307	0.0000	100	0.0000	120	100	0.0077	2./133	0.0017

7.5447	2 75 67	0.0000	404	0.0000	100	101	0.0076	0.7044	0.0040
7.5417	2.7567	0.0060	181	0.0060	122	181	0.0076	2.7211	0.8842
7.5833	2.7626	0.0059	182	0.0059	124	182	0.0075	2.7286	0.8866
7.6250	2.7685	0.0059	183	0.0059	126	183	0.0074	2.7360	0.8890
7.6667	2.7744	0.0059	184	0.0059	128	184	0.0074	2.7434	0.8914
7.7083	2.7803	0.0059	185	0.0059	130	185	0.0073	2.7507	0.8938
7.7500	2.7861	0.0059	186	0.0059	132	186	0.0072	2.7579	0.8961
7.7917	2.7920	0.0058	187	0.0058	134	187	0.0072	2.7650	0.8984
7.8333	2.7978	0.0058	188	0.0058	136	188	0.0071	2.7721	0.9007
7.8750	2.8036	0.0058	189	0.0058	138	189	0.0070	2.7792	0.9030
7.9167	2.8094	0.0058	190	0.0058	140	190	0.0070	2.7861	0.9053
7.9583	2.8151	0.0058	191	0.0058	142	191	0.0069	2.7930	0.9075
8.0000	2.8209	0.0057	192	0.0057	144	192	0.0068	2.7999	0.9098
8.0417	2.8266	0.0057	193	0.0057	146	193	0.0068	2.8067	0.9120
8.0833	2.8323	0.0057	194	0.0057	148	194	0.0067	2.8134	0.9142
8.1250	2.8380	0.0057	195	0.0057	150	195	0.0067	2.8201	0.9163
8.1667	2.8437	0.0057	196	0.0057	152	196	0.0066	2.8267	0.9185
8.2083	2.8493	0.0057	197	0.0057	154	197	0.0066	2.8333	0.9206
8.2500	2.8550	0.0056	198	0.0056	156	198	0.0065	2.8398	0.9227
8.2917	2.8606	0.0056	199	0.0056	158	199	0.0065	2.8463	0.9248
8.3333	2.8662	0.0056	200	0.0056	160	200	0.0064	2.8527	0.9269
8.3750	2.8718	0.0056	201	0.0056	162	201	0.0064	2.8591	0.9290
8.4167	2.8774	0.0056	202	0.0056	164	202	0.0063	2.8654	0.9311
8.4583	2.8829	0.0056	203	0.0056	166	203	0.0063	2.8717	0.9331
8.5000	2.8884	0.0055	204	0.0055	168	204	0.0062	2.8779	0.9351
8.5417	2.8940	0.0055	205	0.0055	170	205	0.0062	2.8841	0.9371
8.5833	2.8995	0.0055	206	0.0055	172	206	0.0061	2.8903	0.9391
8.6250	2.9049	0.0055	207	0.0055	174	207	0.0061	2.8964	0.9411
8.6667	2.9104	0.0055	208	0.0055	176	208	0.0061	2.9024	0.9431
8.7083	2.9159	0.0055	209	0.0055	178	209	0.0060	2.9084	0.9450
8.7500	2.9213	0.0054	210	0.0054	180	210	0.0060	2.9144	0.9470
8.7917	2.9267	0.0054	211	0.0054	182	211	0.0059	2.9203	0.9489
8.8333	2.9321	0.0054	212	0.0054	184	212	0.0059	2.9262	0.9508
8.8750	2.9375	0.0054	213	0.0054	186	213	0.0059	2.9321	0.9527
8.9167	2.9429	0.0054	214	0.0054	188	214	0.0058	2.9379	0.9546
8.9583	2.9483	0.0054	215	0.0054	190	215	0.0058	2.9437	0.9565
9.0000	2.9536	0.0053	216	0.0053	192	216	0.0057	2.9494	0.9584
9.0417	2.9589	0.0053	217	0.0053	194	217	0.0057	2.9551	0.9602
9.0833	2.9642	0.0053	218	0.0053	196	218	0.0057	2.9608	0.9620
9.1250	2.9695	0.0053	219	0.0053	198	219	0.0056	2.9664	0.9639
9.1667	2.9748	0.0053	220	0.0053	200	220	0.0056	2.9720	0.9657
9.2083	2.9801	0.0053	221	0.0053			0.0056	2.9776	0.9675
9.2500	2.9854	0.0053	222	0.0053			0.0055	2.9832	0.9693
9.2917	2.9906	0.0052	223	0.0052	206			2.9887	0.9711
9.3333	2.9958	0.0052	224	0.0052	208			2.9941	0.9729
9.3750	3.0010	0.0052	225	0.0052	210		0.0054	2.9996	0.9746
9.4167	3.0062	0.0052	226	0.0052		226		3.0050	0.9764
9.4583	3.0114	0.0052	227	0.0052		227	0.0054	3.0103	0.9781
9.5000	3.0166	0.0052	228	0.0052		228		3.0157	0.9799
9.5417	3.0218	0.0052	229	0.0052		229	0.0053	3.0210	0.9816
9.5833	3.0269	0.0051	230	0.0051	220		0.0053	3.0263	0.9833
9.6250	3.0320	0.0051	231	0.0051	222	231	0.0053	3.0315	0.9850
9.6667	3.0371	0.0051	232	0.0051	224	232	0.0052	3.0368	0.9867
9.7083	3.0423	0.0051	233	0.0051	226			3.0420	0.9884
9.7500	3.0473	0.0051	234	0.0051	228			3.0471	0.9901
9.7917	3.0524	0.0051	235	0.0051	230			3.0523	0.9918
9.7917	3.0324	0.0051	233	0.0031	230	233	0.0031	3.0323	0.3310

9.8333	3.0575	0.0051	236	0.0051	232	236	0.0051	3.0574	0.9934
9.8750	3.0625	0.0051	237	0.0051	234	237	0.0051	3.0625	0.9951
9.9167	3.0676	0.0050	238	0.0050	236	238	0.0051	3.0676	0.9967
9.9583	3.0726	0.0050	239	0.0050	238	239	0.0050	3.0726	0.9984
10.0000	3.0776	0.0050	240	0.0050	240	240	0.0050	3.0776	1.0000

Unit Hydrograph

Unit Storm Duration

ΔD 0.25 hr << 0.2-hr time increments are used

Time to Peak

Tp 1.25 hr << rounded to 1.0 hr

Unit Hydrograph Peak Discharge

qp 2295 cfs

Time Ratio	Discharge Ratio	Time (hr)	q (cfs)
0.0	0.000	0.000	0
0.1	0.030	0.100	69
0.2	0.100	0.200	230
0.3	0.190	0.300	436
0.4	0.310	0.400	711
0.5	0.470	0.500	1079
0.6	0.660	0.600	1515
0.7	0.820	0.700	1882
0.8	0.930	0.800	2134
0.9	0.990	0.900	2272
1.0	1.000	1.000	2295
1.1	0.990	1.100	2272
1.2	0.930	1.200	2134
1.3	0.860	1.300	1974
1.4	0.780	1.400	1790
1.5	0.680	1.500	1561
1.6	0.560	1.600	1285
1.7	0.460	1.700	1056
1.8	0.390	1.800	895

Time (hr)	q (cfs)
0	0
0.30	230
0.60	711
0.90	1515
1.20	2134
1.50	2295
1.80	2134
2.10	1790
2.40	1285
2.70	895
3.00	643
3.30	475
3.60	337
3.90	246
4.20	177
4.50	126
4.80	92
5.10	67
5.40	48

1.9	0.330	1.900	757
2.0	0.280	2.000	643
2.2	0.207	2.200	475
2.4	0.147	2.400	337
2.6	0.107	2.600	246
2.8	0.077	2.800	177
3.0	0.055	3.000	126
3.2	0.040	3.200	92
3.4	0.029	3.400	67
3.6	0.021	3.600	48
3.8	0.015	3.800	34
4.0	0.011	4.000	25
4.5	0.005	4.500	11
5.0	0.000	5.000	0

5.70	34
6.00	25
6.30	19
6.60	14
6.90	9
7.20	5
7.50	0
7.80	0
8.10	0
8.40	0
8.70	0
9.00	0
9.30	0
9.60	0
	•

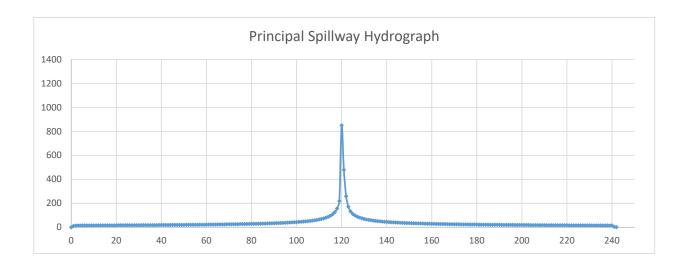
Sum	4592 cfs-h
-----	------------

Check

Unit Hydrograph (per 1 in. Unit Runoff) Variance

3060.2 cfs-h -50.05%

Principal Spillway Hydrograph


Time (hrs)	Inc. Volumes	q (cfs)	Composite
Tille (III3)	Rearranged	q (CI3)	PSH (cfs)
0.0	0.0000	0	0
1.0	0.0050	2186	11
2.0	0.0051	612	14
3.0	0.0051	120	15
4.0	0.0051	24	15
5.0	0.0051	0	15
6.0	0.0052		15
7.0	0.0052		15
8.0	0.0052		15
9.0	0.0052		15
10.0	0.0053		15
11.0	0.0053		16
12.0	0.0053		16
13.0	0.0054		16
14.0	0.0054		16
15.0	0.0054		16
16.0	0.0055		16
17.0	0.0055		16
18.0	0.0055		16
19.0	0.0056		16
20.0	0.0056		16
21.0	0.0056		17
22.0	0.0057		17
23.0	0.0057		17
24.0	0.0057		17
25.0	0.0058		17
26.0	0.0058		17
27.0	0.0058		17
28.0	0.0059		17
29.0	0.0059		17

30.0	0.0060	17
31.0	0.0060	18
32.0	0.0060	18
33.0	0.0061	18
34.0	0.0061	18
35.0	0.0062	18
36.0	0.0062	18
37.0	0.0063	18
38.0	0.0063	18
39.0	0.0063	19
40.0	0.0064	19
41.0	0.0064	19
42.0	0.0065	19
43.0	0.0065	19
44.0	0.0066	19
45.0	0.0067	20
46.0	0.0067	20
47.0	0.0068	20
48.0	0.0068	20
49.0	0.0069	20
50.0	0.0069	20
51.0	0.0070	21
52.0	0.0071	21
53.0	0.0071	21
54.0	0.0072	21
55.0	0.0073	21
56.0	0.0073	21
57.0	0.0074	22
58.0	0.0075	22
59.0	0.0075	22
60.0	0.0076	22
61.0	0.0077	23
62.0	0.0078	23
63.0	0.0079	23
64.0	0.0079	23
65.0	0.0080	24
66.0	0.0081	24
67.0	0.0082	24
68.0	0.0083	24
69.0	0.0084	25
70.0	0.0085	25
71.0	0.0086	25
72.0	0.0087	26
73.0	0.0088	26
74.0	0.0090	26
75.0	0.0091	27
76.0	0.0092	27
77.0	0.0093	27
78.0	0.0095	28
79.0	0.0096	28
80.0	0.0097	29
81.0	0.0099	29
82.0	0.0101	29
83.0	0.0101	30
84.0	0.0102	30
04.0	0.0104	30

85.0	0.0106	31
86.0	0.0108	31
87.0	0.0109	32
88.0	0.0112	33
89.0	0.0114	33
90.0	0.0116	34
91.0	0.0118	35
92.0	0.0121	35
93.0	0.0124	36
94.0	0.0126	37
95.0	0.0129	38
96.0	0.0133	39
97.0	0.0136	40
98.0	0.0140	41
99.0	0.0144	42
100.0	0.0148	43
101.0	0.0153	45
102.0	0.0158	46
103.0	0.0163	48
104.0	0.0169	49
105.0	0.0176	51
106.0	0.0183	53
107.0	0.0192	56
108.0	0.0201	58
109.0	0.0212	61
110.0	0.0224	65
111.0	0.0239	69
112.0	0.0256	74
113.0	0.0277	80
114.0	0.0303	87
115.0	0.0337	96
116.0	0.0384	109
117.0	0.0452	127
118.0	0.0567	157
119.0	0.0814	219
120.0	0.3624	850
121.0	0.1126	479
122.0	0.0661	259
123.0	0.0501	172
124.0	0.0414	132
125.0	0.0359	111
126.0	0.0339	98
127.0		88
127.0	0.0289 0.0266	81
129.0	0.0266	75
130.0 131.0	0.0231	70 65
	0.0218	62
132.0	0.0206	59
133.0	0.0196	
134.0	0.0188	56
135.0	0.0180	54
136.0	0.0173	51
137.0	0.0166	50
138.0	0.0160	48
139.0	0.0155	46

140.0	0.0150	45
141.0	0.0146	43
142.0	0.0142	42
143.0	0.0138	41
144.0	0.0134	40
145.0	0.0131	39
146.0	0.0128	38
147.0	0.0125	37
148.0	0.0122	36
149.0	0.0120	35
150.0	0.0117	35
151.0	0.0115	34
152.0	0.0113	33
153.0	0.0110	33
154.0	0.0108	32
155.0	0.0107	32
156.0	0.0105	31
157.0	0.0103	30
158.0	0.0101	30
159.0	0.0100	29
160.0	0.0098	29
161.0	0.0097	29
162.0	0.0095	28
163.0	0.0094	28
164.0	0.0093	27
165.0	0.0091	27
166.0	0.0090	27
167.0	0.0089	26
168.0	0.0088	26
169.0	0.0087	26
170.0	0.0086	25
171.0	0.0085	25
172.0	0.0084	25
173.0	0.0083	24
174.0	0.0082	24
175.0	0.0081	24
176.0	0.0080	24
177.0	0.0079	23
178.0	0.0078	23
179.0	0.0077	23
180.0	0.0077	23
181.0	0.0076	22
182.0	0.0075	22
183.0	0.0074	22
184.0	0.0074	22
185.0	0.0074	22
186.0	0.0072	21
187.0	0.0072	21
188.0	0.0072	21
189.0	0.0071	21
190.0	0.0070	21
191.0	0.0070	20
192.0	0.0068	20
193.0	0.0068	20
194.0	0.0067	20
154.0	0.0007	20

195.0	0.0067	20
196.0	0.0066	20
197.0	0.0066	19
198.0	0.0065	19
199.0	0.0065	19
200.0	0.0064	19
201.0	0.0064	19
202.0	0.0063	19
203.0	0.0063	19
204.0	0.0062	18
205.0	0.0062	18
206.0	0.0061	18
207.0	0.0061	18
208.0	0.0061	18
209.0	0.0060	18
210.0	0.0060	18
211.0	0.0059	17
212.0	0.0059	17
213.0	0.0059	17
214.0	0.0058	17
215.0	0.0058	17
216.0	0.0057	17
217.0	0.0057	17
218.0	0.0057	17
219.0	0.0056	17
220.0	0.0056	17
221.0	0.0056	16
222.0	0.0055	16
223.0	0.0055	16
224.0	0.0055	16
225.0	0.0053	16
226.0	0.0054	16
227.0	0.0054	16
228.0 229.0	0.0053 0.0053	16 16
		16
230.0	0.0053 0.0053	15
231.0 232.0		15
232.0	0.0052 0.0052	15
		15
234.0 235.0	0.0052	15
235.0	0.0051	15
	0.0051	
237.0	0.0051	15
238.0	0.0051	15
239.0	0.0050	15
240.0	0.0050	15 4
241.0	0.0000	
242.0	0.0000	1

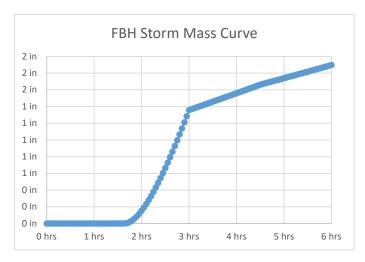
<u>Results</u>

Peak Hydrograph Flow	850 cfs
Total Volume	749 ac-ft

ASH-L Hydrograph

Characteristics

Drainage Area	4.742 sq mi
Time of Concentration	1.58 hr
Curve Number	77.8
Structure Hazard Classification	High
Initial Abstraction	0.57 in
Maximum Potential Retention	2.85 in
Precipitation	4.03 in
ΔD	0.05 hr


Time Increment	Incremental Rainfall	Rainfall Fractions for Each Time Increment	5 Point Rainfall Distribution
0 to 1.5	0.299 in	0.074	0.074
1.5 to 3	3.032 in	0.752	0.827
2 to 4.5	0.400 in	0.099	0.926
4.5 to 6	0.299 in	0.074	1.000

Time (hr)	Rainfall	Time (hr)	Rainfall	Time (hr)	Rainfall	Time (hr)	Rainfall
Tillie (III)	Distribution	Tille (III)	Distribution	Tillie (III)	Distribution	Tillie (III)	Distribution
0.00	0.000	1.50	0.074	3.00	0.827	4.50	0.926
0.05	0.002	1.55	0.099	3.05	0.830	4.55	0.928
0.10	0.005	1.60	0.124	3.10	0.833	4.60	0.931
0.15	0.007	1.65	0.149	3.15	0.836	4.65	0.933
0.20	0.010	1.70	0.175	3.20	0.840	4.70	0.936
0.25	0.012	1.75	0.200	3.25	0.843	4.75	0.938
0.30	0.015	1.80	0.225	3.30	0.846	4.80	0.941
0.35	0.017	1.85	0.250	3.35	0.850	4.85	0.943
0.40	0.020	1.90	0.275	3.40	0.853	4.90	0.946
0.45	0.022	1.95	0.300	3.45	0.856	4.95	0.948
0.50	0.025	2.00	0.325	3.50	0.860	5.00	0.951
0.55	0.027	2.05	0.350	3.55	0.863	5.05	0.953
0.60	0.030	2.10	0.375	3.60	0.866	5.10	0.955
0.65	0.032	2.15	0.400	3.65	0.870	5.15	0.958
0.70	0.035	2.20	0.425	3.70	0.873	5.20	0.960
0.75	0.037	2.25	0.450	3.75	0.876	5.25	0.963
0.80	0.040	2.30	0.475	3.80	0.879	5.30	0.965
0.85	0.042	2.35	0.501	3.85	0.883	5.35	0.968
0.90	0.045	2.40	0.526	3.90	0.886	5.40	0.970
0.95	0.047	2.45	0.551	3.95	0.889	5.45	0.973
1.00	0.049	2.50	0.576	4.00	0.893	5.50	0.975
1.05	0.052	2.55	0.601	4.05	0.896	5.55	0.978
1.10	0.054	2.60	0.626	4.10	0.899	5.60	0.980
1.15	0.057	2.65	0.651	4.15	0.903	5.65	0.983
1.20	0.059	2.70	0.676	4.20	0.906	5.70	0.985
1.25	0.062	2.75	0.701	4.25	0.909	5.75	0.988
1.30	0.064	2.80	0.726	4.30	0.913	5.80	0.990
1.35	0.067	2.85	0.751	4.35	0.916	5.85	0.993
1.40	0.069	2.90	0.776	4.40	0.919	5.90	0.995
1.45	0.072	2.95	0.801	4.45	0.922	5.95	0.998
						6.00	1.000

	Rainfall	Total	Acc. Mass	Inc. Mass
Time (hr)	Distribution	Rainfall (in)	Curve of	Curve of
	Distribution	Naiiiiaii (iii)	Runoff (in)	Runoff (in)
0.00	0.000	0.000	0.000	0.000
0.05	0.002	0.010	0.000	0.000
0.10	0.002	0.020	0.000	0.000
0.15	0.003	0.030	0.000	0.000
0.20	0.010	0.040	0.000	0.000
0.25	0.012	0.050	0.000	0.000
0.30	0.015	0.060	0.000	0.000
0.35	0.017	0.070	0.000	0.000
0.40	0.020	0.080	0.000	0.000
0.45	0.022	0.090	0.000	0.000
0.50	0.025	0.100	0.000	0.000
0.55	0.027	0.110	0.000	0.000
0.60	0.030	0.120	0.000	0.000
0.65	0.032	0.130	0.000	0.000
0.70	0.032	0.140	0.000	0.000
0.75	0.037	0.150	0.000	0.000
0.80	0.040	0.159	0.000	0.000
0.85	0.042	0.169	0.000	0.000
0.90	0.042	0.179	0.000	0.000
0.95	0.043	0.189	0.000	0.000
1.00	0.049	0.199	0.000	0.000
1.05	0.052	0.209	0.000	0.000
1.10	0.054	0.219	0.000	0.000
1.15	0.057	0.229	0.000	0.000
1.20	0.059	0.239	0.000	0.000
1.25	0.062	0.249	0.000	0.000
1.30	0.064	0.259	0.000	0.000
1.35	0.067	0.269	0.000	0.000
1.40	0.069	0.279	0.000	0.000
1.45	0.072	0.289	0.000	0.000
1.50	0.074	0.299	0.000	0.000
1.55	0.099	0.400	0.000	0.000
1.60	0.124	0.501	0.000	0.000
1.65	0.149	0.602	0.000	0.000
1.70	0.175	0.703	0.006	0.006
1.75	0.200	0.804	0.018	0.012
1.80	0.225	0.905	0.035	0.018
1.85	0.250	1.006	0.058	0.023
1.90	0.275	1.108	0.085	0.027
1.95	0.300	1.209	0.117	0.032
2.00	0.325	1.310	0.152	0.036
2.05	0.350	1.411	0.192	0.039
2.10	0.375	1.512	0.234	0.042
2.15	0.400	1.613	0.279	0.045
2.20	0.425	1.714	0.328	0.048
2.25	0.450	1.815	0.379	0.051
2.30	0.475	1.916	0.432	0.053
2.35	0.501	2.017	0.487	0.056
	5.55=			

2.40	0.526	2.118	0.545	0.058
2.45	0.551	2.219	0.605	0.060
2.50	0.576	2.320	0.666	0.061
2.55	0.601	2.421	0.729	0.063
2.60	0.626	2.522	0.794	0.065
2.65	0.651	2.624	0.860	0.066
2.70	0.676	2.725	0.928	0.068
2.75	0.701	2.826	0.997	0.069
2.80	0.726	2.927	1.067	0.070
2.85	0.751	3.028	1.138	0.071
2.90	0.776	3.129	1.211	0.072
2.95	0.801	3.230	1.284	0.074
3.00	0.827	3.331	1.359	0.075
3.05	0.830	3.344	1.369	0.010
3.10	0.833	3.358	1.378	0.010
3.15	0.836	3.371	1.388	0.010
3.20	0.840	3.384	1.398	0.010
3.25	0.843	3.398	1.408	0.010
3.30	0.846	3.411	1.418	0.010
3.35	0.850	3.424	1.428	0.010
3.40	0.853	3.438	1.438	0.010
3.45	0.856	3.451	1.448	0.010
3.50	0.860	3.464	1.458	0.010
3.55	0.863	3.478	1.468	0.010
3.60	0.866	3.491	1.478	0.010
3.65	0.870	3.504	1.489	0.010
3.70	0.873	3.518	1.499	0.010
3.75	0.876	3.531	1.509	0.010
3.80	0.879	3.544	1.519	0.010
3.85	0.883	3.558	1.529	0.010
3.90	0.886	3.571	1.539	0.010
3.95	0.889	3.584	1.549	0.010
4.00	0.893	3.598	1.560	0.010
4.05	0.896	3.611	1.570	0.010
4.10	0.899	3.624	1.580	0.010
4.15	0.903	3.638	1.590	0.010
4.20	0.906	3.651	1.600	0.010
4.25	0.909	3.664	1.611	0.010
4.30	0.913	3.678	1.621	0.010
4.35	0.916	3.691	1.631	0.010
4.40	0.919	3.704	1.642	0.010
4.45	0.922	3.718	1.652	0.010
4.50	0.926	3.731	1.662	0.010
4.55	0.928	3.741	1.670	0.008
4.60	0.931	3.751	1.678	0.008
4.65	0.933	3.761	1.685	0.008
4.70	0.936	3.771	1.693	0.008
4.75	0.938	3.781	1.701	0.008
4.80	0.941	3.791	1.709	0.008
4.85	0.943	3.801	1.717	0.008
4.90	0.946	3.811	1.724	0.008
4.95	0.948	3.821	1.732	0.008
5.00	0.951	3.831	1.740	0.008
5.05	0.953	3.841	1.748	0.008
5.10	0.955	3.851	1.756	0.008

5.15	0.958	3.861	1.763	0.008
5.20	0.960	3.871	1.771	0.008
5.25	0.963	3.881	1.779	0.008
5.30	0.965	3.890	1.787	0.008
5.35	0.968	3.900	1.795	0.008
5.40	0.970	3.910	1.803	0.008
5.45	0.973	3.920	1.810	0.008
5.50	0.975	3.930	1.818	0.008
5.55	0.978	3.940	1.826	0.008
5.60	0.980	3.950	1.834	0.008
5.65	0.983	3.960	1.842	0.008
5.70	0.985	3.970	1.850	0.008
5.75	0.988	3.980	1.858	0.008
5.80	0.990	3.990	1.866	0.008
5.85	0.993	4.000	1.873	0.008
5.90	0.995	4.010	1.881	0.008
5.95	0.998	4.020	1.889	0.008
6.00	1.000	4.030	1.897	0.008

Unit Storm Duration

ΔD 0.05

Time to Peak

Tp 0.99 << rounded to 1.0 hr

Unit Hydrograph Peak Discharge

qp 2295

Time	Discharge	Time (hr)	q (cfs)
Ratio	Ratio	- (-1 (7
0.0	0.000	0.000	0
0.1	0.030	0.100	69
0.2	0.100	0.200	230
0.3	0.190	0.300	436
0.4	0.310	0.400	711
0.5	0.470	0.500	1079
0.6	0.660	0.600	1515

q (cfs)
0
230
711
1515
2134
2295
2134

0.7	0.820	0.700	1882
0.8	0.930	0.800	2134
0.9	0.990	0.900	2272
1.0	1.000	1.000	2295
1.1	0.990	1.100	2272
1.2	0.930	1.200	2134
1.3	0.860	1.300	1974
1.4	0.780	1.400	1790
1.5	0.680	1.500	1561
1.6	0.560	1.600	1285
1.7	0.460	1.700	1056
1.8	0.390	1.800	895
1.9	0.330	1.900	757
2.0	0.280	2.000	643
2.2	0.207	2.200	475
2.4	0.147	2.400	337
2.6	0.107	2.600	246
2.8	0.077	2.800	177
3.0	0.055	3.000	126
3.2	0.040	3.200	92
3.4	0.029	3.400	67
3.6	0.021	3.600	48
3.8	0.015	3.800	34
4.0	0.011	4.000	25
4.5	0.005	4.500	11
5.0	0.000	5.000	0

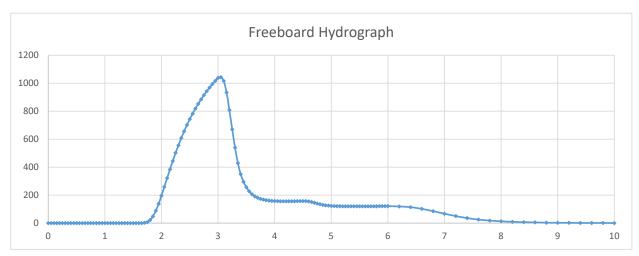
1790
1285
895
643
475
337
246
177
126
92
67
48
34
25
19
14
9
5
0
0
0
0
0
0
0
0

Sum	1531 cfs-h
Sum	1531 cfs-h

Check

Unit Hydrograph (per 1 in. Unit Runoff) Variance

3060.2 49.98%


Freeboard Hydrograph

Time (hrs)	Inc. Runoff	q (cfs)	Composite FBH (cfs)
0.0	0.0000	0	0
0.1	0.0000	230	0
0.1	0.0000	711	0
0.2	0.0000	1515	0
0.2	0.0000	2134	0
0.3	0.0000	2295	0
0.3	0.0000	2134	0
0.4	0.0000	1790	0
0.4	0.0000	1285	0
0.5	0.0000	895	0
0.5	0.0000	643	0
0.6	0.0000	475	0
0.6	0.0000	337	0

0.7	0.0000	246	0
0.7	0.0000	177	0
0.8	0.0000	126	0
0.8	0.0000	92	0
0.9	0.0000	67	0
0.9	0.0000	48	0
1.0	0.0000	34	0
1.0	0.0000	25	0
1.1	0.0000	19	0
1.1	0.0000	14	0
1.2	0.0000	9	0
1.2	0.0000	5	0
1.3	0.0000	0	0
1.3	0.0000		0
1.4	0.0000		0
1.4	0.0000		0
1.5	0.0000		0
1.5	0.0000		0
1.6	0.0000		0
1.6	0.0000		0
1.7	0.0004		0
1.7	0.0056		2
1.8	0.0030		7
1.8	0.0119		22
1.9	0.0173		48
1.9	0.0273		88
2.0	0.0316		138
2.0	0.0355		196
2.1	0.0391		259
2.1	0.0424		322
2.2	0.0455		384
2.2	0.0483		444
2.3	0.0509		502
2.3	0.0533		556
2.4	0.0555		608
2.4	0.0576		656
2.5	0.0596		701
2.5	0.0614		743
2.6	0.0631		782
2.6	0.0647		819
2.7	0.0662		853
2.7	0.0676		885
2.8	0.0689		915
2.8	0.0702		943
2.9	0.0714		969
2.9	0.0725		994
3.0	0.0735		1017
3.0	0.0745		1038
3.1	0.0099		1043
3.1	0.0099	-	1016
3.2	0.0099		934
3.2	0.0099	-	808
3.3	0.0100		670
3.3	0.0100		540
3.4	0.0100		429

3.4	0.0100		350
3.5	0.0100		295
3.5	0.0100		256
3.6	0.0101		227
3.6	0.0101		206
3.7	0.0101		191
3.7	0.0101		181
3.7	0.0101		173
3.8	0.0101		168
3.8	0.0101		164
3.9	0.0102		161
3.9	0.0102		159
4.0	0.0102		158
4.0	0.0102		157
4.1	0.0102		156
4.1	0.0102		156
4.2	0.0102		156
4.2	0.0103		156
4.3	0.0103		156
4.3	0.0103		156
4.4	0.0103		157
4.4	0.0103		157
4.5	0.0103		157
4.5	0.0077		157
4.6	0.0077		155
4.6	0.0077		151
4.7	0.0078		146
4.7	0.0078		140
4.8	0.0078		135
4.8	0.0078		130
4.9	0.0078		127
4.9	0.0078		125
5.0	0.0078		123
5.0	0.0078		122
5.1	0.0078		121
5.1	0.0078		121
5.2	0.0078		120
5.2	0.0078		120
5.3	0.0078		120
5.3	0.0078		120
5.4	0.0079	1	120
5.4	0.0079		120
5.5	0.0079		120
5.5	0.0079		120
5.6	0.0079		120
5.6	0.0079		120
5.7	0.0079		120
5.7	0.0079		120
5.8	0.0079		120
5.8	0.0079		121
5.9	0.0079		121
5.9	0.0079		121
6.0	0.0079	+	121
6.2	0.0079		119
			119
6.4			114

6.6	102
6.8	85
7.0	67
7.2	50
7.4	36
7.6	25
7.8	18
8.0	13
8.2	9
8.4	7
8.6	5
8.8	3
9.0	2
9.2	2
9.4	1
9.6	1
9.8	1
10.0	0
10.2	0
10.4	0

<u>Results</u>

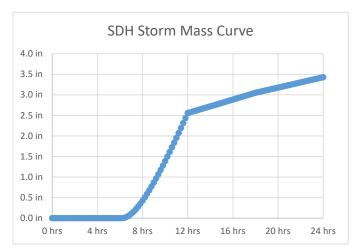
Peak Hydrograph Flow	1043 cfs
Total Volume	480 ac-ft

ASH-G Hydrograph

Characteristics

Drainage Area 4.742 sq mi Time of Concentration 1.58 hr 77.8 **Curve Number** Structure Hazard Classification High **Initial Abstraction** 0.57 in **Maximum Potential Retention** 2.85 in Precipitation 5.85 in ΔD 0.21 hr

<< 0.2-hr time increments are used


Time Increment	Incremental Rainfall			ctions for Each ncrement	5 Point Rain	fall Distribution
0 to 6	0.436	in	0.075		0.075	
6 to 12	4.399	in	0.752		0.826	
12 to 18	0.580	in	0.099		0.926	
18 to 24	0.435	in	0.074		1.000	

Time (hr)	Rainfall	Time (hr)	Rainfall	Time (hr)	Rainfall	Time (hr)	Rainfall
Time (m)	Distribution	Time (iii)	Distribution	Time (iii)	Distribution	Thine (iii)	Distribution
0.00	0.000	6.00	0.075	12.00	0.826	18.00	0.926
0.20	0.002	6.20	0.100	12.20	0.830	18.20	0.928
0.40	0.005	6.40	0.125	12.40	0.833	18.40	0.931
0.60	0.007	6.60	0.150	12.60	0.836	18.60	0.933
0.80	0.010	6.80	0.175	12.80	0.840	18.80	0.936
1.00	0.012	7.00	0.200	13.00	0.843	19.00	0.938
1.20	0.015	7.20	0.225	13.20	0.846	19.20	0.941
1.40	0.017	7.40	0.250	13.40	0.850	19.40	0.943
1.60	0.020	7.60	0.275	13.60	0.853	19.60	0.945
1.80	0.022	7.80	0.300	13.80	0.856	19.80	0.948
2.00	0.025	8.00	0.325	14.00	0.860	20.00	0.950
2.20	0.027	8.20	0.350	14.20	0.863	20.20	0.953
2.40	0.030	8.40	0.375	14.40	0.866	20.40	0.955
2.60	0.032	8.60	0.400	14.60	0.869	20.60	0.958
2.80	0.035	8.80	0.425	14.80	0.873	20.80	0.960
3.00	0.037	9.00	0.451	15.00	0.876	21.00	0.963
3.20	0.040	9.20	0.476	15.20	0.879	21.20	0.965
3.40	0.042	9.40	0.501	15.40	0.883	21.40	0.968
3.60	0.045	9.60	0.526	15.60	0.886	21.60	0.970
3.80	0.047	9.80	0.551	15.80	0.889	21.80	0.973
4.00	0.050	10.00	0.576	16.00	0.893	22.00	0.975
4.20	0.052	10.20	0.601	16.20	0.896	22.20	0.978
4.40	0.055	10.40	0.626	16.40	0.899	22.40	0.980
4.60	0.057	10.60	0.651	16.60	0.903	22.60	0.983
4.80	0.060	10.80	0.676	16.80	0.906	22.80	0.985
5.00	0.062	11.00	0.701	17.00	0.909	23.00	0.988
5.20	0.065	11.20	0.726	17.20	0.912	23.20	0.990
5.40	0.067	11.40	0.751	17.40	0.916	23.40	0.993
5.60	0.070	11.60	0.776	17.60	0.919	23.60	0.995
5.80	0.072	11.80	0.801	17.80	0.922	23.80	0.998
	-	-		-		24.00	1.000

	Rainfall	Total	Acc. Mass	Inc. Mass
Time (hr)	Distribution	Rainfall (in)	Curve of	Curve of
	Distribution	Namilali (III)	Runoff (in)	Runoff (in)
0.00	0.000	0.000	0.000	0.000
0.20	0.002	0.015	0.000	0.000
0.40	0.005	0.029	0.000	0.000
0.60	0.007	0.044	0.000	0.000
0.80	0.010	0.058	0.000	0.000
1.00	0.012	0.073	0.000	0.000
1.20	0.015	0.087	0.000	0.000
1.40	0.017	0.102	0.000	0.000
1.60	0.020	0.116	0.000	0.000
1.80	0.022	0.131	0.000	0.000
2.00	0.025	0.145	0.000	0.000
2.20	0.027	0.160	0.000	0.000
2.40	0.030	0.174	0.000	0.000
2.60	0.032	0.189	0.000	0.000
2.80	0.035	0.203	0.000	0.000
3.00	0.037	0.218	0.000	0.000
3.20	0.040	0.233	0.000	0.000
3.40	0.042	0.247	0.000	0.000
3.60	0.045	0.262	0.000	0.000
3.80	0.047	0.276	0.000	0.000
4.00	0.050	0.291	0.000	0.000
4.20	0.052	0.305	0.000	0.000
4.40	0.055	0.320	0.000	0.000
4.60	0.057	0.334	0.000	0.000
4.80	0.060	0.349	0.000	0.000
5.00	0.062	0.363	0.000	0.000
5.20	0.065	0.378	0.000	0.000
5.40	0.067	0.392	0.000	0.000
5.60	0.070	0.407	0.000	0.000
5.80	0.072	0.421	0.000	0.000
6.00	0.075	0.436	0.000	0.000
6.20	0.100	0.583	0.000	0.000
6.40	0.125	0.729	0.008	0.008
6.60	0.150	0.876	0.030	0.021
6.80	0.175	1.023	0.062	0.032
7.00	0.200	1.169	0.104	0.042
7.20	0.225	1.316	0.155	0.051
7.40	0.250	1.462	0.213	0.058
7.60	0.275	1.609	0.278	0.065
7.80	0.300	1.756	0.348	0.071
8.00	0.325	1.902	0.424	0.076
8.20	0.350	2.049	0.505	0.081
8.40	0.375	2.196	0.590	0.085
8.60	0.400	2.342	0.680	0.089
8.80	0.425	2.489	0.772	0.093
9.00	0.451	2.636	0.868	0.096
9.20	0.476	2.782	0.967	0.099
9.40	0.501	2.929	1.068	0.101
9.60	0.526	3.075	1.172	0.104
9.80	0.551	3.222	1.278	0.106
10.00	0.576	3.369	1.387	0.108

10.20	0.601	3.515	1.497	0.110
10.40	0.626	3.662	1.609	0.112
10.60	0.651	3.809	1.723	0.114
10.80	0.676	3.955	1.838	0.115
11.00	0.701	4.102	1.955	0.117
11.20	0.726	4.248	2.073	0.118
11.40	0.751	4.395	2.192	0.119
11.60	0.776	4.542	2.312	0.120
11.80	0.801	4.688	2.434	0.122
12.00	0.826	4.835	2.557	0.123
12.20	0.830	4.854	2.573	0.016
12.40	0.833	4.874	2.589	0.016
12.60	0.836	4.893	2.605	0.016
12.80	0.840	4.912	2.622	0.016
13.00	0.843	4.932	2.638	0.016
13.20	0.846	4.951	2.654	0.016
13.40	0.850	4.970	2.671	0.016
13.60		4.990	2.687	0.016
13.80	0.856	5.009	2.703	0.016
14.00	0.860	5.028	2.720	0.016
14.20	0.863	5.048	2.736	0.016
14.40	0.866	5.067	2.753	0.016
14.60	0.869	5.086	2.769	0.016
14.80	0.873	5.106	2.785	0.016
15.00	0.876	5.125	2.802	0.016
15.20	0.879	5.144	2.818	0.016
15.40	0.883	5.164	2.835	0.016
15.60	0.886	5.183	2.851	0.017
15.80	0.889	5.202	2.868	0.017
16.00	0.893	5.222	2.884	0.017
16.20	0.896	5.241	2.901	0.017
16.40	0.899	5.260	2.918	0.017
16.60	0.903	5.280	2.934	0.017
16.80	0.906	5.299	2.951	0.017
17.00	0.909	5.318	2.967	0.017
17.20	0.912	5.338	2.984	0.017
17.40	0.916	5.357	3.001	0.017
17.60	0.919	5.376	3.017	0.017
17.80	0.922	5.396	3.034	0.017
18.00		5.415	3.051	0.017
18.20		5.430	3.063	0.013
18.40		5.444	3.076	0.013
18.60		5.459	3.088	0.013
18.80		5.473	3.101	0.013
19.00		5.488	3.113	0.013
19.20	0.941	5.502	3.126	0.013
19.40		5.517	3.138	0.013
19.60	0.945	5.531	3.151	0.013
19.80		5.546	3.163	0.013
20.00		5.560	3.176	0.013
20.20		5.575	3.189	0.013
20.40	0.955	5.589	3.201	0.013
20.60		5.604	3.214	0.013
20.80	0.960	5.618	3.226	0.013
21.00 21.20		5.633 5.647	3.239 3.252	0.013 0.013

21.40	0.968	5.662	3.264	0.013
21.60	0.970	5.676	3.277	0.013
21.80	0.973	5.691	3.290	0.013
22.00	0.975	5.705	3.302	0.013
22.20	0.978	5.720	3.315	0.013
22.40	0.980	5.734	3.328	0.013
22.60	0.983	5.749	3.340	0.013
22.80	0.985	5.763	3.353	0.013
23.00	0.988	5.778	3.366	0.013
23.20	0.990	5.792	3.378	0.013
23.40	0.993	5.807	3.391	0.013
23.60	0.995	5.821	3.404	0.013
23.80	0.998	5.836	3.416	0.013
24.00	1.000	5.850	3.429	0.013

Unit Storm Duration

 ΔD

0.21 << 0.2-hr time increments are used

Time to Peak

Тр

1.05 << rounded to 1.0 hr

2295

Unit Hydrograph Peak Discharge

qp

Time Ratio	Discharge Ratio	Time (hr)	q (cfs)
0.0	0.000	0.000	0
0.1	0.030	0.100	69
0.2	0.100	0.200	230
0.3	0.190	0.300	436
0.4	0.310	0.400	711
0.5	0.470	0.500	1079
0.6	0.660	0.600	1515
0.7	0.820	0.700	1882
0.8	0.930	0.800	2134
0.9	0.990	0.900	2272
1.0	1.000	1.000	2295
1.1	0.990	1.100	2272

Time (hr)	q (cfs)
0	0
0.20	230
0.40	711
0.60	1515
0.80	2134
1.00	2295
1.20	2134
1.40	1790
1.60	1285
1.80	895
2.00	643
2.20	475

1.2	0.930	1.200	2134
1.3	0.860	1.300	1974
1.4	0.780	1.400	1790
1.5	0.680	1.500	1561
1.6	0.560	1.600	1285
1.7	0.460	1.700	1056
1.8	0.390	1.800	895
1.9	0.330	1.900	757
2.0	0.280	2.000	643
2.2	0.207	2.200	475
2.4	0.147	2.400	337
2.6	0.107	2.600	246
2.8	0.077	2.800	177
3.0	0.055	3.000	126
3.2	0.040	3.200	92
3.4	0.029	3.400	67
3.6	0.021	3.600	48
3.8	0.015	3.800	34
4.0	0.011	4.000	25
4.5	0.005	4.500	11
5.0	0.000	5.000	0

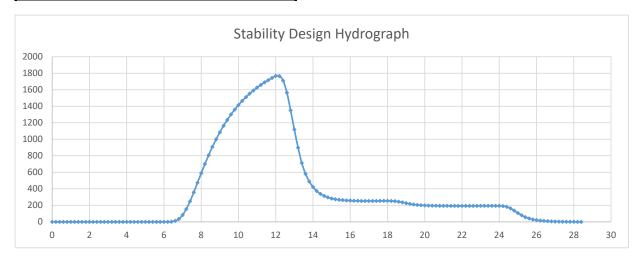
2.40	337
2.60	246
2.80	177
3.00	126
3.20	92
3.40	67
3.60	48
3.80	34
4.00	25
4.20	19
4.40	14
4.60	9
4.80	5
5.00	0
5.20	0
5.40	0
5.60	0
5.80	0
6.00	0
6.20	0
6.40	0

Sum	3061 cfs-h

Check

Unit Hydrograph (per 1 in. Unit Runoff) Variance

3060.2 -0.04%


Stability Design Hydrograph

Time (hrs)	Inc. Runoff	q (cfs)	Composite SDH (cfs)
0.0	0.0000	0	0
0.2	0.0000	230	0
0.4	0.0000	711	0
0.6	0.0000	1515	0
0.8	0.0000	2134	0
1.0	0.0000	2295	0
1.2	0.0000	2134	0
1.4	0.0000	1790	0
1.6	0.0000	1285	0
1.8	0.0000	895	0
2.0	0.0000	643	0
2.2	0.0000	475	0
2.4	0.0000	337	0
2.6	0.0000	246	0
2.8	0.0000	177	0
3.0	0.0000	126	0
3.2	0.0000	92	0
3.4	0.0000	67	0
3.6	0.0000	48	0
3.8	0.0000	34	0
4.0	0.0000	25	0
4.2	0.0000	19	0
4.4	0.0000	14	0
4.6	0.0000	9	0

4.8	0.0000	5	0
5.0	0.0000	0	0
5.2	0.0000		0
5.4	0.0000		0
5.6	0.0000		0
5.8	0.0000		0
6.0	0.0000		0
6.2	0.0001		0
6.4	0.0084		2
6.6	0.0212		11
6.8	0.0324		35
7.0	0.0421		83
7.2	0.0506		155
7.4	0.0581		249
7.6	0.0648		357
7.8	0.0707		473
8.0	0.0761		589
8.2	0.0701		701
8.4	0.0852		807
8.6	0.0891		907
8.8	0.0891		999
9.0	0.0958		1084
9.2	0.0988		1163
9.4	0.1015		1234
9.6	0.1039		1300
9.8	0.1062		1359
10.0	0.1083		1414
10.2	0.1103		1464
10.4	0.1120		1510
10.6	0.1137		1552
10.8	0.1153		1590
11.0	0.1167		1626
11.2	0.1180		1658
11.4	0.1193		1689
11.6	0.1205		1716
11.8	0.1216		1742
12.0	0.1226		1766
12.2	0.0162		1764
12.4	0.0163		1708
12.6	0.0163		1564
12.8	0.0163		1350
13.0	0.0163		1117
13.2	0.0163		898
13.4	0.0163		713
13.6	0.0164		581
13.8	0.0164		489
14.0	0.0164		423
14.2	0.0164		374
14.4	0.0164		339
14.6	0.0164		314
14.8	0.0164		296
15.0	0.0165		283
15.2	0.0165		274
15.4	0.0165		267
15.6	0.0165		263
15.8	0.0165		259
10.0	5.5155		233

16.0	0.0165	257
16.2	0.0166	255
16.4	0.0166	254
16.6	0.0166	253
16.8	0.0166	253
17.0	0.0166	253
17.2	0.0166	253
17.4	0.0166	253
17.6	0.0166	254
17.8	0.0167	254
18.0	0.0167	254
18.2	0.0125	253
18.4	0.0125	251
18.6	0.0125	244
18.8	0.0125	236
19.0	0.0125	226
19.2	0.0126	218
19.4	0.0126	210
19.6	0.0126	205
19.8	0.0126	201
20.0	0.0126	199
20.2	0.0126	197
20.4	0.0126	196
20.6	0.0126	195
20.8	0.0126	194
21.0	0.0126	194
21.2	0.0126	194
21.4	0.0126	193
21.6	0.0126	193
21.8	0.0126	193
22.0	0.0126	193
22.2	0.0127	193
22.4	0.0127	193
22.6	0.0127	193
22.8	0.0127	193
23.0	0.0127	194
23.2	0.0127	194
23.4	0.0127	194
23.6	0.0127	194
23.8	0.0127	194
24.0	0.0127	194
24.2		191
24.4		182
24.6		163
24.8		136
25.0		107
25.2		80
25.4		57
25.6		41
25.8		29
26.0		21
26.2		15
26.4		11
26.6		8
26.8		6
27.0		4

27.2		3
27.4		2
27.6		1
27.8		1
28.0		1
28.2		0
28.4		0

Results

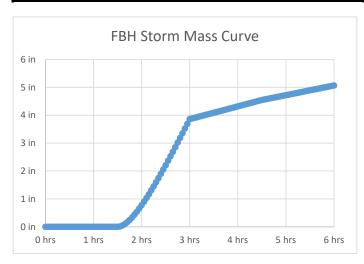
Peak Hydrograph Flow	1766 cfs
Total Volume	868 ac-ft

FBH-L Hydrograph

Characteristics

Drainage Area	4.742 sq mi
Time of Concentration	1.58 hr
Curve Number	77.8
Structure Hazard Classification	High
Initial Abstraction	0.57 in
Maximum Potential Retention	2.85 in
PMP _{6-hr}	7.67 in
PMP _{12-hr}	8.68 in
PMP _{24-hr}	10.2 in
PMP _{72-hr}	12.5 in
ΔD	0.05 hr

Time Increment	Incremental Rainfall	Rainfall Fractions for Each Time Increment	5 Point Rainfall Distribution	
0 to 1.5	0.57 in	0.074	0.074	
1.5 to 3	5.77 in	0.752	0.827	
2 to 4.5	0.76 in	0.099	0.926	
4.5 to 6	0.57 in	0.074	1.000	


Time (hr)	Rainfall	Time (hr)	Rainfall	Time (hr)	Rainfall	Time (hr)	Rainfall
Tille (III)	Distribution	Time (iii)	Distribution	Time (iii)	Distribution	Time (iii)	Distribution
0.00	0.000	1.50	0.074	3.00	0.827	4.50	0.926
0.05	0.002	1.55	0.099	3.05	0.830	4.55	0.928
0.10	0.005	1.60	0.124	3.10	0.833	4.60	0.931
0.15	0.007	1.65	0.150	3.15	0.837	4.65	0.933
0.20	0.010	1.70	0.175	3.20	0.840	4.70	0.936
0.25	0.012	1.75	0.200	3.25	0.843	4.75	0.938
0.30	0.015	1.80	0.225	3.30	0.846	4.80	0.941
0.35	0.017	1.85	0.250	3.35	0.850	4.85	0.943
0.40	0.020	1.90	0.275	3.40	0.853	4.90	0.946
0.45	0.022	1.95	0.300	3.45	0.856	4.95	0.948
0.50	0.025	2.00	0.325	3.50	0.860	5.00	0.950
0.55	0.027	2.05	0.350	3.55	0.863	5.05	0.953
0.60	0.030	2.10	0.375	3.60	0.866	5.10	0.955
0.65	0.032	2.15	0.400	3.65	0.870	5.15	0.958
0.70	0.035	2.20	0.425	3.70	0.873	5.20	0.960
0.75	0.037	2.25	0.450	3.75	0.876	5.25	0.963
0.80	0.040	2.30	0.476	3.80	0.879	5.30	0.965
0.85	0.042	2.35	0.501	3.85	0.883	5.35	0.968
0.90	0.045	2.40	0.526	3.90	0.886	5.40	0.970
0.95	0.047	2.45	0.551	3.95	0.889	5.45	0.973
1.00	0.050	2.50	0.576	4.00	0.893	5.50	0.975
1.05	0.052	2.55	0.601	4.05	0.896	5.55	0.978
1.10	0.054	2.60	0.626	4.10	0.899	5.60	0.980
1.15	0.057	2.65	0.651	4.15	0.903	5.65	0.983
1.20	0.059	2.70	0.676	4.20	0.906	5.70	0.985
1.25	0.062	2.75	0.701	4.25	0.909	5.75	0.988
1.30	0.064	2.80	0.726	4.30	0.912	5.80	0.990

1.35	0.067	2.85	0.751	4.35	0.916	5.85	0.993
1.40	0.069	2.90	0.776	4.40	0.919	5.90	0.995
1.45	0.072	2.95	0.802	4.45	0.922	5.95	0.998
						6.00	1.000

			Acc. Mass	Inc. Mass
Time (hr)	Rainfall	Total	Curve of	Curve of
- ()	Distribution	Rainfall (in)	Runoff (in)	Runoff (in)
0.00	0.000	0.000	0.000	0.000
0.05	0.002	0.019	0.000	0.000
0.10	0.005	0.038	0.000	0.000
0.15	0.007	0.057	0.000	0.000
0.20	0.010	0.076	0.000	0.000
0.25	0.012	0.095	0.000	0.000
0.30	0.015	0.114	0.000	0.000
0.35	0.017	0.133	0.000	0.000
0.40	0.020	0.152	0.000	0.000
0.45	0.022	0.171	0.000	0.000
0.50	0.025	0.190	0.000	0.000
0.55	0.027	0.209	0.000	0.000
0.60	0.030	0.228	0.000	0.000
0.65	0.032	0.247	0.000	0.000
0.70	0.035	0.266	0.000	0.000
0.75	0.037	0.285	0.000	0.000
0.80	0.040	0.304	0.000	0.000
0.85	0.042	0.323	0.000	0.000
0.90	0.045	0.342	0.000	0.000
0.95	0.047	0.361	0.000	0.000
1.00	0.050	0.380	0.000	0.000
1.05	0.052	0.399	0.000	0.000
1.10	0.054	0.418	0.000	0.000
1.15	0.057	0.437	0.000	0.000
1.20	0.059	0.456	0.000	0.000
1.25	0.062	0.475	0.000	0.000
1.30	0.064	0.494	0.000	0.000
1.35	0.067	0.513	0.000	0.000
1.40	0.069	0.532	0.000	0.000
1.45	0.072	0.551	0.000	0.000
1.50	0.074	0.570	0.000	0.000
1.55	0.099	0.762	0.012	0.012
1.60	0.124	0.955	0.046	0.034
1.65	0.150	1.147	0.097	0.051
1.70	0.175	1.339	0.164	0.066
1.75	0.200	1.532	0.243	0.079
1.80	0.225	1.724	0.333	0.090
1.85	0.250	1.916	0.432	0.099
1.90	0.275	2.109	0.539	0.108
1.95	0.300	2.301	0.654	0.115
2.00	0.325	2.493	0.775	0.121
2.05	0.350	2.686	0.901	0.126
2.10	0.375	2.878	1.033	0.131
2.15	0.400	3.070	1.168	0.136
2.20	0.425	3.263	1.308	0.140
2.25	0.450	3.455	1.451	0.143
2.30	0.476	3.647	1.598	0.146
2.35	0.501	3.840	1.747	0.149
_				

2.40	0.526	4.032	1.899	0.152
2.45	0.551	4.224	2.053	0.154
2.50	0.576	4.417	2.210	0.156
2.55	0.601	4.609	2.368	0.158
2.60	0.626	4.801	2.528	0.160
2.65	0.651	4.994	2.690	0.162
2.70	0.676	5.186	2.854	0.164
2.75	0.701	5.378	3.019	0.165
2.80	0.726	5.571	3.185	0.166
2.85	0.751	5.763	3.353	0.168
2.90	0.776	5.955	3.522	0.169
2.95	0.802	6.148	3.691	0.170
3.00	0.827	6.340	3.862	0.171
3.05	0.830	6.365	3.885	0.023
3.10	0.833	6.391	3.907	0.023
3.15	0.837	6.416	3.930	0.023
3.20	0.840	6.441	3.953	0.023
3.25	0.843	6.467	3.975	0.023
3.30	0.846	6.492	3.998	0.023
3.35	0.850	6.517	4.021	0.023
3.40	0.853	6.543	4.043	0.023
3.45	0.856	6.568	4.066	0.023
3.50	0.860	6.593	4.089	0.023
3.55	0.863	6.619	4.111	0.023
3.60	0.866	6.644	4.134	0.023
3.65	0.870	6.669	4.157	0.023
3.70	0.873	6.695	4.180	0.023
3.75	0.876	6.720	4.203	0.023
3.80	0.879	6.745	4.225	0.023
3.85	0.883	6.771	4.248	0.023
3.90	0.886	6.796	4.271	0.023
3.95	0.889	6.821	4.294	0.023
4.00	0.893	6.847	4.317	0.023
4.05	0.896	6.872	4.340	0.023
4.10	0.899	6.897	4.362	0.023
4.15	0.903	6.923	4.385	0.023
4.20	0.906	6.948	4.408	0.023
4.25	0.909	6.973	4.431	0.023
4.30	0.912	6.999	4.454	0.023
4.35	0.916	7.024	4.477	0.023
4.40	0.919	7.049	4.500	0.023
4.45	0.922	7.075	4.523	0.023
4.50	0.926	7.100	4.546	0.023
4.55	0.928	7.119	4.563	0.017
4.60	0.931	7.138	4.580	0.017
4.65	0.933	7.157	4.598	0.017
4.70	0.936	7.176	4.615	0.017
4.75	0.938	7.195	4.632	0.017
4.80	0.941	7.214	4.650	0.017
4.85	0.943	7.233	4.667	0.017
4.90	0.946	7.252	4.684	0.017
4.95	0.948	7.271	4.701	0.017
5.00	0.950	7.290	4.719	0.017
5.05	0.953	7.309	4.736	0.017
5.10	0.955	7.328	4.753	0.017

5.15	0.958	7.347	4.771	0.017
5.20	0.960	7.366	4.788	0.017
5.25	0.963	7.385	4.805	0.017
5.30	0.965	7.404	4.823	0.017
5.35	0.968	7.423	4.840	0.017
5.40	0.970	7.442	4.857	0.017
5.45	0.973	7.461	4.875	0.017
5.50	0.975	7.480	4.892	0.017
5.55	0.978	7.499	4.910	0.017
5.60	0.980	7.518	4.927	0.017
5.65	0.983	7.537	4.944	0.017
5.70	0.985	7.556	4.962	0.017
5.75	0.988	7.575	4.979	0.017
5.80	0.990	7.594	4.997	0.017
5.85	0.993	7.613	5.014	0.017
5.90	0.995	7.632	5.031	0.017
5.95	0.998	7.651	5.049	0.017
6.00	1.000	7.670	5.066	0.017

Unit Storm Duration

ΔD 0.05

Time to Peak

Tp 0.99 << rounded to 1.0 hr

Unit Hydrograph Peak Discharge

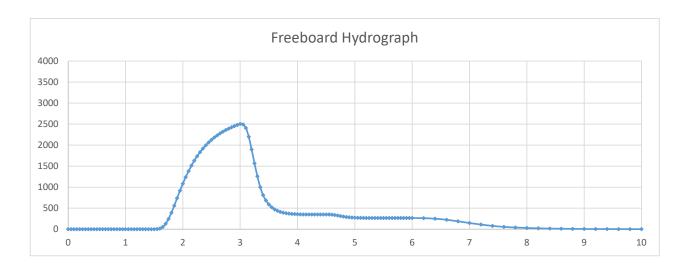
qp 2295

Time	Discharge	Time (hr)	q (cfs)
Ratio	Ratio	Time (iii)	q (cis)
0.0	0.000	0.000	0
0.1	0.030	0.100	69
0.2	0.100	0.200	230
0.3	0.190	0.300	436
0.4	0.310	0.400	711
0.5	0.470	0.500	1079
0.6	0.660	0.600	1515
0.7	0.820	0.700	1882
0.8	0.930	0.800	2134
0.9	0.990	0.900	2272
1.0	1.000	1.000	2295
1.1	0.990	1.100	2272
1.2	0.930	1.200	2134
1.3	0.860	1.300	1974
1.4	0.780	1.400	1790
1.5	0.680	1.500	1561
1.6	0.560	1.600	1285
1.7	0.460	1.700	1056
1.8	0.390	1.800	895
1.9	0.330	1.900	757
2.0	0.280	2.000	643
2.2	0.207	2.200	475
2.4	0.147	2.400	337
2.6	0.107	2.600	246
2.8	0.077	2.800	177
3.0	0.055	3.000	126
3.2	0.040	3.200	92
3.4	0.029	3.400	67
3.6	0.021	3.600	48
3.8	0.015	3.800	34
4.0	0.011	4.000	25
4.5	0.005	4.500	11
5.0	0.000	5.000	0

Time (hr)	q (cfs)
0	0
0.05	230
0.10	711
0.15	1515
0.20	2134
0.25	2295
0.30	2134
0.35	1790
0.40	1285
0.45	895
0.50	643
0.55	475
0.60	337
0.65	246
0.70	177
0.75	126
0.80	92
0.85	67
0.90	48
0.95	34
1.00	25
1.05	19
1.10	14
1.15	9
1.20	5
1.25	0
1.30	0
1.35	0
1.40	0
1.45	0
1.50	0
1.55	0
1.60	0

Sum	1531 cfs-h
-----	------------

Unit Hydrograph (per 1 in. Unit Runoff) Variance


3060.2 49.98%

Freeboard Hydrograph

			Composite
Time (hrs)	Inc. Runoff	q (cfs)	FBH (cfs)
0.0	0.0000	0	0
0.1	0.0000	230	0
0.1	0.0000	711	0
0.2	0.0000	1515	0
0.2	0.0000	2134	0
0.3	0.0000	2295	0
0.3	0.0000	2134	0
0.4	0.0000	1790	0
0.4	0.0000	1285	0
0.5	0.0000	895	0
0.5	0.0000	643	0
0.6	0.0000	475	0
0.6	0.0000	337	0
0.7	0.0000	246	0
0.7	0.0000	177	0
0.8	0.0000	126	0
0.8	0.0000	92	0
0.9	0.0000	67	0
0.9	0.0000	48	0
1.0	0.0000	34	0
1.0	0.0000	25	0
1.1	0.0000	19	0
1.1	0.0000	14	0
1.2	0.0000	9	0
1.2	0.0000	5	0
1.3	0.0000	0	0
1.3	0.0000		0
1.4	0.0000		0
1.4	0.0000		0
1.5	0.0000		0
1.5	0.0000		0
1.6	0.0122		3
1.6	0.0336		16
1.7	0.0514		54
1.7	0.0664		129
1.8	0.0791		243
1.8	0.0900		390
1.9	0.0994		560
1.9	0.1075		738
2.0	0.1146		915
2.0	0.1209		1082
2.1	0.1264		1238
2.1	0.1313		1382
2.2	0.1357		1512
2.2	0.1397		1630
2.3	0.1432		1736
2.3	0.1464		1832

2.4	0.1493	1918
2.4	0.1519	1995
2.5	0.1543	2064
2.5	0.1565	2126
2.6	0.1585	2182
2.6	0.1603	2233
2.7	0.1620	2279
2.7	0.1636	2321
2.8	0.1650	2359
2.8	0.1663	2393
2.9	0.1676	2425
2.9	0.1687	2453
3.0	0.1698	2480
3.0	0.1708	2504
3.1	0.0226	2492
3.1	0.0226	2407
3.2	0.0226	2199
3.2	0.0226	1897
3.3	0.0226	1567
3.3	0.0227	1258
3.4	0.0227	999
3.4	0.0227	812
3.5	0.0227	683
3.5	0.0227	590
3.6	0.0227	521
3.6	0.0227	472
3.7	0.0228	437
3.7	0.0228	411
3.7	0.0228	393
3.8	0.0228	380
3.8	0.0228	371
3.9	0.0228	364
3.9	0.0228	359
4.0	0.0229	356
4.0	0.0229	353
4.1	0.0229	351
4.1	0.0229	350
4.2	0.0229	350
4.2	0.0229	350
4.3	0.0229	350
4.3	0.0229	350

4.4	0.0230	350
4.4	0.0230	351
4.5	0.0230	351
4.5	0.0172	350
4.6	0.0173	346
4.6	0.0173	337
4.7	0.0173	325
4.7	0.0173	312
4.8	0.0173	300
4.8	0.0173	290
4.9	0.0173	283
4.9	0.0173	278
5.0	0.0173	274
5.0	0.0173	271
5.1	0.0173	270
5.1	0.0173	268
5.2	0.0173	267
5.2	0.0173	267
5.3	0.0174	266
5.3	0.0174	266
5.4	0.0174	266
5.4	0.0174	266
5.5	0.0174	266
5.5	0.0174	266
5.6	0.0174	266
5.6	0.0174	266
5.7	0.0174	266
5.7	0.0174	266
5.8	0.0174	266
5.8	0.0174	266
5.9	0.0174	266
5.9	0.0174	266
6.0	0.0174	266
6.2		262
6.4		250
6.6		224
6.8		187
7.0		147
7.2		110
7.4		78
7.6		56
7.8		40
8.0		29
8.2		21
8.4		15
8.6		11
8.8		8
9.0		5
9.2		4
9.4		3
9.4		2
9.8		1
10.0		1
		0
10.2		0
10.4		0

Results

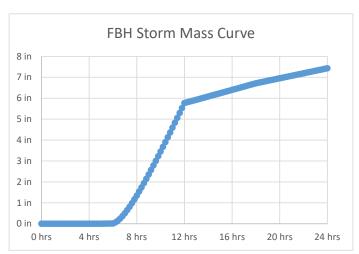
Peak Hydrograph Flow	2504 cfs
Total Volume	1282 ac-ft

FBH-G Hydrograph

Characteristics

Drainage Area	4.742 sq mi	
Time of Concentration	1.58 hr	
Curve Number	77.8	
Structure Hazard Classification	High	
Initial Abstraction	0.57 in	
Maximum Potential Retention	2.85 in	
PMP _{6-hr}	7.67 in	
PMP _{12-hr}	8.68 in	
PMP _{24-hr}	10.2 in	
PMP _{72-hr}	12.5 in	
ΔD	0.21 hr <	< 0.2-hr time increments are used

Time Increment	Incremental Rainfall	Rainfall Fractions for Each Time Increment	5 Point Rainfall Distribution
0 to 6	0.76 in	0.075	0.075
6 to 12	7.67 in	0.752	0.826
12 to 18	1.01 in	0.099	0.925
18 to 24	0.76 in	0.075	1.000


Time (hr)	Rainfall						
Tille (III)	Distribution						
0.00	0.000	6.00	0.075	12.00	0.826	18.00	0.925
0.20	0.002	6.20	0.100	12.20	0.830	18.20	0.928
0.40	0.005	6.40	0.125	12.40	0.833	18.40	0.930
0.60	0.007	6.60	0.150	12.60	0.836	18.60	0.933
0.80	0.010	6.80	0.175	12.80	0.840	18.80	0.935
1.00	0.012	7.00	0.200	13.00	0.843	19.00	0.938
1.20	0.015	7.20	0.225	13.20	0.846	19.20	0.940
1.40	0.017	7.40	0.250	13.40	0.850	19.40	0.943
1.60	0.020	7.60	0.275	13.60	0.853	19.60	0.945
1.80	0.022	7.80	0.300	13.80	0.856	19.80	0.948
2.00	0.025	8.00	0.325	14.00	0.859	20.00	0.950
2.20	0.027	8.20	0.350	14.20	0.863	20.20	0.953
2.40	0.030	8.40	0.375	14.40	0.866	20.40	0.955
2.60	0.032	8.60	0.400	14.60	0.869	20.60	0.958
2.80	0.035	8.80	0.425	14.80	0.873	20.80	0.960
3.00	0.037	9.00	0.450	15.00	0.876	21.00	0.963
3.20	0.040	9.20	0.476	15.20	0.879	21.20	0.965
3.40	0.042	9.40	0.501	15.40	0.883	21.40	0.968
3.60	0.045	9.60	0.526	15.60	0.886	21.60	0.970
3.80	0.047	9.80	0.551	15.80	0.889	21.80	0.973
4.00	0.050	10.00	0.576	16.00	0.892	22.00	0.975
4.20	0.052	10.20	0.601	16.20	0.896	22.20	0.978
4.40	0.055	10.40	0.626	16.40	0.899	22.40	0.980
4.60	0.057	10.60	0.651	16.60	0.902	22.60	0.983
4.80	0.060	10.80	0.676	16.80	0.906	22.80	0.985
5.00	0.062	11.00	0.701	17.00	0.909	23.00	0.988
5.20	0.065	11.20	0.726	17.20	0.912	23.20	0.990

5.40	0.067	11.40	0.751	17.40	0.916	23.40	0.993
5.60	0.070	11.60	0.776	17.60	0.919	23.60	0.995
5.80	0.072	11.80	0.801	17.80	0.922	23.80	0.998
						24.00	1.000

Time (hr)	Rainfall Distribution	Total Rainfall (in)	Acc. Mass Curve of Runoff (in)	Inc. Mass Curve of Runoff (in)
0.00	0.000	0.000	0.000	0.000
0.20	0.002	0.025	0.000	0.000
0.40	0.005	0.051	0.000	0.000
0.60	0.007	0.076	0.000	0.000
0.80	0.010	0.101	0.000	0.000
1.00	0.012	0.127	0.000	0.000
1.20	0.015	0.152	0.000	0.000
1.40	0.017	0.177	0.000	0.000
1.60	0.020	0.203	0.000	0.000
1.80	0.022	0.228	0.000	0.000
2.00	0.025	0.253	0.000	0.000
2.20	0.027	0.279	0.000	0.000
2.40	0.030	0.304	0.000	0.000
2.60	0.032	0.329	0.000	0.000
2.80	0.035	0.355	0.000	0.000
3.00	0.037	0.380	0.000	0.000
3.20	0.040	0.405	0.000	0.000
3.40	0.042	0.431	0.000	0.000
3.60	0.045	0.456	0.000	0.000
3.80	0.047	0.481	0.000	0.000
4.00	0.050	0.507	0.000	0.000
4.20	0.052	0.532	0.000	0.000
4.40	0.055	0.557	0.000	0.000
4.60	0.057	0.583	0.000	0.000
4.80	0.060	0.608	0.001	0.000
5.00	0.062	0.633	0.001	0.001
5.20	0.065	0.659	0.003	0.001
5.40	0.067	0.684	0.004	0.002
5.60	0.070	0.709	0.006	0.002
5.80	0.072	0.735	0.009	0.003
6.00	0.075	0.760	0.012	0.003
6.20	0.100	1.016	0.060	0.048
6.40	0.125	1.271	0.139	0.078
6.60	0.150	1.527	0.241	0.102
6.80	0.175	1.783	0.362	0.121
7.00	0.200	2.038	0.499	0.137
7.20	0.225	2.294	0.650	0.151
7.40	0.250	2.550	0.811	0.162
7.60	0.275	2.805	0.983	0.171
7.80	0.300	3.061	1.162	0.179
8.00	0.325	3.317	1.348	0.186
8.20	0.350	3.572	1.540	0.192
8.40	0.375	3.828	1.738	0.198
8.60	0.400	4.084	1.940	0.202

8.80	0.425	4.339	2.146	0.206
9.00	0.450	4.595	2.356	0.210
9.20	0.476	4.851	2.570	0.213
9.40	0.501	5.106	2.786	0.216
9.60	0.526	5.362	3.005	0.219
9.80	0.551	5.618	3.226	0.221
10.00	0.576	5.873	3.450	0.223
10.20	0.601	6.129	3.675	0.225
10.40	0.626	6.385	3.902	0.227
10.60	0.651	6.640	4.131	0.229
10.80	0.676	6.896	4.361	0.230
11.00	0.701	7.152	4.593	0.232
11.20	0.726	7.407	4.826	0.233
11.40	0.751	7.663	5.060	0.234
11.60	0.776	7.919	5.295	0.235
11.80	0.801	8.174	5.531	0.236
12.00	0.826	8.430	5.768	0.237
12.20	0.830	8.464	5.800	0.031
12.40	0.833	8.497	5.831	0.031
12.60	0.836	8.531	5.862	0.031
12.80	0.840	8.565	5.894	0.031
13.00	0.843	8.598	5.925	0.031
13.20	0.846	8.632	5.956	0.031
13.40	0.850	8.666	5.988	0.031
13.60	0.853	8.699	6.019	0.031
13.80	0.856	8.733	6.051	0.031
14.00	0.859	8.767	6.082	0.031
14.20	0.863	8.800	6.113	0.031
14.40	0.866	8.834	6.145	0.031
14.60	0.869	8.868	6.176	0.031
14.80	0.873	8.901	6.208	0.031
15.00	0.876	8.935	6.239	0.031
15.20	0.879	8.969	6.271	0.031
15.40	0.883	9.002	6.302	0.032
15.60	0.886	9.036	6.334	0.032
15.80		9.070	6.365	0.032
16.00	0.892	9.103	6.397	0.032
16.20	0.896	9.137	6.428	0.032
16.40	0.899	9.171	6.460	0.032
16.60	0.902	9.204	6.492	0.032
16.80	0.906	9.238	6.523	0.032
17.00	0.909	9.272	6.555	0.032
17.20	0.912	9.305	6.586	0.032
17.40	0.916	9.339	6.618	0.032
17.60	0.919	9.373	6.650	0.032
17.80	0.922	9.406	6.681	0.032
18.00	0.925	9.440	6.713	0.032
18.20	0.928	9.465	6.737	0.024
18.40	0.930	9.491	6.761	0.024
18.60	0.933	9.516	6.785	0.024
18.80	0.935	9.541	6.808	0.024
19.00	0.938	9.567	6.832	0.024
19.20	0.940	9.592	6.856	0.024
19.40	0.943	9.617	6.880	0.024
19.60	0.945	9.643	6.904	0.024
15.00	0.545	5.0-5	0.504	5.027

20.00 0.950 9.693 6.952 0.024 20.20 0.953 9.719 6.976 0.024 20.40 0.955 9.744 7.000 0.024 20.60 0.958 9.769 7.023 0.024 20.80 0.960 9.795 7.047 0.024 21.00 0.963 9.820 7.071 0.024 21.20 0.965 9.845 7.095 0.024 21.40 0.968 9.871 7.119 0.024 21.80 0.970 9.896 7.143 0.024 21.80 0.973 9.921 7.167 0.024 22.00 0.975 9.947 7.191 0.024 22.20 0.978 9.972 7.215 0.024 22.40 0.980 9.997 7.239 0.024 22.80 0.985 10.048 7.287 0.024 23.00 0.988 10.073 7.311 0.024 23.40					
20.20 0.953 9.719 6.976 0.024 20.40 0.955 9.744 7.000 0.024 20.60 0.958 9.769 7.023 0.024 20.80 0.960 9.795 7.047 0.024 21.00 0.963 9.820 7.071 0.024 21.20 0.965 9.845 7.095 0.024 21.40 0.968 9.871 7.119 0.024 21.60 0.970 9.896 7.143 0.024 21.80 0.973 9.921 7.167 0.024 22.00 0.975 9.947 7.191 0.024 22.20 0.978 9.972 7.215 0.024 22.40 0.980 9.997 7.239 0.024 22.80 0.983 10.023 7.263 0.024 23.00 0.988 10.073 7.311 0.024 23.20 0.990 10.099 7.335 0.024 23.60	19.80	0.948	9.668	6.928	0.024
20.40 0.955 9.744 7.000 0.024 20.60 0.958 9.769 7.023 0.024 20.80 0.960 9.795 7.047 0.024 21.00 0.963 9.820 7.071 0.024 21.20 0.965 9.845 7.095 0.024 21.40 0.968 9.871 7.119 0.024 21.60 0.970 9.896 7.143 0.024 21.80 0.973 9.921 7.167 0.024 22.00 0.975 9.947 7.191 0.024 22.20 0.978 9.972 7.215 0.024 22.40 0.980 9.997 7.239 0.024 22.60 0.983 10.023 7.263 0.024 23.00 0.988 10.073 7.311 0.024 23.20 0.990 10.099 7.335 0.024 23.60 0.995 10.149 7.383 0.024 23.60 <td>20.00</td> <td>0.950</td> <td>9.693</td> <td>6.952</td> <td>0.024</td>	20.00	0.950	9.693	6.952	0.024
20.60 0.958 9.769 7.023 0.024 20.80 0.960 9.795 7.047 0.024 21.00 0.963 9.820 7.071 0.024 21.20 0.965 9.845 7.095 0.024 21.40 0.968 9.871 7.119 0.024 21.60 0.970 9.896 7.143 0.024 21.80 0.973 9.921 7.167 0.024 22.00 0.975 9.947 7.191 0.024 22.20 0.978 9.972 7.215 0.024 22.40 0.980 9.997 7.239 0.024 22.60 0.983 10.023 7.263 0.024 23.00 0.988 10.048 7.287 0.024 23.20 0.990 10.099 7.335 0.024 23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 <td>20.20</td> <td>0.953</td> <td>9.719</td> <td>6.976</td> <td>0.024</td>	20.20	0.953	9.719	6.976	0.024
20.80 0.960 9.795 7.047 0.024 21.00 0.963 9.820 7.071 0.024 21.20 0.965 9.845 7.095 0.024 21.40 0.968 9.871 7.119 0.024 21.60 0.970 9.896 7.143 0.024 21.80 0.973 9.921 7.167 0.024 22.00 0.975 9.947 7.191 0.024 22.20 0.978 9.972 7.215 0.024 22.40 0.980 9.997 7.239 0.024 22.60 0.983 10.023 7.263 0.024 22.80 0.985 10.048 7.287 0.024 23.00 0.988 10.073 7.311 0.024 23.20 0.990 10.099 7.335 0.024 23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 </td <td>20.40</td> <td>0.955</td> <td>9.744</td> <td>7.000</td> <td>0.024</td>	20.40	0.955	9.744	7.000	0.024
21.00 0.963 9.820 7.071 0.024 21.20 0.965 9.845 7.095 0.024 21.40 0.968 9.871 7.119 0.024 21.60 0.970 9.896 7.143 0.024 21.80 0.973 9.921 7.167 0.024 22.00 0.975 9.947 7.191 0.024 22.20 0.978 9.972 7.215 0.024 22.40 0.980 9.997 7.239 0.024 22.60 0.983 10.023 7.263 0.024 22.80 0.985 10.048 7.287 0.024 23.00 0.988 10.073 7.311 0.024 23.20 0.990 10.099 7.335 0.024 23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 0.998 10.175 7.407 0.024	20.60	0.958	9.769	7.023	0.024
21.20 0.965 9.845 7.095 0.024 21.40 0.968 9.871 7.119 0.024 21.60 0.970 9.896 7.143 0.024 21.80 0.973 9.921 7.167 0.024 22.00 0.975 9.947 7.191 0.024 22.20 0.978 9.972 7.215 0.024 22.40 0.980 9.997 7.239 0.024 22.60 0.983 10.023 7.263 0.024 23.00 0.985 10.048 7.287 0.024 23.20 0.990 10.099 7.335 0.024 23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 0.998 10.175 7.407 0.024	20.80	0.960	9.795	7.047	0.024
21.40 0.968 9.871 7.119 0.024 21.60 0.970 9.896 7.143 0.024 21.80 0.973 9.921 7.167 0.024 22.00 0.975 9.947 7.191 0.024 22.20 0.978 9.972 7.215 0.024 22.40 0.980 9.997 7.239 0.024 22.60 0.983 10.023 7.263 0.024 22.80 0.985 10.048 7.287 0.024 23.00 0.988 10.073 7.311 0.024 23.20 0.990 10.099 7.335 0.024 23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 0.998 10.175 7.407 0.024	21.00	0.963	9.820	7.071	0.024
21.60 0.970 9.896 7.143 0.024 21.80 0.973 9.921 7.167 0.024 22.00 0.975 9.947 7.191 0.024 22.20 0.978 9.972 7.215 0.024 22.40 0.980 9.997 7.239 0.024 22.60 0.983 10.023 7.263 0.024 22.80 0.985 10.048 7.287 0.024 23.00 0.988 10.073 7.311 0.024 23.20 0.990 10.099 7.335 0.024 23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 0.998 10.175 7.407 0.024	21.20	0.965	9.845	7.095	0.024
21.80 0.973 9.921 7.167 0.024 22.00 0.975 9.947 7.191 0.024 22.20 0.978 9.972 7.215 0.024 22.40 0.980 9.997 7.239 0.024 22.60 0.983 10.023 7.263 0.024 22.80 0.985 10.048 7.287 0.024 23.00 0.988 10.073 7.311 0.024 23.20 0.990 10.099 7.335 0.024 23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 0.998 10.175 7.407 0.024	21.40	0.968	9.871	7.119	0.024
22.00 0.975 9.947 7.191 0.024 22.20 0.978 9.972 7.215 0.024 22.40 0.980 9.997 7.239 0.024 22.60 0.983 10.023 7.263 0.024 22.80 0.985 10.048 7.287 0.024 23.00 0.988 10.073 7.311 0.024 23.20 0.990 10.099 7.335 0.024 23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 0.998 10.175 7.407 0.024	21.60	0.970	9.896	7.143	0.024
22.20 0.978 9.972 7.215 0.024 22.40 0.980 9.997 7.239 0.024 22.60 0.983 10.023 7.263 0.024 22.80 0.985 10.048 7.287 0.024 23.00 0.988 10.073 7.311 0.024 23.20 0.990 10.099 7.335 0.024 23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 0.998 10.175 7.407 0.024	21.80	0.973	9.921	7.167	0.024
22.40 0.980 9.997 7.239 0.024 22.60 0.983 10.023 7.263 0.024 22.80 0.985 10.048 7.287 0.024 23.00 0.988 10.073 7.311 0.024 23.20 0.990 10.099 7.335 0.024 23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 0.998 10.175 7.407 0.024	22.00	0.975	9.947	7.191	0.024
22.60 0.983 10.023 7.263 0.024 22.80 0.985 10.048 7.287 0.024 23.00 0.988 10.073 7.311 0.024 23.20 0.990 10.099 7.335 0.024 23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 0.998 10.175 7.407 0.024	22.20	0.978	9.972	7.215	0.024
22.80 0.985 10.048 7.287 0.024 23.00 0.988 10.073 7.311 0.024 23.20 0.990 10.099 7.335 0.024 23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 0.998 10.175 7.407 0.024	22.40	0.980	9.997	7.239	0.024
23.00 0.988 10.073 7.311 0.024 23.20 0.990 10.099 7.335 0.024 23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 0.998 10.175 7.407 0.024	22.60	0.983	10.023	7.263	0.024
23.20 0.990 10.099 7.335 0.024 23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 0.998 10.175 7.407 0.024	22.80	0.985	10.048	7.287	0.024
23.40 0.993 10.124 7.359 0.024 23.60 0.995 10.149 7.383 0.024 23.80 0.998 10.175 7.407 0.024	23.00	0.988	10.073	7.311	0.024
23.60 0.995 10.149 7.383 0.024 23.80 0.998 10.175 7.407 0.024	23.20	0.990	10.099	7.335	0.024
23.80 0.998 10.175 7.407 0.024	23.40	0.993	10.124	7.359	0.024
	23.60	0.995	10.149	7.383	0.024
	23.80	0.998	10.175	7.407	0.024
[24.00 1.000 10.200 7.431 0.02 ⁴	24.00	1.000	10.200	7.431	0.024

Unit Storm Duration

 ΔD

0.21 << 0.2-hr time increments are used

Time to Peak

Тр

1.05 << rounded to 1.0 hr

Unit Hydrograph Peak Discharge

qр

2295

Time Ratio	Discharge Ratio	Time (hr)	q (cfs)
0.0	0.000	0.000	0
0.1	0.030	0.100	69
0.2	0.100	0.200	230

Time (hr)	q (cfs)
0	0
0.20	230
0.40	711

0.3	0.190	0.300	436
0.4	0.310	0.400	711
0.5	0.470	0.500	1079
0.6	0.660	0.600	1515
0.7	0.820	0.700	1882
0.8	0.930	0.800	2134
0.9	0.990	0.900	2272
1.0	1.000	1.000	2295
1.1	0.990	1.100	2272
1.2	0.930	1.200	2134
1.3	0.860	1.300	1974
1.4	0.780	1.400	1790
1.5	0.680	1.500	1561
1.6	0.560	1.600	1285
1.7	0.460	1.700	1056
1.8	0.390	1.800	895
1.9	0.330	1.900	757
2.0	0.280	2.000	643
2.2	0.207	2.200	475
2.4	0.147	2.400	337
2.6	0.107	2.600	246
2.8	0.077	2.800	177
3.0	0.055	3.000	126
3.2	0.040	3.200	92
3.4	0.029	3.400	67
3.6	0.021	3.600	48
3.8	0.015	3.800	34
4.0	0.011	4.000	25
4.5	0.005	4.500	11
5.0	0.000	5.000	0

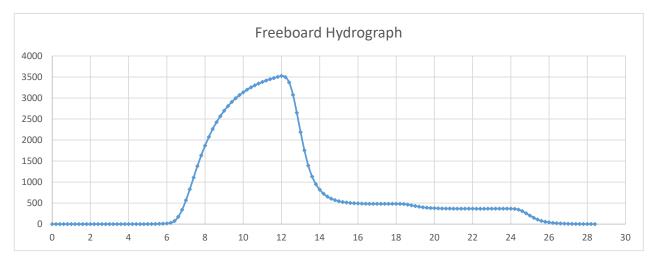
0.60	1515
0.80	2134
1.00	2295
1.20	2134
1.40	1790
1.60	1285
1.80	895
2.00	643
2.20	475
2.40	337
2.60	246
2.80	177
3.00	126
3.20	92
3.40	67
3.60	48
3.80	34
4.00	25
4.20	19
4.40	14
4.60	9
4.80	5
5.00	0
5.20	0
5.40	0
5.60	0
5.80	0
6.00	0
6.20	0
6.40	0

|--|

Check

Unit Hydrograph (per 1 in. Unit Runoff) Variance

3060.2 -0.04%


Freeboard Hydrograph

Time (hrs)	Inc. Runoff	q (cfs)	Composite FBH (cfs)
0.0	0.0000	0	0
0.2	0.0000	230	0
0.4	0.0000	711	0
0.6	0.0000	1515	0
0.8	0.0000	2134	0
1.0	0.0000	2295	0
1.2	0.0000	2134	0
1.4	0.0000	1790	0
1.6	0.0000	1285	0
1.8	0.0000	895	0
2.0	0.0000	643	0
2.2	0.0000	475	0
2.4	0.0000	337	0
2.6	0.0000	246	0

2.8	0.0000	177	0
3.0	0.0000	126	0
3.2	0.0000	92	0
3.4	0.0000	67	0
3.6	0.0000	48	0
3.8	0.0000	34	0
4.0	0.0000	25	0
4.2	0.0000	19	0
4.4	0.0000	14	0
4.6	0.0001	9	0
4.8	0.0004	5	0
5.0	0.0009	0	1
5.2	0.0013		2
5.4	0.0017		4
5.6	0.0021		7
5.8	0.0025		10
6.0	0.0029		15
6.2	0.0484		30
6.4	0.0782		74
6.6	0.1021		175
6.8	0.1214		342
7.0	0.1373		567
7.0	0.1505		829
7.2	0.1503		1108
7.4	0.1017		1380
	0.1711		1634
7.8 8.0	0.1792		1866
8.2	0.1802		2074
8.4	0.1923		2260
8.6	0.1970		2424
8.8	0.2022		2568
9.0			2696
9.0	0.2100 0.2133		2807
9.4	0.2153		2906
	0.2189		
9.6	0.2189		2993
9.8			3069
10.0 10.2	0.2234 0.2254		3137 3198
10.4	0.2272		3252
10.6	0.2288 0.2303		3300
10.8			3343
11.0	0.2317		3381
11.2	0.2329		3416
11.4	0.2341		3447
11.6	0.2352		3475
11.8	0.2362		3501
12.0	0.2371		3524
12.2	0.0313		3498
12.4	0.0313		3371
12.6	0.0313		3075
12.8	0.0313		2649
13.0	0.0313		2187
13.2	0.0314		1755
13.4	0.0314		1392
13.6	0.0314		1131

14.0 0.0314 82 14.2 0.0314 72 14.4 0.0315 60 14.8 0.0315 57 15.0 0.0315 54 15.2 0.0315 52 15.4 0.0315 50 15.8 0.0315 50 15.8 0.0315 49 16.0 0.0316 49 16.2 0.0316 48 16.4 0.0316 48 16.6 0.0316 48 17.0 0.0316 48 17.1 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.4 0.0316 48 17.6 0.0316 48 17.6 0.0317 48 18.0 0.0317 48 18.1 0.0239 46 18.8 0.0239 44 18.6 0.0239 43	14.0 14.2 14.4 14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2	0.0314 0.0314 0.0315 0.0315 0.0315 0.0315 0.0315 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316	950 820 724 655 606 570 545 526 513 503 496 492 488 485
14.2 0.0314 72 14.4 0.0314 65 14.6 0.0315 60 14.8 0.0315 57 15.0 0.0315 54 15.2 0.0315 52 15.4 0.0315 50 15.6 0.0315 50 15.8 0.0315 49 16.0 0.0316 49 16.2 0.0316 48 16.4 0.0316 48 16.6 0.0316 48 16.7 0.0316 48 17.0 0.0316 48 17.1 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.4 0.0316 48 17.4 0.0316 48 17.6 0.0316 48 17.6 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.1 0.0238 47 18.2 0.0238 <t< td=""><td>14.2 14.4 14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2</td><td>0.0314 0.0315 0.0315 0.0315 0.0315 0.0315 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316</td><td>724 655 606 570 545 526 513 503 496 492 488 485 483</td></t<>	14.2 14.4 14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2	0.0314 0.0315 0.0315 0.0315 0.0315 0.0315 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316	724 655 606 570 545 526 513 503 496 492 488 485 483
14.4 0.0314 65 14.6 0.0315 60 14.8 0.0315 57 15.0 0.0315 54 15.2 0.0315 52 15.4 0.0315 50 15.5 0.0315 50 15.8 0.0315 50 15.8 0.0315 49 16.0 0.0316 49 16.2 0.0316 48 16.4 0.0316 48 16.6 0.0316 48 16.6 0.0316 48 17.0 0.0316 48 17.1 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.4 0.0316 48 17.4 0.0316 48 17.4 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.2 0.0238 48 18.4 0.0239 46 18.8 0.0239 <t< td=""><td>14.4 14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2</td><td>0.0314 0.0315 0.0315 0.0315 0.0315 0.0315 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316</td><td>655 606 570 545 526 513 503 496 492 488 485 485</td></t<>	14.4 14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2	0.0314 0.0315 0.0315 0.0315 0.0315 0.0315 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316	655 606 570 545 526 513 503 496 492 488 485 485
14.6 0.0315 60 14.8 0.0315 57 15.0 0.0315 54 15.2 0.0315 52 15.4 0.0315 51 15.6 0.0315 50 15.8 0.0315 49 16.0 0.0316 49 16.2 0.0316 48 16.4 0.0316 48 16.6 0.0316 48 17.0 0.0316 48 17.1 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.6 0.0316 48 17.7 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.1 0.0238 48 18.4 0.0238 47 18.6 0.0239 46 18.8 0.0239 46 18.8 0.0239 43 19.0 0.0239 39 19.6 0.0239 <t< td=""><td>14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2</td><td>0.0315 0.0315 0.0315 0.0315 0.0315 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316</td><td>606 570 545 526 513 503 496 492 488 485 483</td></t<>	14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2	0.0315 0.0315 0.0315 0.0315 0.0315 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316	606 570 545 526 513 503 496 492 488 485 483
14.8 0.0315 57 15.0 0.0315 54 15.2 0.0315 52 15.4 0.0315 51 15.6 0.0315 50 15.8 0.0315 49 16.0 0.0316 49 16.2 0.0316 48 16.4 0.0316 48 16.6 0.0316 48 17.0 0.0316 48 17.1 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.6 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.1 0.0238 48 18.4 0.0238 48 18.5 0.0239 46 18.8 0.0239 46 18.8 0.0239 43 19.0 0.0239 43 19.0 0.0239 39 19.6 0.0239 39 20.0 0.0239 <t< td=""><td>14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2</td><td>0.0315 0.0315 0.0315 0.0315 0.0315 0.0316 0.0316 0.0316 0.0316 0.0316</td><td>570 545 526 513 503 496 492 488 485 483 483</td></t<>	14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2	0.0315 0.0315 0.0315 0.0315 0.0315 0.0316 0.0316 0.0316 0.0316 0.0316	570 545 526 513 503 496 492 488 485 483 483
15.0 0.0315 54 15.2 0.0315 52 15.4 0.0315 51 15.6 0.0315 50 15.8 0.0315 49 16.0 0.0316 49 16.2 0.0316 48 16.4 0.0316 48 16.6 0.0316 48 17.0 0.0316 48 17.0 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.5 0.0316 48 17.6 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.1 0.0238 47 18.2 0.0238 47 18.6 0.0239 46 18.8 0.0239 44 19.0 0.0239 41 19.4 0.0239 39 19.8 0.0239 37	15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0	0.0315 0.0315 0.0315 0.0315 0.0316 0.0316 0.0316 0.0316 0.0316	545 526 513 503 496 492 488 485 483
15.2 0.0315 52 15.4 0.0315 51 15.6 0.0315 50 15.8 0.0315 49 16.0 0.0316 49 16.2 0.0316 48 16.4 0.0316 48 16.6 0.0316 48 17.0 0.0316 48 17.1 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.6 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.1 0.0238 48 18.2 0.0238 48 18.4 0.0239 46 18.8 0.0239 46 18.8 0.0239 43 19.0 0.0239 40 19.6 0.0239 39 19.6 0.0239 37 20.2 0.0239 37	15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0	0.0315 0.0315 0.0315 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316	526 513 503 496 492 488 485 483 483
15.4 0.0315 51 15.6 0.0315 50 15.8 0.0315 49 16.0 0.0316 49 16.2 0.0316 48 16.4 0.0316 48 16.6 0.0316 48 17.0 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.6 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.2 0.0238 48 18.4 0.0238 47 18.6 0.0239 46 18.8 0.0239 44 19.0 0.0239 49 19.4 0.0239 40 19.6 0.0239 39 19.8 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 36	15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0	0.0315 0.0315 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316	513 503 496 492 488 485 483 483
15.4 0.0315 51 15.6 0.0315 50 15.8 0.0315 49 16.0 0.0316 49 16.2 0.0316 48 16.4 0.0316 48 16.6 0.0316 48 17.0 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.6 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.2 0.0238 48 18.4 0.0238 47 18.6 0.0239 46 18.8 0.0239 44 19.0 0.0239 49 19.4 0.0239 40 19.6 0.0239 39 19.8 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 36	15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0	0.0315 0.0315 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316	513 503 496 492 488 485 483 483
15.6 0.0315 50 15.8 0.0315 49 16.0 0.0316 49 16.2 0.0316 48 16.4 0.0316 48 16.6 0.0316 48 17.0 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.6 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.1 0.0238 48 18.4 0.0238 47 18.8 0.0239 46 18.8 0.0239 41 19.0 0.0239 41 19.1 0.0239 39 19.2 0.0239 39 19.3 0.0239 39 19.4 0.0239 39 20.0 0.0239 37 20.1 0.0239 37 20.2 0.0239 37	15.8 16.0 16.2 16.4 16.6 16.8 17.0	0.0315 0.0315 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316	503 496 492 488 485 483 483
16.0 0.0316 49 16.2 0.0316 48 16.4 0.0316 48 16.6 0.0316 48 16.8 0.0316 48 17.0 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.2 0.0238 48 18.4 0.0238 47 18.6 0.0239 46 18.8 0.0239 44 19.0 0.0239 43 19.2 0.0239 40 19.4 0.0239 39 19.6 0.0239 39 19.8 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.4 0.0239 37 20.6 0.0239 37 20.8 0.0239 36	16.0 16.2 16.4 16.6 16.8 17.0	0.0316 0.0316 0.0316 0.0316 0.0316 0.0316	492 488 485 483 483
16.0 0.0316 49 16.2 0.0316 48 16.4 0.0316 48 16.6 0.0316 48 16.8 0.0316 48 17.0 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.2 0.0238 48 18.4 0.0238 47 18.6 0.0239 46 18.8 0.0239 44 19.0 0.0239 43 19.2 0.0239 40 19.4 0.0239 39 19.6 0.0239 39 19.8 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.4 0.0239 37 20.6 0.0239 37 20.8 0.0239 36	16.0 16.2 16.4 16.6 16.8 17.0	0.0316 0.0316 0.0316 0.0316 0.0316 0.0316	492 488 485 483 483
16.2 0.0316 48 16.4 0.0316 48 16.6 0.0316 48 16.8 0.0316 48 17.0 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.6 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.2 0.0238 48 18.4 0.0238 47 18.6 0.0239 46 18.8 0.0239 44 19.0 0.0239 43 19.2 0.0239 40 19.4 0.0239 39 19.6 0.0239 39 19.8 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.4 0.0239 37 20.6 0.0239 36 21.0 0.0239 36	16.2 16.4 16.6 16.8 17.0	0.0316 0.0316 0.0316 0.0316 0.0316	488 485 483 483
16.4 0.0316 48 16.6 0.0316 48 16.8 0.0316 48 17.0 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.6 0.0317 48 18.0 0.0317 48 18.2 0.0238 48 18.4 0.0238 47 18.6 0.0239 46 18.8 0.0239 43 19.0 0.0239 43 19.2 0.0239 41 19.4 0.0239 39 19.8 0.0239 38 20.0 0.0239 37 20.1 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 37 20.6 0.0239 36 21.0 0.0239 36 21.1 0.0239 36 21.2 0.0239 36 21.3 0.0239 <t< td=""><td>16.4 16.6 16.8 17.0 17.2</td><td>0.0316 0.0316 0.0316 0.0316 0.0316</td><td>485 483 483</td></t<>	16.4 16.6 16.8 17.0 17.2	0.0316 0.0316 0.0316 0.0316 0.0316	485 483 483
16.6 0.0316 48 16.8 0.0316 48 17.0 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.6 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.2 0.0238 48 18.4 0.0238 47 18.6 0.0239 46 18.8 0.0239 44 19.0 0.0239 41 19.2 0.0239 41 19.4 0.0239 39 19.8 0.0239 37 20.0 0.0239 37 20.1 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 37 20.6 0.0239 36 21.0 0.0239 36 21.1 0.0239 36 21.2 0.0239 36 21.3 0.0239 <t< td=""><td>16.6 16.8 17.0 17.2</td><td>0.0316 0.0316 0.0316 0.0316</td><td>483 483</td></t<>	16.6 16.8 17.0 17.2	0.0316 0.0316 0.0316 0.0316	483 483
16.8 0.0316 48 17.0 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.6 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.2 0.0238 48 18.4 0.0238 47 18.6 0.0239 46 18.8 0.0239 49 19.0 0.0239 41 19.2 0.0239 40 19.4 0.0239 39 19.8 0.0239 38 20.0 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 36 21.0 0.0239 36 21.0 0.0239 36 21.1 0.0239 36 21.2 0.0239 36 21.3 0.0239 36	16.8 17.0 17.2	0.0316 0.0316 0.0316	483
17.0 0.0316 48 17.2 0.0316 48 17.4 0.0316 48 17.6 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.2 0.0238 48 18.4 0.0238 47 18.6 0.0239 46 19.0 0.0239 44 19.2 0.0239 41 19.4 0.0239 39 19.8 0.0239 38 20.0 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 37 20.8 0.0239 36 21.0 0.0239 36 21.1 0.0239 36 21.2 0.0239 36 21.3 0.0239 36 21.4 0.0239 36 21.5 0.0239 36 21.6 0.0239 36 22.1 0.0240 <t< td=""><td>17.0 17.2</td><td>0.0316 0.0316</td><td></td></t<>	17.0 17.2	0.0316 0.0316	
17.2 0.0316 48 17.4 0.0316 48 17.6 0.0317 48 18.0 0.0317 48 18.0 0.0317 48 18.2 0.0238 48 18.4 0.0238 47 18.6 0.0239 46 18.8 0.0239 44 19.0 0.0239 43 19.2 0.0239 40 19.4 0.0239 39 19.8 0.0239 37 20.0 0.0239 37 20.1 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 37 20.8 0.0239 36 21.0 0.0239 36 21.1 0.0239 36 21.2 0.0239 36 21.3 0.0239 36 21.4 0.0239 36 21.8 0.0239 36 21.8 0.0239 <t< td=""><td>17.2</td><td>0.0316</td><td>ı 1 483</td></t<>	17.2	0.0316	ı 1 483
17.4 0.0316 48 17.6 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.2 0.0238 48 18.4 0.0238 47 18.6 0.0239 46 18.8 0.0239 43 19.0 0.0239 41 19.4 0.0239 40 19.6 0.0239 39 19.8 0.0239 37 20.0 0.0239 37 20.4 0.0239 37 20.4 0.0239 36 21.0 0.0239 36 21.0 0.0239 36 21.1 0.0239 36 21.2 0.0239 36 21.4 0.0239 36 21.5 0.0239 36 21.6 0.0239 36 21.8 0.0239 36 22.1 0.0240 36 22.2 0.0240 36 22.2 0.0240 <t< td=""><td></td><td></td><td>483</td></t<>			483
17.6 0.0316 48 17.8 0.0317 48 18.0 0.0317 48 18.2 0.0238 48 18.4 0.0238 47 18.6 0.0239 46 18.8 0.0239 43 19.0 0.0239 41 19.2 0.0239 40 19.4 0.0239 39 19.8 0.0239 38 20.0 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 36 21.0 0.0239 36 21.0 0.0239 36 21.1 0.0239 36 21.2 0.0239 36 21.3 0.0239 36 21.4 0.0239 36 21.5 0.0239 36 21.6 0.0239 36 22.1 0.0240 36 22.2 0.0240 36 22.4 0.0240 <t< td=""><td>1/4</td><td>0.0010</td><td>483</td></t<>	1/4	0.0010	483
17.8 0.0317 48 18.0 0.0317 48 18.2 0.0238 48 18.4 0.0239 46 18.8 0.0239 44 19.0 0.0239 43 19.2 0.0239 40 19.4 0.0239 39 19.8 0.0239 37 20.0 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 37 20.8 0.0239 36 21.0 0.0239 36 21.1 0.0239 36 21.2 0.0239 36 21.3 0.0239 36 21.4 0.0239 36 21.5 0.0239 36 21.6 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.2 0.0240 36 22.4 0.0240 36 22.8 0.0240 <t< td=""><td></td><td></td><td></td></t<>			
18.0 0.0317 48 18.2 0.0238 48 18.4 0.0239 46 18.8 0.0239 44 19.0 0.0239 43 19.2 0.0239 41 19.4 0.0239 39 19.6 0.0239 39 19.8 0.0239 37 20.0 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 36 21.0 0.0239 36 21.1 0.0239 36 21.2 0.0239 36 21.4 0.0239 36 21.5 0.0239 36 21.6 0.0239 36 21.8 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.1 0.0240 36 22.2 0.0240 36 22.3 0.0240 36 23.4 0.0240 <t< td=""><td></td><td></td><td></td></t<>			
18.2 0.0238 48 18.4 0.0239 46 18.8 0.0239 44 19.0 0.0239 43 19.2 0.0239 41 19.4 0.0239 39 19.6 0.0239 39 19.8 0.0239 37 20.0 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 36 21.0 0.0239 36 21.1 0.0239 36 21.2 0.0239 36 21.4 0.0239 36 21.5 0.0239 36 21.6 0.0239 36 21.8 0.0239 36 22.1 0.0240 36 22.2 0.0240 36 22.4 0.0240 36 22.5 0.0240 36 22.8 0.0240 36 23.1 0.0240 36 23.2 0.0240 <t< td=""><td>.</td><td></td><td></td></t<>	.		
18.4 0.0238 47 18.6 0.0239 46 18.8 0.0239 44 19.0 0.0239 43 19.2 0.0239 40 19.4 0.0239 39 19.6 0.0239 38 20.0 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 36 21.0 0.0239 36 21.2 0.0239 36 21.4 0.0239 36 21.5 0.0239 36 21.6 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.1 0.0240 36 22.2 0.0240 36 22.3 0.0240 36 23.1 0.0240 36 23.2 0.0240 36 23.3 0.0240 36 23.4 0.0240 36 23.8 0.0240 <t< td=""><td></td><td></td><td></td></t<>			
18.6 0.0239 46 18.8 0.0239 43 19.0 0.0239 41 19.4 0.0239 40 19.6 0.0239 39 19.8 0.0239 37 20.0 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 36 21.0 0.0239 36 21.1 0.0239 36 21.2 0.0239 36 21.4 0.0239 36 21.5 0.0239 36 21.6 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.1 0.0240 36 22.2 0.0240 36 22.3 0.0240 36 23.4 0.0240 36 23.4 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 <t< td=""><td></td><td></td><td></td></t<>			
18.8 0.0239 44 19.0 0.0239 43 19.2 0.0239 40 19.4 0.0239 39 19.6 0.0239 38 20.0 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 36 21.0 0.0239 36 21.10 0.0239 36 21.2 0.0239 36 21.4 0.0239 36 21.5 0.0239 36 21.6 0.0239 36 22.0 0.0240 36 22.1 0.0240 36 22.2 0.0240 36 22.3 0.0240 36 23.4 0.0240 36 23.4 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 <			
19.0 0.0239 41 19.2 0.0239 40 19.4 0.0239 39 19.6 0.0239 38 20.0 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 36 21.0 0.0239 36 21.1 0.0239 36 21.2 0.0239 36 21.4 0.0239 36 21.5 0.0239 36 21.6 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.1 0.0240 36 22.2 0.0240 36 22.3 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 <t< td=""><td></td><td></td><td></td></t<>			
19.2 0.0239 41. 19.4 0.0239 39. 19.6 0.0239 38. 20.0 0.0239 37. 20.2 0.0239 37. 20.4 0.0239 37. 20.6 0.0239 36. 21.0 0.0239 36. 21.2 0.0239 36. 21.4 0.0239 36. 21.5 0.0239 36. 21.6 0.0239 36. 21.8 0.0239 36. 22.0 0.0240 36. 22.1 0.0240 36. 22.2 0.0240 36. 22.3 0.0240 36. 23.0 0.0240 36. 23.1 0.0240 36. 23.2 0.0240 36. 23.4 0.0240 36. 23.8 0.0240 36. 23.8 0.0240 36. 23.8 0.0240 36. 23.8 0.0240 36. 23.8			
19.4 0.0239 39 19.8 0.0239 38 20.0 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 36 21.0 0.0239 36 21.2 0.0239 36 21.4 0.0239 36 21.5 0.0239 36 21.6 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.1 0.0240 36 22.2 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.1 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 <t< td=""><td></td><td></td><td></td></t<>			
19.6 0.0239 39 19.8 0.0239 37 20.0 0.0239 37 20.4 0.0239 37 20.6 0.0239 36 21.0 0.0239 36 21.1 0.0239 36 21.4 0.0239 36 21.8 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.1 0.0240 36 22.2 0.0240 36 22.4 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.1 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.5 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36			
19.8 0.0239 38 20.0 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 36 21.0 0.0239 36 21.1 0.0239 36 21.4 0.0239 36 21.8 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.1 0.0240 36 22.2 0.0240 36 22.3 0.0240 36 22.8 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.5 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 24.0 0.0240 36	.		
20.0 0.0239 37 20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 36 20.8 0.0239 36 21.0 0.0239 36 21.12 0.0239 36 21.4 0.0239 36 21.8 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.1 0.0240 36 22.2 0.0240 36 22.3 0.0240 36 22.8 0.0240 36 23.1 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			
20.2 0.0239 37 20.4 0.0239 37 20.6 0.0239 36 20.8 0.0239 36 21.0 0.0239 36 21.2 0.0239 36 21.4 0.0239 36 21.5 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.2 0.0240 36 22.4 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.4 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 24.0 0.0240 36	.		
20.4 0.0239 37 20.6 0.0239 36 20.8 0.0239 36 21.0 0.0239 36 21.2 0.0239 36 21.4 0.0239 36 21.6 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.2 0.0240 36 22.4 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.1 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			
20.6 0.0239 36 20.8 0.0239 36 21.0 0.0239 36 21.2 0.0239 36 21.4 0.0239 36 21.6 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.2 0.0240 36 22.4 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.1 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.5 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			
20.8 0.0239 36 21.0 0.0239 36 21.2 0.0239 36 21.4 0.0239 36 21.6 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.2 0.0240 36 22.4 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.1 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			
21.0 0.0239 36 21.2 0.0239 36 21.4 0.0239 36 21.6 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.2 0.0240 36 22.4 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.1 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			
21.2 0.0239 36 21.4 0.0239 36 21.6 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.2 0.0240 36 22.4 0.0240 36 22.6 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			
21.4 0.0239 36 21.6 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.2 0.0240 36 22.4 0.0240 36 22.6 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			
21.6 0.0239 36 21.8 0.0239 36 22.0 0.0240 36 22.2 0.0240 36 22.4 0.0240 36 22.6 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 24.0 0.0240 36	l		
21.8 0.0239 36 22.0 0.0240 36 22.2 0.0240 36 22.4 0.0240 36 22.6 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			
22.0 0.0240 36 22.2 0.0240 36 22.4 0.0240 36 22.6 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			
22.2 0.0240 36 22.4 0.0240 36 22.6 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			
22.4 0.0240 36 22.6 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 24.0 0.0240 36 24.0 0.0240 36			
22.6 0.0240 36 22.8 0.0240 36 23.0 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			
22.8 0.0240 36 23.0 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			
23.0 0.0240 36 23.2 0.0240 36 23.4 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			366
23.2 0.0240 36 23.4 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			
23.4 0.0240 36 23.6 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			367
23.6 0.0240 36 23.8 0.0240 36 24.0 0.0240 36			367
23.8 0.0240 36 24.0 0.0240 36			367
24.0 0.0240 36			367
			367
24.2 36		0.0240	367
 			362
			345
24.6	24.6		

24.0	257
24.8	257
25.0	202
25.2	151
25.4	108
25.6	77
25.8	56
26.0	40
26.2	29
26.4	21
26.6	15
26.8	11
27.0	8
27.2	5
27.4	4
27.6	3
27.8	2
28.0	1
28.2	1
28.4	0

Results

Peak Hydrograph Flow	3524 cfs
Total Volume	1880 ac-ft

Section 3. Precipitation Values

Precipitation Value - Limited Frequency Hydrographs (Storm Events 01-09 and 12)

Description: The NOAA Precipitation Value is taken from the NOAA Precipitation Frequency Data Server (PFDS). As outlined in NOAA Atlas 2 and Atlas 14, an average precipitation value for entire the basin area is calculated by deriving the values on a grid throughout the drainage basin and taking the average of these values. The exhibit on the following page, NOAA Atlas 14 Precipitation Grid Exhibit , shows the grid points where the point precipitation values were taken and averaged out.

NOAA

Point Precipitation Value:

6-hour				24-hour				10-day	(NOAA Atlas 14)
100-yr	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	500-yr	100-yr	
3.71	1.62	2.02	2.36	2.81	3.16	3.54	4.73	6.86	
3.69	1.62	2.02	2.35	2.80	3.16	3.53	4.72	6.85	
3.68	1.61	2.01	2.34	2.79	3.15	3.52	4.70	6.84	
3.67	1.61	2.01	2.33	2.79	3.14	3.51	4.69	6.83	
3.67	1.60	2.00	2.33	2.78	3.14	3.51	4.69	6.83	
3.66	1.60	2.00	2.33	2.78	3.13	3.50	4.68	6.82	
3.66	1.60	2.00	2.33	2.78	3.13	3.50	4.68	6.82	
3.65	1.60	1.99	2.32	2.77	3.13	3.49	4.66	6.82	
3.66	1.60	2.00	2.32	2.77	3.13	3.50	4.68	6.82	
3.67	1.60	2.00	2.33	2.78	3.13	3.51	4.69	6.83	
3.67	1.61	2.01	2.34	2.79	3.14	3.51	4.69	6.83	
3.67	1.61	2.01	2.34	2.79	3.14	3.51	4.69	6.83	
3.69	1.62	2.02	2.35	2.80	3.15	3.53	4.72	6.85	
3.69	1.62	2.01	2.35	2.80	3.15	3.53	4.72	6.85	
3.68	1.61	2.01	2.34	2.79	3.14	3.51	4.69	6.83	

Average >>

Precipitation Value - Local SEP Hydrograph (Storm Event 10)

Description:

The Local SEP Value is the Probable Maximum Precipitation to occur ever for a period of 6 hours. It involves evaluation of the average PMP and the areal distribution of the PMP within the drainage area using methods outlined in HMR 49. Donald T. Jensen with Utah State University was commissioned to provide an update to HMR 49 resulting in the Probable Maximum Precipitation Estimates for Short-Duration, Small-Area Storms in Utah . The study uses the 1-hour Point PMP Value for 1 mi², taken from HMR 49, and applies updated reduction factors for elevation, duration, and area to adjust the value to match the characteristics of the drainage basin.

Local SEP

Initial Precipitation Value (1-hr, 1-mi²):

(Fig. 4.5. HMR 49, 1984)

Elevation Variation:

Mean Elevation: 6271'

93.6% (Section 4.3.2, HMR 49, 1984)

Adjusted Value 8.90 in

Duration and Areal Variation:

Duration: 6 hrs Area: 5 sq mi 86.15%

(Table 15. Probable Maximum Precipitation for Short-

Duration, Short-Area Storms in Utah, Jensen. 1995, 2002)

7.67 in Adjusted Value

Total Local SEP 7.67 in

Precipitation Value - General SEP Hydrograph (Storm Event 11)

Description

The General SEP Value is the Probable Maximum Precipitation to occur ever for a period of 72 hours. It involves evaluation of the Convergance PMP (precipitation resulting from atmospheric processes not affected by terrain) and the Orographic PMP (precipitation resulting from atmospheric processes affected by terrain) using methods outlined in HMR 49. Convergance and orographic precipitation can occur simultaneously. Donald T. Jensen with Utah State University was commissioned to provide an update to HMR 49 resulting in the 2002 Update for Probable Maximum Precipitation, Utah, 72-Hour Estimates, Areas to 5,000 mi². The study updates the 72-hour Point PMP Value for 10 mi², as shown in Figure 1 of the said study, from which the SEP value is calculated. This point value includes adjustments from barrier and elevation variations and the orographic component. An area reduction factor is applied to adjust the value to match the size of the drainage basin.

General SEP

Point PMP 72-hr Precipitation Value:

12.5 in (Fig. 1. 2002 Update for Probably Maximum Precipitation, Utah, 72-

Hour Estimates, Areas to 5,000 mi², Jensen. 2003)

Total General PMP 12.50 in

Areal Variation:

Area: 5 sq mi

100.00% (Table 1. 2002 Update for Probably Maximum Precipitation, Utah, 72-

Hour Estimates, Areas to 5,000 mi², Jensen. 2003)

Total General SEP 12.50 in

Total General SEP Used 12.50 in

Precipitation Value - Auxiliary Spillway Hydrographs (Storm Events 13 and 14)

<u>Description</u> The ASH Storm Events are the maximum precipitation events used to design the auxiliary spillway and top

of dam elevation as determined by the equations set forth in TR-60, Table Figure 2-2, using the PMP

precipitation value and the 100-year precipitation value.

Local ASH P100: 2.75 in <100-yr, 6-hr NWS (TR-60, Figure 2-2)

PMP: 7.67 in < Local SEP

ASH-L Precipitation Value 4.03 in

General ASH P100: 3.51 in <100-yr, 24-hr NWS (TR-60, Figure 2-2)

PMP: 12.50 in < General SEP

ASH-G Precipitation Value 5.85 in

Precipitation Value - Freeboard Hydrographs (Storm Events 15 and 16)

<u>Description</u> The FBH Storm Events are the maximum precipitation events used to design the spillway and top of dam

elevation as determined by the equations set forth in TR-60, Table Figure 2-2, using the PMP precipitation

value (and applying a duration reduction factor for the 24-hour General FBH).

Local FBH PMP: 7.67 in < Local (6-hr) SEP (TR-60, Figure 2-2)

FBH-L Precipitation Value 7.67 in

General FBH PMP: 12.50 in < Local (72-hr) SEP (TR-60, Figure 2-2)

24-hour Duration Reduction Factor:

81.6%

FBH-G Precipitation Value 10.20 in

Section 4. Wave Runup

Wave Runup - 50 mph Wind

Design Wind

Fastest Mile Wind:

50 mph

Maximum 1-hr wind

45 mph (Fig. 6, McCartney)

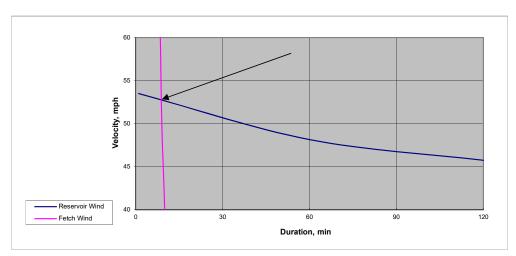
Fetch (F) Length:

0.42 miles (see attached Fetch Length Exhibit)

Water-Land Velocity Ratio:

1.07 (Page 11, McCartney)

Note: 120-minute velocity is calculated by multiplying the 60-minute velocity by 0.95.


Reservoir Wind:

Duration	Velocity (Land)	Velocity (Water)
min	mph	mph
1	50	53.5
60	45	48.2
120	43	45.7

0.42-mi. Fetch Wind:

Duration	Velocity (Land)	Velocity (Water)
min	mph	mph
10	•	40
9	-	50
8.5	-	60

Note: Duration taken from Fig. 11, McCartney.

The Design Wind is taken from the intersection of the curves in the above chart:

U =	52.8 mph for 8.8 min.	

Design Wave

Using a Design Wind of 52.8 mph for 8.8 minutes, the Design Wave is:

H_s = 1.40 ft (Fig. 11, McCartney)

Design Wave Significant Time Period Using a Design Wind of 52.8 mph over a 0.42-mi. fetch, the Design Wave Significant Period is: $T_s = 2.2 \text{ sec}$ (Fig. 12, McCartney)

Wave Runup - 50 mph Wind (cont.)

Wave Runup

Wave Runup, \mathbf{R}_{s} , is calculated using the following equation:

$$\frac{R_s}{H_s} = \frac{1}{0.4 + \left(\frac{H_s}{L_o}\right)^{1/2} \cot \theta}$$

where:

$$H_s = 1.40 \text{ ft}$$
 $L_o = 5.12(T_s)^2 = 24.8 \text{ ft}$
 $\cot \theta = 1.5$

Therefore:

Maximum Wave Runup, \mathbf{R}_{max} , is calculated using the following equation:

$$R_{\rm max} = R_s \times 1.5$$

Therefore:

Wind Setup

Wind Setup, **S**, is calculated using the following equation:

$$S = \frac{2U^2F}{1400D}$$

where:

$$\begin{array}{ccc} & U = & 52.8 \text{ mph} \\ & F = & 0.42 \text{ mi} \\ D \text{ (ave. water depth)} = & 50 \text{ ft} \end{array}$$

Therefore:

Required Freeboard

The required amount of freeboard is the sum of the maximum wave runup and the wind setup.

Required Freeboard = 2.81 ft

Wave Runup - 100 mph Wind

Design Wind

Fastest Mile Wind:

100 mph

Maximum 1-hr wind

45 mph (Fig. 6, McCartney)

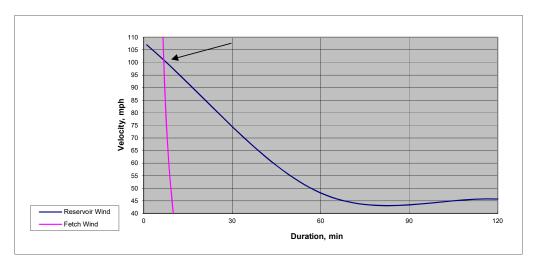
Fetch (F) Length:

0.42 miles (see attached Fetch Length Exhibit)

Water-Land Velocity Ratio:

1.07 (Page 11, McCartney)

Note: 120-minute velocity is calculated by multiplying the 60-minute velocity by 0.95.


Reservoir Wind:

Duration	Velocity (Land)	Velocity (Water)
min	mph	mph
1	100	107.0
60	45	48.2
120	43	45.7

0.42-mi. Fetch Wind:

Duration	Velocity (Land)	Velocity (Water)
min	mph	mph
10	-	40
8.5	-	60
7.5	-	80
6.8	-	100
6.3	-	120

Note: Duration taken from Fig. 11, McCartney.

The Design Wind is taken from the intersection of the curves in the above chart:

U = 101 mph for 7.0 min.	
--------------------------	--

Design Wave

Using a Design Wind of 101 mph for 7.0 minutes, the Design Wave is:

H_s = 3.10 ft

(Fig. 11, McCartney)

<u>Design Wave Significant</u> <u>Time Period</u> Using a Design Wind of 101 mph over a 0.42-mi. fetch, the Design Wave Significant Period is: $T_s = 2.9 \text{ sec}$ (Fig. 12, McCartney)

Wave Runup - 100 mph Wind (cont.)

Wave Runup

Wave Runup, \mathbf{R}_{s} , is calculated using the following equation:

$$\frac{R_s}{H_s} = \frac{1}{0.4 + \left(\frac{H_s}{L_o}\right)^{1/2} \cot \theta}$$

where:

$$H_s = 3.10 \text{ ft}$$
 $L_o = 5.12(T_s)^2 = 43.1 \text{ ft}$
 $\cot \theta = 1.5$

Therefore:

R _s = 3.86 ft	
--------------------------	--

Maximum Wave Runup, $\mathbf{R}_{\text{max}},$ is calculated using the following equation:

$$R_{\text{max}} = R_s \times 1.5$$

Therefore:

Wind Setup

Wind Setup, **S**, is calculated using the following equation:

$$S = \frac{2U^2F}{1400D}$$

where:

$$\begin{array}{ccc} & & & & & & \\ U = & & & & \\ F = & & & \\ D \text{ (ave. water depth)} = & & & \\ \end{array}$$

Therefore:

Required Freeboard

The required amount of freeboard is the sum of the maximum wave runup and the wind setup.

Required Freeboard = 5.92 ft

Wave Action

Wave Action

Fetch (F) Length:

0.42 miles (see attached Fetch Length Exhibit)

Maximum Land Wind Velocity:

81 mph (TR-56, Figure 4)

Water-Land Velocity Ratio:

1.07 (TR-56, Figure 5)

Overwater Wind Velocity

87 mph (TR-56, Equation 2)

Significant Wave Height

1.75 ft (TR-56, Equation 3)

Section 5. Emergency Drain

Emergency Drain Pipeline Design

OUTLET WORKS	
24" DI Pipe Inner Diameter (in)	24
Pipe Cross-Section Area (sf)	3.1
Pipe Circumference (ft)	6.3.
Pipe Length (ft)	375
Trash Loss Coefficient, K _t	1.23
Trash Rack Gross-Net Area Ratio	0.3
Trash Rack Area (sf)	100
Entrance Loss Coefficient, K _e	0.5
Friction Loss Coefficient, K _f	4.05
Manning's Coefficient	0.012

EMERGENCY DRAIN	
30" DI Pipe Inner Diameter (in)	30
Pipe Cross-Section Area (sf)	5.7
Pipe Circumference (ft)	8.5
Pipe Length (ft)	300
Bend Loss Coefficient, K _b	0.7
45° Bend Loss Coefficient	0.7
Friction Loss Coefficient, Kf	2.38
Manning's Coefficient	0.012
Discharge Loss Coefficient, Kd	1
Pipe Discharge Elevation (ft)	5450

Water Surface Elev (ft)	Water Storage (ac-ft)	Discharge Volume (ac-ft)	Cum. Discharge Vol. (ac-ft)	Height (ft)	Velocity (fps)	Discharge (cfs)	Discharge (ac-ft/day)	Discharge Time (days)	Cum. Discharge Time (days)
5546									
5545.5	6055		0	95.8	26.7	131.0	259.9		
5545	5916	139	139	95.3	26.7	130.7	259.2	0.536	0.5
5544	5777	139	278	94.5	26.6	130.2	258.2	0.538	1.1
5542	5419	179	636	92.5	26.3	128.8	255.5	0.701	2.5
5540	5074	173	981	90.5	26.0	127.4	252.7	0.685	3.8
5538	4742	166	1313	88.5	25.7	126.0	249.9	0.664	5.2
5536	4423	160	1632	86.5	25.4	124.5	247.0	0.648	6.4
5534	4116	154	1939	84.5	25.1	123.1	244.2	0.631	7.7
5532	3823	147	2232	82.5	24.8	121.6	241.3	0.609	8.9
5530	3542	141	2513	80.5	24.5	120.1	238.3	0.592	10.1
5528	3274	134	2781	78.5	24.2	118.6	235.3	0.569	11.2
5526	3018	128	3037	76.5	23.9	117.1	232.3	0.551	12.3
5524	2773	123	3282	74.5	23.6	115.6	229.3	0.537	13.4
5522	2542	116	3513	72.5	23.3	114.0	226.2	0.513	14.4
5520	2323	110	3732	70.5	22.9	112.4	223.0	0.493	15.4
5518	2117	103	3938	68.5	22.6	110.8	219.8	0.469	16.3
5516	1922	98	4133	66.5	22.3	109.2	216.6	0.452	17.2
5514	1737	93	4318	64.5	21.9	107.5	213.3	0.436	18.1
5512	1563	87	4492	62.5	21.6	105.9	210.0	0.414	18.9
5508	1248	76	4807	58.5	20.9	102.4	203.2	0.374	20.4
5506	1106	71	4949	56.5	20.5	100.7	199.7	0.356	21.1
5504	973	67	5082	54.5	20.2	98.9	196.1	0.342	21.8
5502	851	61	5204	52.5	19.8	97.0	192.5	0.317	22.4
5500	738	57	5317	50.5	19.4	95.2	188.8	0.302	23.0
5498	634	52	5421	48.5	19.0	93.3	185.0	0.281	23.6
5497	587	47	5468	47.5	18.8	92.3	183.1	0.257	23.9
5496	539	48	5516	46.5	18.6	91.3	181.1	0.265	24.1

RESULTS	
Water Surface Elevation @ 24 Days	5497
Vol. Drained @ 24 Days (ac-ft)	5468
% Drained @ 24 Days	90%
Vol. Remaining @ 24 Days (ac-ft)	587
Average Flow Rate (cfs)	117

Air Vent Design

This program is to aid in the design of air vents for low level outlet works of medium size dams. The design assumption is that 80 percent gate opening the maximum air requirement will occur. Also, the maximum air velocity is not to exceed 150 fps. Although both parameters can be defined by the user. The method used below was developed by the U.S. Army Corps of Engineers in 1946.

User Defined Parameters

Gravity (ft/s)	32.2
Elev. Sluice Invert at Gate (ft)	5493.00
Design Pool Elevation (ft)	5517.00
Diameter (ft)	2.50
Discharge Coefficient	0.60
Gate Opening (%)	80%
Maximum Air Velocity (ft/s)	150.00
	<u> </u>

AIR VENT
AIR VENT H
D EL

Slope of Outlet	0.007
Pipe Length (ft)	675
Cu	1.486
Manning's n	0.012

Calculated Parameters

Depth of Water at Vena Contracta (y) in (ft) = 1.200

y = Discharge Coefficient x Gate Opening x Diameter (D)

$$a$$
 (radians) =1.531

$$a = a\cos\left(1 - \frac{Y}{R}\right)$$

Area at Vena Contracta (
$$ft^2$$
) = 2.329

$$A_{vc} = R^2 \cdot (\alpha - \cos \alpha \cdot \sin \alpha)$$

Effective Head (H) in (ft) = 22.800

H = Design Pool Elev.- Elev. Sluice Invert at Gate - Depth of Water at Vena Contracta (y)

Water Discharge (
$$Q_W$$
) in (ft^3/s) = 89.260

$$Q = A_{vc} \sqrt{2 \cdot g \cdot H}$$

Water Velocity
$$(V_W)$$
 in $(ft/s) = 38.319$

$$V_w = \frac{Q_w}{A_{vc}}$$

$$F_r = \frac{V_w}{\sqrt{g \cdot y}}$$

$$\beta = 0.171$$

$$\beta = 0.03(F_r - 1)^{1.06}$$

Air Discharge (
$$Q_a$$
) in (ft^3/s) = 15.261

$$Q_a = \beta \cdot Q_w$$

Area of Air Vent Required (ft²) = 0.102

$$A_v = \frac{Q_a}{Maximum_Air_Velocity}$$

Diameter for Circular Vent (ft) = 0.360

$$D_{v} = \sqrt{\frac{A_{v} \cdot 4}{\pi}}$$

Normal Depth (Y_n) in (ft) = Full Pipe

Vent Ring Design

Air Vent Diameter (in) = 6.0Air Vent Area (in²) = 28.27

Combined Req'd Area of Vent Ring Holes (in²) = 56.55

Vent Ring Hole Diameter (in) = 1 Vent Ring Hole Area (in²) = 0.79

Req'd Number of Vent Rings Holes = 36.0

Appendix C. Model Output

```
Storm Event 1.
                2-year, 24-hour [HEC-1]
Storm Event 2.
                5-year, 24-hour [HEC-1]
Storm Event 3.
                10-year, 24-hour [HEC-1]
Storm Event 4.
                25-year, 24-hour [HEC-1]
                50-year, 24-hour [HEC-1]
Storm Event 5.
Storm Event 6.
                100-year, 24-hour [HEC-1]
                500-year, 24-hour [HEC-1]
Storm Event 7.
                100-year, 6-hour AMC III [HEC-1]
Storm Event 8.
                100-year, 24-hour AMC III [HEC-1]
Storm Event 9.
                Local SEP Hydrograph [HEC-1]
Storm Event 10.
Storm Event 11. General SEP Hydrograph [HEC-1]
Storm Event 12. Principal Spillway Hydrograph [HEC-1]
Storm Event 13. Local Auxiliary Spillway Hydrograph [HEC-1]
Storm Event 14. General Auxiliary Spillway Hydrograph [HEC-1]
Storm Event 15. Local Freeboard Hydrograph [HEC-1]
Storm Event 16. General Freeboard Hydrograph [HEC-1]
Spillway Analysis [SITES]
Breach Analysis [HEC-RAS]
```


Storm Event 1. 2-year, 24-hour

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

PAGE 1

 X
 X
 XXXXXXX
 XXXXXX
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 <t

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

HEC-1 INPUT

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

```
LINE
                ID.....1....2....3....4....5....6....7....8....9....10
                     HYDROLOGY STUDY for COVE RESERVOIR
                TD
                     Located in KANE COUNTY, UTAH
   2
                ID
                ID
                TD
                     AUG 2020
   5
                ID
                ID
                     PREPARED BY ALPHA ENGINEERING
                     43 SOUTH 100 EAST, SUITE 100
ST. GEORGE, UTAH 84770
TEL: (435) 628-6500
                TD
   8
                ID
 10
11
               ID
ID
                     FAX: (435) 628-6553
  12
                ID
                     2-YR, 24-HR, AMC II
  13
               ID
*Diagram
  14
                JR
                      PREC
                                1.0
  15
                ΙT
                        72
                                  0
                                           0
                                                  50
                         0
  16
                IO
  17
                IN
                        72
  18
                KK
                     R1
 19
20
                KM
                     Runoff from Basin 1
                ВА
                     0.503
               PB
PC
  21
                     1.61
  22
                              0.020
                                      0.046
                                               0.070
                                                       0.095
                                                                0.130
                                                                         0.180
                                                                                 0.300
                                                                                          0.520
                                                                                                  0.650
                         0
  23
                PC
                     0.700
                              0.745
                                      0.785
                                               0.820
                                                       0.850
                                                                         0.905
                                                                                 0.930
                                                                                          0.955
                                                                                                  0.980
                                                                0.880
  24
                PC
                     1.000
  25
                15
                         a
                               72.8
  26
                      0.51
                UD
  27
                KK
                     RB1
  28
                KM
                     Route B1
  29
                RD
                               .045
                                        .050
                      4928
                                                        TRAP
                                                                   20
                                                                            20
  30
                KK
                     B2
                     Runoff from Basin 2
  31
                KM
  32
                ВА
                     0.436
                LS
                               72.5
  33
  34
                      0.52
                UD
  35
                KK
 36
37
               KM
BA
                     Runoff from Basin 3
                     0.279
  38
                LS
  39
                UD
                      0.39
                                                HEC-1 INPUT
                                                                                                            PAGE 2
```

1

LINE

1

ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10

```
40
41
42
                KK
KM
HC
                      C1
Combine RB1, B2, B3
                KK
KM
RD
  43
                       RC1
 44
45
                      Route RC1
7255 .060
                                        .030
                                                            TRAP
                                                                                 20
                                                                        20
  46
                 KK
 47
48
49
                KM
BA
LS
                       Runoff from Basin 4
                       0.453
                                 73.3
                        0.48
  50
                 UD
                KK
KM
BA
LS
  51
52
53
54
55
                      Runoff from Basin 5
                                 74.1
                        0
0.63
                 UD
  56
                 KK
                KM
HC
*
  57
58
                       Combine RC1, B4, B5
                      RC2
Route C2
2380 .039
  59
60
                 KK
KM
  61
                 RD
                                                            TRAP
                                                                        40
                                                                                  2
                KM
BA
LS
 63
64
65
                       Runoff from Basin 6
                       0.150
                                 84.3
                        0.19
                UD
*
  66
 67
68
69
70
71
                 KK
KM
                       Runoff from Basin 7
                BA
LS
                      0.327
                                75.7
                UD
*
                        0.46
  72
                 KK
                KM
HC
*
  73
74
                       Combine RC2, B6, B7
                          3
                                                   HEC-1 INPUT
                                                                                                                    PAGE 3
LINE
                 ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
  75
                 KK
                       RC3
  76
77
                KM
RD
                       Route C3
                                       .030
                      11323 .023
                                                            TRAP
                                                                                 20
                                                                        40
  78
79
80
                 KK
KM
                       В8
                       Runoff from Basin 8
                BA
LS
                       1.012
                                 84.0
  81
                        0
0.67
                 UD
                 KK
                KM
BA
                      Runoff from Basin 9
 84
85
                      0.242
  86
87
                LS
UD
*
                       0.26
                                 85.5
 88
89
                 KK
                       B10
                 KM
                       Runoff from Basin 10
                 ВА
                       0.129
  91
92
                                 86.7
                LS
UD
                        0
0.18
  93
                 KK
                KM
HC
*
                       Combine B9, B10
  95
  96
                 KK
                       RC4
                 KM
  97
                       Route C4
                                .037
                                          .030
                                                            TRAP
                                                                        40
                                                                                 20
```

```
KK
KM
BA
LS
UD
              100
                                    Runoff from Basin 11
              101
102
                                    0.279
                                              84.8
                                     0.39
              103
                             KK
KM
HC
*
              104
                                    Combine RC3, B8, RC4, B11
             105
106
              107
                              KK
                                    B12
              108
                              KM
                                    Runoff from Basin 12
                             BA
LS
              109
                                    0.127
              110
                                              81.2
                                     0.40
              111
                              UD
1
                                                                 HEC-1 INPUT
                                                                                                                                  PAGE 4
                              ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
             LINE
             112
                                    Call
                              KK
                             KM
HC
*
                                    Combine C5, B12
              113
              114
                                    Cove Reservoir
Routing through Res'v
1 ELEV 5545.5
             115
116
                             KK
KM
              117
                             RS
SV
SV
SE
SE
SL
SS
                                                                                    738
8000
              118
119
                                              19
4423
                                                       95
5419
                                                                          453
7347
                                                                                                                         2773
                                        0
                                                                  240
                                                                                             1105
                                                                                                      1563
                                                                                                               2217
                                     3542
                                                                 6149
              120
                                     5470
                                              5476
                                                        5482
                                                                 5488
                                                                           5494
                                                                                             5506
                                                                                                       5512
                                                                                                                5518
                                                                                                                         5524
                                  5530
5545.5
5549.2
                                                       5542
0.6
2.67
                                                                 5548
0.5
1.5
              121
122
                                             5536
4.909
                                                                           5552
                                                                                    5558
              123
                                                 30
                             ST
*
                                              1892
             124
                                   5552.0
                                                         2.9
                                                                  1.5
1
                   SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
              (V) ROUTING
                                      (--->) DIVERSION OR PUMP FLOW
  LINE
   NO.
              (.) CONNECTOR
                                      (<---) RETURN OF DIVERTED OR PUMPED FLOW
    18
               В1
                    ٧
    27
               RB1
    30
                             B2
    35
                                           В3
    40
               C1
    43
               RC1
    46
    51
                                           В5
    56
               C2
    59
               RC2
    62
     67
                                           В7
    72
               С3
    75
               RC3
```

78

B11

```
83
                                    В9
                                                 B10
 88
 93
                                    C4
 96
                                    RC4
 99
                                                 B11
104
107
                       B12
112
          Call ...
115
          Cove
```

* U.S. ARMY CORPS OF ENGINEERS * HYDROLOGIC ENGINEERING CENTER * 609 SECOND STREET * DAVIS, CALIFORNIA 95616 * (916) 756-1104 * *

HYDROLOGY STUDY for COVE RESERVOIR Located in KANE COUNTY, UTAH

AUG 2020

PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 FAX: (435) 628-6553

2-YR, 24-HR, AMC II

```
OUTPUT CONTROL VARIABLES
16 IO
                      IPRNT
                                       0 PRINT CONTROL
                                      0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
                      IPLOT
                      QSCAL
   IT
                HYDROGRAPH TIME DATA
                                      72 MINUTES IN COMPUTATION INTERVAL
                       NMIN
                      IDATE
                                          STARTING DATE
                                          STARTING TIME
NUMBER OF HYDROGRAPH ORDINATES
                      ITIME
                                    0000
                                      50
0
                         NO
                     NDDATE
                                          ENDING DATE
                     NDTIME
                                    1048
                                          ENDING TIME
                     ICENT
                                      19
                                          CENTURY MARK
                  COMPUTATION INTERVAL
                                           1.20 HOURS
                                          58.80 HOURS
                       TOTAL TIME BASE
```

ENGLISH UNITS
DRAINAGE AREA

DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION NPLAN

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION
RATIOS OF PRECIPITATION

*** ***

*** ***

Call * 112 KK

Combine C5, B12

114 HC

HYDROGRAPH AT STATION Call SUM OF 2 HYDROGRAPHS
PLAN 1, RATIO = 1.00

****	****	*****	****	*****	****	****	******	*****	******	****	****	******	*****	*******	***	*****	*****	*****	*******
					*					*					*				
DA	MON	HRMN	ORD	FLO	* ا	DA	MON HRMM	I ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA MO	N HRMN	ORD	FLOW
					*					*					*				
1		0000	1	0	. *	1	1536	14	56.	*	2	0712	27	0.	*	2	2248	40	0.
1		0112	2	0	. *	1	1648	15	52.	*	2	0824	28	0.	*	3	0000	41	0.
1		0224	3	0	. *	1	1800	16	50.	*	2	0936	29	0.	*	3	0112	42	0.
1		0336	4	0	. *	1	1912	17	47.	*	2	1048	30	0.	*	3	0224	43	0.
1		0448	5	0	. *	1	2024	18	45.	*	2	1200	31	0.	*	3	0336	44	0.
1		0600	6	0	. *	1	2136	19	45.	*	2	1312	32	0.	*	3	0448	45	0.
1		0712	7	0	. *	1	2248	20	46.	*	2	1424	33	0.	*	3	0600	46	0.
1		0824	8	4	. *	2	0000	21	43.	*	2	1536	34	0.	*	3	0712	47	0.
1		0936	9	59	. *	2	0112	22	25.	*	2	1648	35	0.	*	3	0824	48	0.
1		1048	10	89	. *	2	0224	23	10.	*	2	1800	36	0.	*	3	0936	49	0.
1		1200	11	78	. *	2	0336	24	5.	*	2	1912	37	0.	*	3	1048	50	0.
1		1312	12	65	. *	2	0448	25	2.	*	2	2024	38	0.	*				
1		1424	13	60	. *	2	0600	26	1.	*	2	2136	39	0.	*				
															*				

F	PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	58.80-HR
	` ,	` ,	(CFS)				
+	89.	10.80		70.	39.	16.	16.
			(INCHES)	.137	.306	.306	.306
			(AC-FT)	35.	77.	77.	77.

CUMULATIVE AREA = 4.74 SQ MI

*** ***

115 KK Reservoir Cove

Routing through Res'v

HYDROGRAPH ROUTING DATA

117 RS STORAGE ROUTING NSTPS

STORAGE

1 NUMBER OF SUBREACHES ELEV TYPE OF INITIAL CONDITION 5545.50 INITIAL CONDITION ${\tt RSVRIC}$.00 WORKING R AND D COEFFICIENT

19.0

240.0 3542.0 4423.0 5419.0 6149.0 7347.0 8000.0 120 SE ELEVATION 5470.00 5476.00 5482.00 5488.00 5536.00 5542.00 5548.00 5488.00 5494.00 5500.00 5506.00 5512.00 5518.00 5524.00 5552.00 5530.00 5558.00

453.0

738.0

1105.0

1563.0

2217.0 2773.0

95.0

122 SL LOW-LEVEL OUTLET ELEVL

5545.50 ELEVATION AT CENTER OF OUTLET CAREA 4.91 CROSS-SECTIONAL AREA COQL .60 COEFFICIENT .50 EXPONENT OF HEAD EXPL

123 SS SPILLWAY

118 SV

5549.20 SPILLWAY CREST ELEVATION 30.00 SPILLWAY WIDTH CREL SPWID 2.67 WEIR COEFFICIENT COOW 1.50 EXPONENT OF HEAD EXPW

124 ST TOP OF DAM TOPEL DAMWID

5552.00 ELEVATION AT TOP OF DAM 1892.00 DAM WIDTH 2.90 WEIR COEFFICIENT 1.50 EXPONENT OF HEAD COQD EXPD

*** COMPUTED OUTFLOW-ELEVATION DATA

(EXCLUDING F	FLOW	OVER	DAM)
--------------	------	------	------

OUTFLOW ELEVATION	.00 5470.00			29.42 5547.05			40.98 5548.51	
OUTFLOW ELEVATION	49.37 5549.32	68.29 5549.60	198.20 5550.68	332.85 5551.48	529.64 5552.44	1156.85 5554.88		

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA

(INCLUDING FLOW OVER DAM)

STORAGE	.00	19.00	95.00	240.00	453.00	738.00	1105.00	1563.00	2217.00	2773.00
OUTFLOW	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
ELEVATION	5470.00	5476.00	5482.00	5488.00	5494.00	5500.00	5506.00	5512.00	5518.00	5524.00
STORAGE	3542.00	4423.00	5419.00	5844.83	5989.79	6009.51	6033.57	6063.27	6100.64	6148.41
OUTFLOW	.00	.00	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31
ELEVATION	5530.00	5536.00	5542.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00
STORAGE	6301.53	6508.46	6543.56	6628.96	6765.11	6952.15	7190.23	7347.00	7395.04	7518.54
OUTFLOW	40.98	45.44	49.37	68.29	113.97	198.20	332.85	435.48	2138.72	11657.74
ELEVATION	5548.51	5549.20	5549.32	5549.60	5550.06	5550.68	5551.48	5552.00	5552.44	5553.58
STORAGE	7660.53	7821.02	8000.00							
OUTFLOW	27985.71	51484.63	82813.63							
EL EL CATTON	FFF4 00	FFF6 36	FFF0 00							

ELEVATION 5554.88 5556.36 5558.00

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

****	*****	****	******	******	******	**	***	*****	***	****	******	******	******	**	**	***	****	****	******	******	******
						*								*							
DA	MON HRM	N ORD	OUTFLOW	STORAGE	STAGE	*	DA	MON HR	MN	ORD	OUTFLOW	STORAGE	STAGE	*	DA	MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE
						*								*							
1	000	0 1	0.	5844.8	5545.5	*	1	26	24	18	15.	5892.4	5545.9	*	2		1648	35	14.	5886.3	5545.8
1	011	2 2	0.	5844.8	5545.5	*	1	21	36	19	15.	5895.4	5545.9	*	2		1800	36	14.	5884.9	5545.8
1	022	4 3	0.	5844.8	5545.5	*	1	22	48	20	16.	5898.4	5545.9	*	2		1912	37	13.	5883.6	5545.8
1	033	6 4	0.	5844.8	5545.5	*	2	96	100	21	16.	5901.2	5546.0	*	2		2024	38	13.	5882.3	5545.8
1	044	8 5	0.	5844.8	5545.5	*	2	01	12	22	16.	5902.9	5546.0	*	2		2136	39	13.	5881.0	5545.8
1	060	9 6	0.	5844.8	5545.5	*	2	02	24	23	16.	5903.0	5546.0	*	2		2248	40	13.	5879.8	5545.8
1	071	2 7	0.	5844.8	5545.5	*	2	03	36	24	16.	5902.1	5546.0	*	3		0000	41	12.	5878.5	5545.8
1	082	4 8	1.	5845.0	5545.5	*	2	04	48	25	16.	5900.9	5546.0	*	3		0112	42	12.	5877.3	5545.8
1	093	6 9	4.	5847.9	5545.5	*	2	96	00	26	16.	5899.4	5545.9	*	3		0224	43	12.	5876.1	5545.8
1	104	8 10	7.	5854.8	5545.6	*	2	07	12	27	16.	5897.9	5545.9	*	3		0336	44	12.	5874.9	5545.7
1	120	0 11	9.	5862.2	5545.6	*	2	98	24	28	15.	5896.4	5545.9	*	3		0448	45	12.	5873.8	5545.7
1	131	2 12	10.	5868.4	5545.7	*	2	09	36	29	15.	5894.9	5545.9	*	3		0600	46	11.	5872.6	5545.7
1	142	4 13	11.	5873.5	5545.7	*	2	16	48	30	15.	5893.4	5545.9	*	3		0712	47	11.	5871.5	5545.7
1	153	6 14	12.	5878.0	5545.8	*	2	12	00	31	15.	5891.9	5545.9	*	3		0824	48	11.	5870.4	5545.7
1	164	8 15	13.	5882.1	5545.8	*	2	13	12	32	14.	5890.5	5545.9	*	3		0936	49	11.	5869.4	5545.7
1	180	0 16	14.	5885.9	5545.8	*	2	14	24	33	14.	5889.1	5545.9	*	3		1048	50	10.	5868.3	5545.7
1	191	2 17	14.	5889.3	5545.9	*	2	15	36	34	14.	5887.7	5545.9	*							
						*								*							

PEAK OUTFLOW IS 16. AT TIME 26.40 HOURS

PI	EAK FLOW	TIME			MAXIMUM A	VERAGE FLOW	
				6-HR	24-HR	72-HR	58.80-HR
+	(CFS)	(HR)					
			(CFS)				
+	16.	26.40		16.	15.	11.	11.
			(INCHES)	.032	.119	.214	.214
			(AC-FT)	8.	30.	54.	54.
PE/	AK STORAGE	TIME			MAXIMUM AV	ERAGE STORAGE	
				6-HR	24-HR	72-HR	58.80-HR
+ ((AC-FT)	(HR)					
	5903.	26.40		5902.	5895.	5878.	5878.
PI	EAK STAGE	TIME			MAXIMUM A	VERAGE STAGE	
				6-HR	24-HR	72-HR	58.80-HR
+	(FEET)	(HR)					
	5545.98	26.40		5545.97	5545.91	5545.77	5545.77

CUMULATIVE AREA = 4.74 SQ MI

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN			PPLIED	TO PRECIPITATION	ı
HYDROGRAPH AT +	B1	.50	1	FLOW TIME	4. 10.80			
ROUTED TO +	RB1	.50	1	FLOW TIME	4. 12.00			
HYDROGRAPH AT +	В2	.44	1	FLOW TIME	3. 10.80			
HYDROGRAPH AT +	В3	.28	1	FLOW TIME	2. 22.80			
3 COMBINED AT +	C1	1.22	1	FLOW TIME	9. 14.40			
ROUTED TO	RC1	1.22	1	FLOW TIME	9. 14.40			
HYDROGRAPH AT + HYDROGRAPH AT	В4	.45	1	FLOW TIME	4. 10.80			
+ 3 COMBINED AT	В5	.81	1	FLOW TIME	9. 10.80			
+ ROUTED TO	C2	2.48	1	FLOW TIME	19. 14.40			
+ HYDROGRAPH AT	RC2	2.48	1	FLOW TIME	19. 14.40			
+ HYDROGRAPH AT	В6	.15	1	FLOW TIME	7. 10.80			
+ 3 COMBINED AT	В7	.33	1	FLOW TIME	5. 10.80			
+ ROUTED TO	C3	2.95			27. 10.80			
+ HYDROGRAPH AT	RC3	2.95		FLOW TIME	27. 12.00			
+ HYDROGRAPH AT		1.01		TIME	43. 10.80			
+ HYDROGRAPH AT	B9	.13	1	FLOW TIME FLOW	12. 10.80			
2 COMBINED AT	B10 C4	.37	1	TIME	7. 10.80			
ROUTED TO	RC4	.37		TIME	19.			
+ HYDROGRAPH AT +	RC4 B11	.28	1	TIME	19.			
4 COMBINED AT				TIME	10.80			
+	C5	4.61	1	FLOW TIME	85. 10.80			

HYDROGRAPH AT +	B12	.13	1 FLO		4. 10.80							
2 COMBINED AT +	Call	4.74	1 FLO		89. 10.80							
ROUTED TO +	Cove	4.74	1 FLO		16. 26.40							
			** PEAK 1 STA TIM		IN FEET 545.98 26.40	**						
1			SUM						DLATED TO			
ISTAQ	ELEMENT	DT	PEA		E TO EAK	VOLUME	DT	COMPUTATIO PEAK	ON INTERVAL TIME TO PEAK	VOLUME		
EOP DI	AN = 1 RATI	(MIN) :0= .00	(CF	S)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
RB1		7.20	4.	28 69:	1.20	.16	72.00	3.95	720.00	.16		
CONTINUITY SUMMAI	RY (AC-FT) -	INFLOW=	.4342E+0	1 EXCESS:	= .0000E	+00 OUT	LOW= .43	42E+01 BASIN	I STORAGE=	.3500E-02 PERCENT	ERROR=	1
FOR PLA RC1	AN = 1 RATI MANE	.00 14.40	8.	59 76	3.20	.15	72.00	8.52	864.00	.15		
CONTINUITY SUMMAN	RY (AC-FT) -	INFLOW=	.9892E+0	1 EXCESS:	= .0000E	+00 OUT	-LOW= .98	95E+01 BASIN	I STORAGE=	.3327E-02 PERCENT	ERROR=	1
FOR PL/ RC2	AN = 1 RATI MANE	0= .00 10.57	' 19.	01 856	6.25	.17	72.00	19.01	864.00	.17		
CONTINUITY SUMMAN	RY (AC-FT) -	INFLOW=	.2218E+0	2 EXCESS	= .0000E	+00 OUT	LOW= .22	18E+02 BASIN	I STORAGE=	.2800E-02 PERCENT	ERROR=	.0
FOR PLA RC3	AN = 1 RATI MANE	.00 10.80	27.	32 70:	2.00	.19	72.00	26.74	720.00	.19		
CONTINUITY SUMMAN	RY (AC-FT) -	INFLOW=	.3011E+0	2 EXCESS:	= .0000E	+00 OUT	FLOW= .30	13E+02 BASIN	I STORAGE=	.8425E-02 PERCENT	ERROR=	1
FOR PLA RC4	AN = 1 RATI MANE	0= .00 10.80	18.	94 658	8.80	.56	72.00	18.68	648.00	.57		
CONTINUITY SUMMAN	RY (AC-FT) -	INFLOW=	.1115E+0	2 EXCESS:	= .0000E	+00 OUT	-LOW= .11	15E+02 BASIN	I STORAGE=	.2705E-02 PERCENT	ERROR=	.0
1								FOR STATION RING BREACH	Cove FORMATION)			
PLAN 1		ELEVA STORA OUTFL	AGE .	INITIAL 5545 584			LWAY CRES 5549.20 6508. 45.	5552 73				
	RATIO OF PMF	MAXIMU RESERVO W.S.EL	IR	AXIMUM DEPTH ER DAM	MAXIMU STORAG AC-FT	E OUT		DURATION OVER TOP M HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF I FAILURE HOURS		

1.00

5545.98

.00

5903.

16.

.00

26.40

.00

Storm Event 2. 5-year, 24-hour

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

PAGE 1

 X
 X
 XXXXXXX
 XXXXXX
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 <t

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

HEC-1 INPUT

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE ID.....1....2....3....4....5....6....7....8....9....10 HYDROLOGY STUDY for COVE RESERVOIR TD Located in KANE COUNTY, UTAH 2 ID ID TD AUG 2020 5 ID ID PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 TD 8 ID 10 11 ID ID FAX: (435) 628-6553 12 ID 5-YR, 24-HR, AMC II 13 ID *Diagram 14 JR PREC 1.0 15 ΙT 72 0 0 50 0 16 IO 17 IN 72 18 KK R1 19 20 KM Runoff from Basin 1 ВА 0.503 PB PC 21 2.01 22 0.020 0.046 0.070 0.095 0.130 0.180 0.300 0.520 0.650 0 23 PC 0.700 0.745 0.785 0.820 0.850 0.905 0.930 0.955 0.980 0.880 24 PC 1.000 25 15 a 72.8 26 0.51 UD 27 KK RB1 28 KM Route B1 29 RD .045 .050 4928 TRAP 20 20 30 KK B2 Runoff from Basin 2 31 KM 32 ВА 0.436 LS 72.5 33 34 0.52 UD 35 KK 36 37 KM BA Runoff from Basin 3 0.279 38 LS 39 UD 0.39 HEC-1 INPUT PAGE 2

1

1

LINE ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10

```
40
41
42
                KK
KM
HC
                      C1
Combine RB1, B2, B3
                KK
KM
RD
  43
                       RC1
 44
45
                      Route RC1
7255 .060
                                        .030
                                                            TRAP
                                                                                 20
                                                                        20
  46
                 KK
 47
48
49
                KM
BA
LS
                       Runoff from Basin 4
                       0.453
                                 73.3
                        0.48
  50
                 UD
                KK
KM
BA
LS
  51
52
53
54
55
                      Runoff from Basin 5
                                 74.1
                        0
0.63
                 UD
  56
                 KK
                KM
HC
*
  57
58
                       Combine RC1, B4, B5
                      RC2
Route C2
2380 .039
  59
60
                 KK
KM
  61
                 RD
                                                            TRAP
                                                                        40
                                                                                  2
                KM
BA
LS
 63
64
65
                       Runoff from Basin 6
                       0.150
                                 84.3
                        0.19
                UD
*
  66
 67
68
69
70
71
                 KK
KM
                       Runoff from Basin 7
                BA
LS
                      0.327
                                75.7
                UD
*
                        0.46
  72
                 KK
                KM
HC
*
  73
74
                       Combine RC2, B6, B7
                          3
                                                   HEC-1 INPUT
                                                                                                                    PAGE 3
LINE
                 ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
  75
                 KK
                       RC3
  76
77
                KM
RD
                       Route C3
                                       .030
                      11323 .023
                                                            TRAP
                                                                                 20
                                                                        40
  78
79
80
                 KK
KM
                       В8
                       Runoff from Basin 8
                BA
LS
                       1.012
                                 84.0
  81
                        0
0.67
                 UD
                 KK
                KM
BA
                      Runoff from Basin 9
 84
85
                      0.242
  86
87
                LS
UD
*
                       0.26
                                 85.5
 88
89
                 KK
                       B10
                 KM
                       Runoff from Basin 10
                 ВА
                       0.129
  91
92
                                 86.7
                LS
UD
                        0
0.18
  93
                 KK
                KM
HC
*
                       Combine B9, B10
  95
  96
                 KK
                       RC4
                 KM
  97
                       Route C4
                                .037
                                          .030
                                                            TRAP
                                                                        40
                                                                                 20
```

```
KK
KM
BA
LS
UD
              100
                                    Runoff from Basin 11
              101
102
                                    0.279
                                              84.8
                                     0.39
              103
                             KK
KM
HC
*
              104
                                    Combine RC3, B8, RC4, B11
             105
106
              107
                              KK
                                    B12
              108
                              KM
                                    Runoff from Basin 12
                             BA
LS
              109
                                    0.127
              110
                                              81.2
                                     0.40
              111
                              UD
1
                                                                 HEC-1 INPUT
                                                                                                                                  PAGE 4
                              ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
             LINE
             112
                                    Call
                              KK
                             KM
HC
*
                                    Combine C5, B12
              113
              114
                                    Cove Reservoir
Routing through Res'v
1 ELEV 5545.5
             115
116
                             KK
KM
              117
                             RS
SV
SV
SE
SE
SL
SS
                                                                                    738
8000
              118
119
                                              19
4423
                                                       95
5419
                                                                          453
7347
                                                                                                                         2773
                                        0
                                                                  240
                                                                                             1105
                                                                                                      1563
                                                                                                               2217
                                     3542
                                                                 6149
              120
                                     5470
                                              5476
                                                        5482
                                                                 5488
                                                                           5494
                                                                                             5506
                                                                                                       5512
                                                                                                                5518
                                                                                                                         5524
                                  5530
5545.5
5549.2
                                                       5542
0.6
2.67
                                                                 5548
0.5
1.5
              121
122
                                             5536
4.909
                                                                           5552
                                                                                    5558
              123
                                                 30
                             ST
*
                                              1892
             124
                                   5552.0
                                                         2.9
                                                                  1.5
1
                   SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
              (V) ROUTING
                                      (--->) DIVERSION OR PUMP FLOW
  LINE
   NO.
              (.) CONNECTOR
                                      (<---) RETURN OF DIVERTED OR PUMPED FLOW
    18
               В1
                    ٧
    27
               RB1
    30
                             B2
    35
                                           В3
    40
               C1
    43
               RC1
    46
    51
                                           В5
    56
               C2
    59
               RC2
    62
     67
                                           В7
    72
               С3
    75
               RC3
```

78

B11

```
83
                                    В9
                                                 B10
 88
 93
                                    C4
 96
                                    RC4
 99
                                                 B11
104
107
                       B12
112
          Call ...
115
          Cove
```

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

HYDROLOGY STUDY for COVE RESERVOIR Located in KANE COUNTY, UTAH

AUG 2020

PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 FAX: (435) 628-6553

5-YR, 24-HR, AMC II

OUTPUT CONTROL VARIABLES 16 IO IPRNT 0 PRINT CONTROL 0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE IPLOT QSCAL IT HYDROGRAPH TIME DATA 72 MINUTES IN COMPUTATION INTERVAL NMIN IDATE STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ITIME 0000 50 0 NO NDDATE ENDING DATE NDTIME 1048 ENDING TIME **ICENT** 19 CENTURY MARK COMPUTATION INTERVAL 1.20 HOURS 58.80 HOURS TOTAL TIME BASE

ENGLISH UNITS
DRAINAGE AREA

DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION NPLAN

NPLAN 0F110N 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION
RATIOS OF PRECIPITATION

*** ***

*** ***

Call * 112 KK

Combine C5, B12

114 HC

HYDROGRAPH COMBINATION
ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION Call SUM OF 2 HYDROGRAPHS
PLAN 1, RATIO = 1.00

****	****	*****	****	*******	****	****	******	*****	******	****	****	*******	****	*******	****	*****	*****	*****	******
					*					*					*				
DA	MON	HRMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA MO	N HRMN	ORD	FLOW
					*					*					*				
1		0000	1	0.	*	1	1536	14	90.	*	2	0712	27	0.	*	2	2248	40	0.
1		0112	2	0.	*	1	1648	15	81.	*	2	0824	28	0.	*	3	0000	41	0.
1		0224	3	0.	*	1	1800	16	78.	*	2	0936	29	0.	*	3	0112	42	0.
1		0336	4	0.	*	1	1912	17	72.	*	2	1048	30	0.	*	3	0224	43	0.
1		0448	5	0.	*	1	2024	18	69.	*	2	1200	31	0.	*	3	0336	44	0.
1		0600	6	0.	*	1	2136	19	68.	*	2	1312	32	0.	*	3	0448	45	0.
1		0712	7	0.	*	1	2248	20	69.	*	2	1424	33	0.	*	3	0600	46	0.
1		0824	8	17.	*	2	0000	21	64.	*	2	1536	34	0.	*	3	0712	47	0.
1		0936	9	110.	*	2	0112	22	36.	*	2	1648	35	0.	*	3	0824	48	0.
1		1048	10	175.	*	2	0224	23	15.	*	2	1800	36	0.	*	3	0936	49	0.
1		1200	11	141.	*	2	0336	24	6.	*	2	1912	37	0.	*	3	1048	50	0.
1		1312	12	113.	*	2	0448	25	3.	*	2	2024	38	0.	*				
1		1424	13	99.	*	2	0600	26	1.	*	2	2136	39	0.	*				
					*					-					4				

F	PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	58.80-HR
	` ,	` ,	(CFS)				
+	175.	10.80		125.	65.	27.	27.
			(INCHES)	.246	.512	.512	.512
			(AC-FT)	62.	130.	130.	130.

CUMULATIVE AREA = 4.74 SQ MI

*** ***

115 KK Reservoir Cove

Routing through Res'v

HYDROGRAPH ROUTING DATA

117 RS STORAGE ROUTING

1 NUMBER OF SUBREACHES ELEV TYPE OF INITIAL CONDITION 5545.50 INITIAL CONDITION NSTPS ${\tt RSVRIC}$.00 WORKING R AND D COEFFICIENT

19.0

95.0 118 SV STORAGE 240.0 1105.0 1563.0 2217.0 2773.0 3542.0 4423.0 5419.0 6149.0 7347.0 8000.0 120 SE ELEVATION 5470.00 5476.00 5482.00 5488.00 5536.00 5542.00 5548.00 5488.00 5494.00 5500.00 5506.00 5512.00 5518.00 5524.00 5552.00 5530.00 5558.00

453.0

738.0

122 SL LOW-LEVEL OUTLET

ELEVL 5545.50 ELEVATION AT CENTER OF OUTLET CAREA 4.91 CROSS-SECTIONAL AREA COQL .60 COEFFICIENT .50 EXPONENT OF HEAD EXPL

123 SS SPILLWAY

5549.20 SPILLWAY CREST ELEVATION 30.00 SPILLWAY WIDTH CREL SPWID 2.67 WEIR COEFFICIENT COOW 1.50 EXPONENT OF HEAD EXPW

124 ST TOP OF DAM TOPEL DAMWID

5552.00 ELEVATION AT TOP OF DAM 1892.00 DAM WIDTH 2.90 WEIR COEFFICIENT 1.50 EXPONENT OF HEAD COQD EXPD

*** COMPUTED OUTFLOW-ELEVATION DATA

(EXCLUDING FLOW OVER DAM)

OUTFLOW ELEVATION	.00 5470.00	.00 5545.50	25.78 5546.69	27.48 5546.85	 	34.25 5547.60		40.98 5548.51	
OUTFLOW ELEVATION	49.37	68.29 5549.60	113.97		529.64		1156.85 5554.88		

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA

(INCLUDING FLOW OVER DAM)

STORAGE	.00	19.00	95.00	240.00	453.00	738.00	1105.00	1563.00	2217.00	2773.00
OUTFLOW	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
ELEVATION	5470.00	5476.00	5482.00	5488.00	5494.00	5500.00	5506.00	5512.00	5518.00	5524.00
STORAGE	3542.00	4423.00	5419.00	5844.83	5989.79	6009.51	6033.57	6063.27	6100.64	6148.41
OUTFLOW	.00	.00	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31
ELEVATION	5530.00	5536.00	5542.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00
STORAGE	6301.53	6508.46	6543.56	6628.96	6765.11	6952.15	7190.23	7347.00	7395.04	7518.54
OUTFLOW	40.98	45.44	49.37	68.29	113.97	198.20	332.85	435.48	2138.72	11657.74
ELEVATION	5548.51	5549.20	5549.32	5549.60	5550.06	5550.68	5551.48	5552.00	5552.44	5553.58
STORAGE	7660.53	7821.02	8000.00							
OUTFLOW	27985.71	51484.63	82813.63							

ELEVATION 5554.88 5556.36 5558.00

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

*****	***************************************																			
						*						*	*							
DA MO	N HRMN	ORD	OUTFLOW	STORAGE	STAGE	* D	10M A	I HRMN	ORD	OUTFLOW	STORAGE	STAGE *	* C	Α	MON F	HRMN	ORD	OUTFLOW	STORAGE	STAGE
						*						*	*							
1	0000	1	0.	5844.8	5545.5	*	1	2024	18	20.	5931.0	5546.2 *	*	2	1	1648	35	19.	5925.4	5546.2
1	0112	2	0.	5844.8	5545.5	*	1	2136	19	20.	5935.8	5546.2 *	*	2	1	1800	36	19.	5923.5	5546.1
1	0224	3	0.	5844.8	5545.5	*	1	2248	20	21.	5940.6	5546.3 *	*	2	1	1912	37	19.	5921.6	5546.1
1	0336	4	0.	5844.8	5545.5	*	2	0000	21	21.	5945.1	5546.3 *	*	2	2	2024	38	19.	5919.8	5546.1
1	0448	5	0.	5844.8	5545.5	*	2	0112	22	22.	5947.9	5546.3 *	*	2	2	2136	39	18.	5918.0	5546.1
1	0600	6	0.	5844.8	5545.5	*	2	0224	23	22.	5948.3	5546.4	*	2	2	2248	40	18.	5916.2	5546.1
1	0712	7	0.	5844.8	5545.5	*	2	0336	24	22.	5947.1	5546.3 *	*	3	6	9000	41	18.	5914.4	5546.1
1	0824	8	2.	5845.6	5545.5	*	2	0448	25	21.	5945.4	5546.3 *	*	3	6	9112	42	18.	5912.6	5546.1
1	0936	9	6.	5851.5	5545.6	*	2	0600	26	21.	5943.4	5546.3 *	*	3	6	ð224	43	17.	5910.9	5546.0
1	1048	10	10.	5864.9	5545.7	*	2	0712	27	21.	5941.4	5546.3 *	*	3	6	9336	44	17.	5909.2	5546.0
1	1200	11	13.	5879.5	5545.8	*	2	0824	28	21.	5939.4	5546.3 *	*	3	6	9448	45	17.	5907.4	5546.0
1	1312	12	15.	5890.8	5545.9	*	2	0936	29	21.	5937.3	5546.3 *	*	3	6	9699	46	17.	5905.8	5546.0
1	1424	13	16.	5899.8	5546.0	*	2	1048	30	20.	5935.3	5546.2 *	*	3	6	ð712	47	16.	5904.1	5546.0
1	1536	14	17.	5907.5	5546.0	*	2	1200	31	20.	5933.2	5546.2 *	*	3	6	9824	48	16.	5902.5	5546.0
1	1648	15	18.	5914.3	5546.1	*	2	1312	32	20.	5931.3	5546.2 *	*	3	6	9936	49	16.	5900.9	5546.0
1	1800	16	19.	5920.4	5546.1	*	2	1424	33	20.	5929.3	5546.2 *	*	3	1	1048	50	16.	5899.3	5545.9
1	1912	17	19.	5926.0	5546.2	*	2	1536	34	19.	5927.4	5546.2 *	*							
						*						*	*							

PEAK OUTFLOW IS 22. AT TIME 26.40 HOURS

PEAK	FLOW	TIME			MAXIMUM A	VERAGE FLOW	
				6-HR	24-HR	72-HR	58.80-HR
+ (CF	5)	(HR)	(CFS)				
			(CF3)				
+	22. 2	26.40		22.	20.	15.	15.
			(INCHES)	.042	.161	. 297	.297
			(AC-FT)	11.	41.	75.	75.
PEAK S	TORAGE	TIME			MAXIMUM AV	ERAGE STORAGE	
				6-HR	24-HR	72-HR	58.80-HR
+ (AC-	FT)	(HR)		0 1	2	72	30100
59	48. 2	26.40		5947.	5937.	5908.	5908.
PEAK	STAGE	TIME			MAXIMUM A	VERAGE STAGE	
				6-HR	24-HR	72-HR	58.80-HR
+ (FE	ET)	(HR)					
5546	.35 2	26.40		5546.33	5546.25	5546.02	5546.02

CUMULATIVE AREA = 4.74 SQ MI

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN			APPLIED 1	O PRECIPITAT	ΓΙΟΝ
HYDROGRAPH AT +	B1	.50	1	FLOW TIME	11. 10.80			
ROUTED TO +	RB1	.50	1	FLOW TIME	10. 12.00			
HYDROGRAPH AT +	В2	.44	1	FLOW TIME	10. 10.80			
HYDROGRAPH AT +	В3	.28	1	FLOW TIME	5. 10.80			
3 COMBINED AT +	C1	1.22	1	FLOW TIME	23. 10.80			
ROUTED TO +	RC1	1.22	1	FLOW TIME	21. 12.00			
HYDROGRAPH AT +	В4	.45	1	FLOW TIME	11. 10.80			
HYDROGRAPH AT +	В5	.81	1	FLOW TIME	21. 10.80			
3 COMBINED AT +	C2	2.48	1	FLOW TIME	50. 10.80			
ROUTED TO +	RC2	2.48	1	FLOW TIME	48. 10.80			
HYDROGRAPH AT	В6	.15	1	FLOW TIME	11. 10.80			
HYDROGRAPH AT	В7	.33	1	FLOW TIME	11. 10.80			
3 COMBINED AT	С3	2.95	1	FLOW TIME	69. 10.80			
ROUTED TO	RC3	2.95	1	FLOW TIME	63. 12.00			
HYDROGRAPH AT	В8	1.01		FLOW TIME	70. 10.80			
HYDROGRAPH AT	В9	.24	1	FLOW TIME	19. 10.80			
+ COMPINED AT	B10	.13	1	FLOW TIME	11. 10.80			
2 COMBINED AT	C4	.37	1	FLOW TIME	30. 10.80			
ROUTED TO +	RC4	.37	1	FLOW TIME	29. 10.80			
+ A COMPINED AT	B11	.28	1	FLOW TIME	21. 10.80			
4 COMBINED AT +	C5	4.61	1	FLOW TIME	168. 10.80			

HYDROGRAPH AT +	B12	.13	1 FLOW	7. 10.80							
2 COMBINED AT	Call	4.74	1 FLOW TIME	175. 10.80							
ROUTED TO +	Cove	4.74	1 FLOW	22. 26.40							
				TAGES IN FEET 5546.35 26.40	**						
1				RY OF KINEMATI FLOW IS DIRECT			SE FLOW)	TING LATED TO			
ISTAQ	ELEMENT	DT	PEAK	TIME TO PEAK	VOLUME	DT	COMPUTATION PEAK		VOLUME		
		(MIN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
FOR PL RB1	AN = 1 RATI MANE	0= .00 7.20	11.31	676.80	.32	72.00	9.54	720.00	.32		
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW=	.8557E+01 E	EXCESS= .0000E	+00 OUTFLO	W= .8560	E+01 BASIN	STORAGE=	.3508E-02 PERCENT	ERROR=	1
FOR PL RC1	AN = 1 RATI MANE	0= .00 7.20	23.21	676.80	.30	72.00	21.22	720.00	.31		
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW=	.1977E+02 E	EXCESS= .0000E	+00 OUTFLO	W= .1977	E+02 BASIN	STORAGE=	.3640E-02 PERCENT	ERROR=	.0
FOR PLA RC2	AN = 1 RATI MANE	0= .00 7.20	50.33	655.20	.33	72.00	47.70	648.00	.33		
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW=	.4326E+02 E	EXCESS= .0000E	+00 OUTFLO	W= .4326	E+02 BASIN	STORAGE=	.2914E-02 PERCENT	ERROR=	.0
FOR PLA RC3	AN = 1 RATI MANE	.00 .00 10.80	69.04	691.20	.36	72.00	63.27	720.00	.36		
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW=	.5668E+02 E	EXCESS= .0000E	+00 OUTFLO	W= .5670	E+02 BASIN	STORAGE=	.9084E-02 PERCENT	ERROR=	1
FOR PLA RC4	AN = 1 RATI MANE	.00 14.08	29.35	633.76	.85	72.00	29.23	648.00	.86		
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW=	.1687E+02 E	EXCESS= .0000E	+00 OUTFLO	W= .1688	E+02 BASIN	STORAGE=	.2335E-02 PERCENT	ERROR=	.0
1				M OVERTOPPING/ DR INTERNAL TI				Cove FORMATION)			
PLAN 1		ELEVA STORAC OUTFLO	TION GE	NITIAL VALUE 5545.50 5845. 0.		Y CREST 9.20 508. 45.					
	RATIO OF PMF	MAXIMUI RESERVO: W.S.ELI	IR DEF	PTH STORAG	E OUTFL	OW OV	RATION ER TOP M OURS	TIME OF AX OUTFLOW HOURS	TIME OF FAILURE HOURS		

1.00

5546.35

.00

5948.

22.

.00

26.40

.00

Storm Event 3. 10-year, 24-hour

1************* FLOOD HYDROGRAPH PACKAGE (HEC-1) JUN 1998 VERSION 4.1 RUN DATE 06AUG20 TIME 02:52:08 ************

1

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

PAGE 1

Χ	Χ	XXXXXXX	XX	XXX		Х
Χ	Х	X	Χ	Χ		XX
Χ	Х	X	Χ			Х
XXXX	(XXX	XXXX	Χ		XXXXX	Х
Χ	Х	X	Χ			Х
Χ	Х	X	Χ	Х		Х
Χ	Х	XXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

HEC-1 INPUT

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

```
LINE
                ID.....1....2....3....4....5....6....7....8....9....10
                     HYDROLOGY STUDY for COVE RESERVOIR
                TD
                     Located in KANE COUNTY, UTAH
   2
                ID
                ID
                     AUG 2020
                TD
   5
                ID
                ID
                     PREPARED BY ALPHA ENGINEERING
                     43 SOUTH 100 EAST, SUITE 100
ST. GEORGE, UTAH 84770
TEL: (435) 628-6500
                TD
   8
                ID
 10
11
               ID
ID
                     FAX: (435) 628-6553
  12
                ID
                     10-YR, 24-HR, AMC II
  13
               ID
*Diagram
  14
                JR
                      PREC
                               1.0
  15
                ΙT
                        72
                                 0
                                          0
                                                  50
                         0
  16
                IO
  17
                IN
                        72
  18
                KK
                     R1
                     Runoff from Basin 1
 19
20
                KM
                ВА
                     0.503
               PB
PC
  21
                     2.34
  22
                             0.020
                                      0.046
                                              0.070
                                                       0.095
                                                               0.130
                                                                        0.180
                                                                                 0.300
                                                                                         0.520
                                                                                                  0.650
                        0
  23
                PC
                     0.700
                             0.745
                                      0.785
                                              0.820
                                                       0.850
                                                                0.880
                                                                        0.905
                                                                                 0.930
                                                                                         0.955
                                                                                                  0.980
  24
                PC
                     1.000
                               72.8
  25
                15
                         a
  26
                      0.51
                UD
  27
                KK
                     RB1
  28
                KM
                     Route B1
  29
                RD
                              .045
                                       .050
                                                        TRAP
                      4928
                                                                   20
                                                                           20
  30
                KK
                     B2
                     Runoff from Basin 2
  31
                KM
  32
                ВА
                     0.436
                LS
                               72.5
  33
  34
                      0.52
                UD
  35
                KK
 36
37
                KM
                     Runoff from Basin 3
                ВА
                     0.279
  38
  39
                UD
                      0.39
                                                HEC-1 INPUT
                                                                                                           PAGE 2
```

LINE ID.....1....2....3....4....5....6....7....8.....9....10

```
40
41
42
                KK
KM
HC
                      C1
Combine RB1, B2, B3
                KK
KM
RD
  43
                       RC1
 44
45
                      Route RC1
7255 .060
                                        .030
                                                            TRAP
                                                                                 20
                                                                        20
  46
                 KK
 47
48
49
                KM
BA
LS
                       Runoff from Basin 4
                       0.453
                                 73.3
                        0.48
  50
                 UD
                KK
KM
BA
LS
  51
52
53
54
55
                      Runoff from Basin 5
                                 74.1
                        0
0.63
                 UD
  56
                 KK
                KM
HC
*
  57
58
                       Combine RC1, B4, B5
                      RC2
Route C2
2380 .039
  59
60
                 KK
KM
  61
                 RD
                                                            TRAP
                                                                        40
                                                                                  2
                KM
BA
LS
 63
64
65
                       Runoff from Basin 6
                       0.150
                                 84.3
                        0.19
                UD
*
  66
 67
68
69
70
71
                 KK
KM
                       Runoff from Basin 7
                BA
LS
                      0.327
                                75.7
                UD
*
                        0.46
  72
                 KK
                KM
HC
*
  73
74
                       Combine RC2, B6, B7
                          3
                                                   HEC-1 INPUT
                                                                                                                    PAGE 3
LINE
                 ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
  75
                 KK
                       RC3
  76
77
                KM
RD
                       Route C3
                                       .030
                      11323 .023
                                                            TRAP
                                                                                 20
                                                                        40
  78
79
80
                 KK
KM
                       В8
                       Runoff from Basin 8
                BA
LS
                       1.012
                                 84.0
  81
                        0
0.67
                 UD
                 KK
                KM
BA
                      Runoff from Basin 9
 84
85
                      0.242
  86
87
                LS
UD
*
                       0.26
                                 85.5
 88
89
                 KK
                       B10
                 KM
                       Runoff from Basin 10
                 ВА
                       0.129
  91
92
                                 86.7
                LS
UD
                        0
0.18
  93
                 KK
                KM
HC
*
                       Combine B9, B10
  95
  96
                 KK
                       RC4
                 KM
  97
                       Route C4
                                .037
                                          .030
                                                            TRAP
                                                                        40
                                                                                 20
```

```
KK
KM
BA
LS
UD
              100
                                    Runoff from Basin 11
              101
102
                                    0.279
                                              84.8
                                     0.39
              103
                             KK
KM
HC
*
              104
                                    Combine RC3, B8, RC4, B11
             105
106
              107
                              KK
                                    B12
              108
                              KM
                                    Runoff from Basin 12
                             BA
LS
              109
                                    0.127
              110
                                              81.2
                                     0.40
              111
                              UD
1
                                                                 HEC-1 INPUT
                                                                                                                                  PAGE 4
                              ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
             LINE
             112
                                    Call
                              KK
                             KM
HC
*
                                    Combine C5, B12
              113
              114
                                    Cove Reservoir
Routing through Res'v
1 ELEV 5545.5
             115
116
                             KK
KM
              117
                             RS
SV
SV
SE
SE
SL
SS
                                                                                    738
8000
              118
119
                                              19
4423
                                                       95
5419
                                                                          453
7347
                                                                                                                         2773
                                        0
                                                                  240
                                                                                             1105
                                                                                                      1563
                                                                                                               2217
                                     3542
                                                                 6149
              120
                                     5470
                                              5476
                                                        5482
                                                                 5488
                                                                           5494
                                                                                             5506
                                                                                                       5512
                                                                                                                5518
                                                                                                                         5524
                                  5530
5545.5
5549.2
                                                       5542
0.6
2.67
                                                                 5548
0.5
1.5
              121
122
                                             5536
4.909
                                                                           5552
                                                                                    5558
              123
                                                 30
                             ST
*
                                              1892
             124
                                   5552.0
                                                         2.9
                                                                  1.5
1
                   SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
              (V) ROUTING
                                      (--->) DIVERSION OR PUMP FLOW
  LINE
   NO.
              (.) CONNECTOR
                                      (<---) RETURN OF DIVERTED OR PUMPED FLOW
    18
               В1
                    ٧
    27
               RB1
    30
                             B2
    35
                                           В3
    40
               C1
    43
               RC1
    46
    51
                                           В5
    56
               C2
    59
               RC2
    62
     67
                                           В7
    72
               С3
    75
               RC3
```

78

B11

```
83
                                    В9
                                                 B10
 88
 93
                                    C4
 96
                                    RC4
 99
                                                 B11
104
107
                       B12
112
          Call ...
115
          Cove
```

* U.S. ARMY CORPS OF ENGINEERS * HYDROLOGIC ENGINEERING CENTER * 609 SECOND STREET * DAVIS, CALIFORNIA 95616 * (916) 756-1104 * *

HYDROLOGY STUDY for COVE RESERVOIR Located in KANE COUNTY, UTAH

AUG 2020

PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 FAX: (435) 628-6553

10-YR, 24-HR, AMC II

```
OUTPUT CONTROL VARIABLES
16 IO
                      IPRNT
                                       0 PRINT CONTROL
                                      0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
                      IPLOT
                      QSCAL
   ΙT
                HYDROGRAPH TIME DATA
                                      72 MINUTES IN COMPUTATION INTERVAL
                       NMIN
                      IDATE
                                          STARTING DATE
                                          STARTING TIME
NUMBER OF HYDROGRAPH ORDINATES
                      ITIME
                                    0000
                                      50
0
                         NO
                     NDDATE
                                          ENDING DATE
                     NDTIME
                                    1048
                                          ENDING TIME
                     ICENT
                                      19
                                          CENTURY MARK
                  COMPUTATION INTERVAL
                                           1.20 HOURS
                                          58.80 HOURS
                       TOTAL TIME BASE
```

ENGLISH UNITS

DRAINAGE AREA

PRECIPITATION D

DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND

STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION NPLAN

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION
RATIOS OF PRECIPITATION

*** ***

*** ***

Call * 112 KK

Combine C5, B12

114 HC

HYDROGRAPH COMBINATION
ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION Call SUM OF 2 HYDROGRAPHS
PLAN 1, RATIO = 1.00

****	****	****	****	*******	****	****	****	****	****	******	****	****	*****	*****	********	****	*****	******	*****	******
					*						*					*				
DA	MON	HRMN	ORD	FLOW	*	DA	MON I	HRMN	ORD	FLOW	*	DA	MON HRM	N ORD	FLOW	*	DA M	ON HRMN	ORD	FLOW
					*						*					*				
1		0000	1	0.	*	1	:	1536	14	120.	*	2	071	2 27	0.	*	2	2248	40	0.
1		0112	2	0.	*	1		1648	15	107.	*	2	082	4 28	0.	*	3	0000	41	0.
1		0224	3	0.	*	1		1800	16	102.	*	2	093	6 29	0.	*	3	0112	42	0.
1		0336	4	0.	*	1		1912	17	94.	*	2	104	8 30	0.	*	3	0224	43	0.
1		0448	5	0.	*	1		2024	18	89.	*	2	120	0 31	0.	*	3	0336	44	0.
1		0600	6	0.	*	1		2136	19	89.	*	2	131	2 32	0.	*	3	0448	45	0.
1		0712	7	1.	*	1		2248	20	89.	*	2	142	4 33	0.	*	3	0600	46	0.
1		0824	8	32.	*	2	(0000	21	82.	*	2	153	6 34	0.	*	3	0712	47	0.
1		0936	9	165.	*	2		ð112	22	46.	*	2	164	8 35	0.	*	3	0824	48	0.
1		1048	10	261.	*	2		ð224	23	18.	*	2	180	0 36	0.	*	3	0936	49	0.
1		1200	11	201.	*	2		0336	24	7.	*	2	191	2 37	0.	*	3	1048	50	0.
1		1312	12	155.	*	2	(9448	25	2.	*	2	202	4 38	0.	*				
1		1424	13	133.	*	2		9699	26	1.	*	2	213	6 39	0.	*				
					alle alle						-					at a				

	PEAK FLOW	ITME			MAXIMUM AVER	KAGE FLOW	
				6-HR	24-HR	72-HR	58.80-HR
+	(CFS)	(HR)					
			(CFS)				
+	261.	10.80		179.	90.	37.	37.
			(INCHES)	.350	.704	.705	.705
			(AC-FT)	89.	178.	178.	178.

CUMULATIVE AREA = 4.74 SQ MI

*** ***

115 KK Reservoir Cove

Routing through Res'v

HYDROGRAPH ROUTING DATA

117 RS STORAGE ROUTING

1 NUMBER OF SUBREACHES ELEV TYPE OF INITIAL CONDITION 5545.50 INITIAL CONDITION NSTPS ${\tt RSVRIC}$.00 WORKING R AND D COEFFICIENT

95.0 118 SV STORAGE 19.0 240.0 453.0 738.0 1105.0 1563.0 2217.0 2773.0 3542.0 4423.0 5419.0 6149.0 7347.0 8000.0 5488.00 5494.00 5500.00

120 SE ELEVATION 5470.00 5476.00 5536.00 5482.00 5506.00 5512.00 5518.00 5524.00 5542.00 5548.00 5552.00 5530.00 5558.00

122 SL LOW-LEVEL OUTLET ELEVL

5545.50 ELEVATION AT CENTER OF OUTLET CAREA 4.91 CROSS-SECTIONAL AREA .60 COEFFICIENT .50 EXPONENT OF HEAD COQL EXPL

123 SS SPILLWAY

5549.20 SPILLWAY CREST ELEVATION 30.00 SPILLWAY WIDTH CREL SPWID 2.67 WEIR COEFFICIENT COOW 1.50 EXPONENT OF HEAD EXPW

124 ST TOP OF DAM TOPEL DAMWID

5552.00 ELEVATION AT TOP OF DAM 1892.00 DAM WIDTH 2.90 WEIR COEFFICIENT 1.50 EXPONENT OF HEAD COQD EXPD

COMPUTED OUTFLOW-ELEVATION DATA

(EXCLUDING	FLOW	OVER	DAM)
------------	------	------	------

OUTFLOW	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31	40.98	45.44
ELEVATION	5470.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00	5548.51	5549.20
OUTFLOW	49.37	68.29	113.97	198.20	332.85	529.64	800.37	1156.85	1610.93	2174.46
ELEVATION	5549.32	5549.60	5550.06	5550.68	5551.48	5552.44	5553.58	5554.88	5556.36	5558.00

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA

(INCLUDING FLOW OVER DAM)

STORAGE	.00	19.00	95.00	240.00	453.00	738.00	1105.00	1563.00	2217.00	2773.00
OUTFLOW	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
ELEVATION	5470.00	5476.00	5482.00	5488.00	5494.00	5500.00	5506.00	5512.00	5518.00	5524.00
STORAGE	3542.00	4423.00	5419.00	5844.83	5989.79	6009.51	6033.57	6063.27	6100.64	6148.41
OUTFLOW	.00	.00	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31
ELEVATION	5530.00	5536.00	5542.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00
STORAGE	6301.53	6508.46	6543.56	6628.96	6765.11	6952.15	7190.23	7347.00	7395.04	7518.54
OUTFLOW	40.98	45.44	49.37	68.29	113.97	198.20	332.85	435.48	2138.72	11657.74
ELEVATION	5548.51	5549.20	5549.32	5549.60	5550.06	5550.68	5551.48	5552.00	5552.44	5553.58
STORAGE OUTFLOW ELEVATION	7660.53 27985.71 5554.88	7821.02 51484.63 5556.36	8000.00 82813.63 5558.00							

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

*****	****	****	******	******	******	***	***	****	****	****	******	******	******	***	****	****	****	******	******	*****
						*							*							
DA MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE	*	DA I	MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE *	DA	MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE
						*							*							
1	0000	1	0.	5844.8	5545.5	*	1		2024	18	24.	5968.3	5546.5 *	2		1648	35	23.	5964.1	5546.5
1	0112	2	0.	5844.8	5545.5	*	1		2136	19	24.	5974.8	5546.6 *	2		1800	36	23.	5961.7	5546.5
1	0224	3	0.	5844.8	5545.5	*	1		2248	20	25.	5981.1	5546.6 *	2		1912	37	23.	5959.5	5546.4
1	0336	4	0.	5844.8	5545.5	*	2		0000	21	26.	5987.1	5546.7 *	2		2024	38	23.	5957.2	5546.4
1	0448	5	0.	5844.8	5545.5	*	2		0112	22	26.	5990.9	5546.7 *	2		2136	39	22.	5955.0	5546.4
1	0600	6	0.	5844.8	5545.5	*	2		0224	23	26.	5991.5	5546.7 *	2		2248	40	22.	5952.8	5546.4
1	0712	7	1.	5844.9	5545.5	*	2		0336	24	26.	5990.2	5546.7 *	3		0000	41	22.	5950.6	5546.4
1	0824	8	3.	5846.4	5545.5	*	2		0448	25	26.	5988.1	5546.7 *	3		0112	42	22.	5948.4	5546.4
1	0936	9	7.	5855.7	5545.6	*	2		0600	26	25.	5985.7	5546.7 *	3		0224	43	22.	5946.2	5546.3
1	1048	10	12.	5876.0	5545.8	*	2		0712	27	25.	5983.3	5546.6 *	3		0336	44	21.	5944.1	5546.3
1	1200	11	16.	5897.5	5545.9	*	2		0824	28	25.	5980.8	5546.6 *	3		0448	45	21.	5942.0	5546.3
1	1312	12	18.	5913.6	5546.1	*	2		0936	29	25.	5978.4	5546.6 *	3		0600	46	21.	5939.9	5546.3
1	1424	13	19.	5926.0	5546.2	*	2		1048	30	25.	5975.9	5546.6 *	3		0712	47	21.	5937.9	5546.3
1	1536	14	21.	5936.6	5546.3	*	2		1200	31	24.	5973.5	5546.6 *	3		0824	48	20.	5935.8	5546.2
1	1648	15	22.	5945.8	5546.3	*	2		1312	32	24.	5971.1	5546.5 *	3		0936	49	20.	5933.8	5546.2
1	1800	16	22.	5954.1	5546.4	*	2		1424	33	24.	5968.8	5546.5 *	3		1048	50	20.	5931.8	5546.2
1	1912	17	23.	5961.6	5546.5	*	2		1536	34	24.	5966.4	5546.5 *							
						*							*							

PEAK OUTFLOW IS 26. AT TIME 26.40 HOURS

	PEAK FLOW	TIME			MAXIMUM A	VERAGE FLOW	
	()			6-HR	24-HR	72-HR	58.80-HR
+	(CFS)	(HR)	(CFS)				
+	26.	26.40	(0.3)	26.	25.	19.	19.
			(INCHES)	.050	.193	.362	.362
			(AC-FT)	13.	49.	91.	91.
Р	EAK STORAGE	TIME			MAXIMUM AV	ERAGE STORAGE	
				6-HR	24-HR	72-HR	58.80-HR
+	(AC-FT)	(HR)					
	5992.	26.40		5989.	5977.	5938.	5938.
	PEAK STAGE	TIME			MAXIMUM A	VERAGE STAGE	
				6-HR	24-HR	72-HR	58.80-HR
+	(FEET)	(HR)					
	5546.71	26.40		5546.69	5546.59	5546.27	5546.27

CUMULATIVE AREA = 4.74 SQ MI

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN		RATIOS RATIO 1 1.00	S APPLIED	TO PRECIPITATION
HYDROGRAPH AT +	B1	.50	1	FLOW TIME	19. 10.80		
ROUTED TO	RB1	.50	1	FLOW TIME	16. 10.80		
HYDROGRAPH AT +	В2	.44	1	FLOW TIME	16. 10.80		
HYDROGRAPH AT +	В3	.28	1	FLOW TIME	9. 10.80		
3 COMBINED AT +	C1	1.22	1	FLOW TIME	41. 10.80		
ROUTED TO +	RC1	1.22	1	FLOW TIME	35. 10.80		
HYDROGRAPH AT +	В4	.45	1	FLOW TIME	18. 10.80		
HYDROGRAPH AT +	B5	.81	1	FLOW TIME	34. 10.80		
3 COMBINED AT +	C2	2.48	1	FLOW TIME	88. 10.80		
ROUTED TO +	RC2	2.48	1	FLOW TIME	84. 10.80		
HYDROGRAPH AT +	В6	.15	1	FLOW TIME	14. 10.80		
HYDROGRAPH AT +	В7	.33	1	FLOW TIME	16. 10.80		
3 COMBINED AT +	С3	2.95	1	FLOW TIME	115. 10.80		
ROUTED TO +	RC3	2.95	1	FLOW TIME	99. 12.00		
HYDROGRAPH AT +	В8	1.01	1	FLOW TIME	94. 10.80		
HYDROGRAPH AT +	В9	.24	1	FLOW TIME	25. 10.80		
HYDROGRAPH AT +	B10	.13	1	FLOW TIME	14. 9.60		
2 COMBINED AT +	C4	.37	1	FLOW TIME	39. 10.80		
ROUTED TO +	RC4	.37	1	FLOW TIME	39. 10.80		
HYDROGRAPH AT +	B11	.28	1	FLOW TIME	27. 10.80		
4 COMBINED AT +	C5	4.61	1	FLOW TIME	251. 10.80		

HYDROGRAPH AT +	B12	.13	1 FLOW TIME	10. 10.80							
2 COMBINED AT	Call	4.74	1 FLOW TIME	261. 10.80							
ROUTED TO +	Cove	4.74	1 FLOW TIME	26. 26.40							
			** PEAK ST. 1 STAGE TIME	AGES IN FEET 5546.71 26.40	**						
1				Y OF KINEMATI LOW IS DIRECT			ASE FLOW)	TING			
ISTAÇ) ELEMENT	DT	PEAK	TIME TO PEAK	VOLUME	DT	COMPUTATIO PEAK	N INTERVAL TIME TO PEAK	VOLUME		
		(MIN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
FOR PL RB1	.AN = 1 RATI . MANE	10= .00 7.20	18.90	676.80	.48	72.00	16.14	648.00	.48		
CONTINUITY SUMMA	ARY (AC-FT) -	- INFLOW=	.1277E+02 E	XCESS= .0000E	+00 OUTF	_OW= .127	8E+02 BASIN	STORAGE=	.3345E-02 PERCENT	ERROR=	1
FOR PL RC1	.AN = 1 RATI	IO= .00 7.20	40.76	669.60	.46	72.00	35.00	648.00	.46		
CONTINUITY SUMMA	ARY (AC-FT) -	- INFLOW=	.2976E+02 E	XCESS= .0000E	+00 OUTF	_OW= .297	7E+02 BASIN	STORAGE=	.3635E-02 PERCENT	ERROR=	.0
FOR PL RC2	AN = 1 RATI	iO= .00 6.10	86.70	652.57	.49	72.00	84.43	648.00	.49		
CONTINUITY SUMMA	ARY (AC-FT) -	- INFLOW=	.6439E+02 E	XCESS= .0000E	+00 OUTF	_OW= .643	9E+02 BASIN	STORAGE=	.3086E-02 PERCENT	ERROR=	.0
FOR PL RC3	AN = 1 RATI MANE	IO= .00 14.40	113.78	691.20	.53	72.00	99.11	720.00	.52		
CONTINUITY SUMMA	ARY (AC-FT) -	- INFLOW=	.8293E+02 E	XCESS= .0000E	+00 OUTF	_OW= .829	8E+02 BASIN	STORAGE=	.8804E-02 PERCENT	ERROR=	1
FOR PL RC4	AN = 1 RATI	IO= .00 13.06	39.45	600.61	1.11	72.00	38.67	648.00	1.11		
CONTINUITY SUMMA	ARY (AC-FT) -	- INFLOW=	.2195E+02 E	XCESS= .0000E	+00 OUTFI	_OW= .219	5E+02 BASIN	STORAGE=	.2242E-02 PERCENT	ERROR=	.0
1				OVERTOPPING/ R INTERNAL TI				Cove FORMATION)			
PLAN 1		ELEVA STORA OUTFL	TION GE	ITIAL VALUE 5545.50 5845. 0.		NAY CREST 549.20 6508. 45.	5552 73				
	RATIO OF PMF	MAXIMUI RESERVO W.S.EL	IR DEP	TH STORAG	iE OUTI	LOW C	OURATION OVER TOP M HOURS	TIME OF NAX OUTFLOW HOURS	TIME OF FAILURE HOURS		

1.00

5546.71

.00

5992.

26.

.00

26.40

.00

Storm Event 4. 25-year, 24-hour

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

 X
 X
 XXXXXXX
 XXXXXX
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 <t

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

HEC-1 INPUT PAGE 1 LINE ID.....1....2....3....4....5....6....7....8....9....10 HYDROLOGY STUDY for COVE RESERVOIR TD Located in KANE COUNTY, UTAH 2 ID ID TD AUG 2020 5 ID ID PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 TD 8 ID 10 11 ID ID FAX: (435) 628-6553 12 ID 25-YR, 24-HR, AMC II 13 ID *Diagram 14 JR PREC 1.0 15 ΙT 72 0 0 50 0 16 IO 17 IN 72 18 KK R1 19 KM Runoff from Basin 1 20 ВА 0.503 PB PC 21 2.79 22 0.020 0.046 0.070 0.095 0.130 0.180 0.300 0.520 0.650 0 23 PC 0.700 0.745 0.785 0.820 0.850 0.905 0.930 0.955 0.980 0.880 24 PC 1.000 25 15 a 72.8 26 0.51 UD 27 KK RB1 28 KM Route B1 29 RD .045 .050 4928 TRAP 20 20 30 KK B2 Runoff from Basin 2 31 KM 32 ВА 0.436 LS 72.5 33 34 0.52 UD 35 KK 36 37 KM BA Runoff from Basin 3 0.279 38 LS 39 UD 0.39 HEC-1 INPUT PAGE 2

1

1

LINE ID....1....2....3.....4....5....6....7....8....9....10

```
40
41
42
                KK
KM
HC
                      C1
Combine RB1, B2, B3
                KK
KM
RD
  43
                       RC1
 44
45
                      Route RC1
7255 .060
                                        .030
                                                            TRAP
                                                                                 20
                                                                        20
  46
                 KK
 47
48
49
                KM
BA
LS
                       Runoff from Basin 4
                       0.453
                                 73.3
                        0.48
  50
                 UD
                KK
KM
BA
LS
  51
52
53
54
55
                      Runoff from Basin 5
                                 74.1
                        0
0.63
                 UD
  56
                 KK
                KM
HC
*
  57
58
                       Combine RC1, B4, B5
                      RC2
Route C2
2380 .039
  59
60
                 KK
KM
  61
                 RD
                                                            TRAP
                                                                        40
                                                                                  2
                KM
BA
LS
 63
64
65
                       Runoff from Basin 6
                       0.150
                                 84.3
                        0.19
                UD
*
  66
 67
68
69
70
71
                 KK
KM
                       Runoff from Basin 7
                BA
LS
                      0.327
                                75.7
                UD
*
                        0.46
  72
                 KK
                KM
HC
*
  73
74
                       Combine RC2, B6, B7
                          3
                                                   HEC-1 INPUT
                                                                                                                    PAGE 3
LINE
                 ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
  75
                 KK
                       RC3
  76
77
                KM
RD
                       Route C3
                                       .030
                      11323 .023
                                                            TRAP
                                                                                 20
                                                                        40
  78
79
80
                 KK
KM
                       В8
                       Runoff from Basin 8
                BA
LS
                       1.012
                                 84.0
  81
                        0
0.67
                 UD
                 KK
                KM
BA
                      Runoff from Basin 9
 84
85
                      0.242
  86
87
                LS
UD
*
                       0.26
                                 85.5
 88
89
                 KK
                       B10
                 KM
                       Runoff from Basin 10
                 ВА
                       0.129
  91
92
                                 86.7
                LS
UD
                        0
0.18
  93
                 KK
                KM
HC
*
                       Combine B9, B10
  95
  96
                 KK
                       RC4
                 KM
  97
                       Route C4
                                .037
                                          .030
                                                            TRAP
                                                                        40
                                                                                 20
```

```
KK
KM
BA
LS
UD
              100
                                    Runoff from Basin 11
              101
102
                                    0.279
                                              84.8
                                     0.39
              103
                             KK
KM
HC
*
              104
                                    Combine RC3, B8, RC4, B11
             105
106
              107
                              KK
                                    B12
              108
                              KM
                                    Runoff from Basin 12
                             BA
LS
              109
                                    0.127
              110
                                              81.2
                                     0.40
              111
                              UD
1
                                                                 HEC-1 INPUT
                                                                                                                                  PAGE 4
                              ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
             LINE
             112
                                    Call
                              KK
                             KM
HC
*
                                    Combine C5, B12
              113
              114
                                    Cove Reservoir
Routing through Res'v
1 ELEV 5545.5
             115
116
                             KK
KM
              117
                             RS
SV
SV
SE
SE
SL
SS
                                                                                    738
8000
              118
119
                                              19
4423
                                                       95
5419
                                                                          453
7347
                                                                                                                         2773
                                        0
                                                                  240
                                                                                             1105
                                                                                                      1563
                                                                                                               2217
                                     3542
                                                                 6149
              120
                                     5470
                                              5476
                                                        5482
                                                                 5488
                                                                           5494
                                                                                             5506
                                                                                                       5512
                                                                                                                5518
                                                                                                                         5524
                                  5530
5545.5
5549.2
                                                       5542
0.6
2.67
                                                                 5548
0.5
1.5
              121
122
                                             5536
4.909
                                                                           5552
                                                                                    5558
              123
                                                 30
                             ST
*
                                              1892
             124
                                   5552.0
                                                         2.9
                                                                  1.5
1
                   SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
              (V) ROUTING
                                      (--->) DIVERSION OR PUMP FLOW
  LINE
   NO.
              (.) CONNECTOR
                                      (<---) RETURN OF DIVERTED OR PUMPED FLOW
    18
               В1
                    ٧
    27
               RB1
    30
                             B2
    35
                                           В3
    40
               C1
    43
               RC1
    46
    51
                                           В5
    56
               C2
    59
               RC2
    62
     67
                                           В7
    72
               С3
    75
               RC3
```

78

B11

```
83
                                    В9
                                                 B10
 88
 93
                                    C4
 96
                                    RC4
 99
                                                 B11
104
107
                       B12
112
          Call ...
115
          Cove
```

* U.S. ARMY CORPS OF ENGINEERS * HYDROLOGIC ENGINEERING CENTER * 609 SECOND STREET * DAVIS, CALIFORNIA 95616 * (916) 756-1104 * *

HYDROLOGY STUDY for COVE RESERVOIR Located in KANE COUNTY, UTAH

AUG 2020

PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 FAX: (435) 628-6553

25-YR, 24-HR, AMC II

```
OUTPUT CONTROL VARIABLES
16 IO
                      IPRNT
                                       0 PRINT CONTROL
                      IPLOT
                                      0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
                      QSCAL
   ΙT
                HYDROGRAPH TIME DATA
                                      72 MINUTES IN COMPUTATION INTERVAL
                       NMIN
                      IDATE
                                          STARTING DATE
                                          STARTING TIME
NUMBER OF HYDROGRAPH ORDINATES
                      ITIME
                                    0000
                                      50
0
                         NO
                     NDDATE
                                          ENDING DATE
                     NDTIME
                                    1048
                                          ENDING TIME
                     ICENT
                                      19
                                          CENTURY MARK
                  COMPUTATION INTERVAL
                                           1.20 HOURS
                                          58.80 HOURS
                       TOTAL TIME BASE
```

ENGLISH UNITS
DRAINAGE AREA

DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION NPLAN

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION
RATIOS OF PRECIPITATION

** ***

*** ***

Call * 112 KK

Combine C5, B12

114 HC

HYDROGRAPH COMBINATION
ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION Call SUM OF 2 HYDROGRAPHS
PLAN 1, RATIO = 1.00

****	***************************************																		
					*					*					*				
DA	MON	HRMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA MO	N HRMN	ORD	FLOW
					*					*					*				
1		0000	1	0.	*	1	1536	14	162.	*	2	0712	27	0.	*	2	2248	40	0.
1		0112	2	0.	*	1	1648	15	144.	*	2	0824	28	0.	*	3	0000	41	0.
1		0224	3	0.	*	1	1800	16	137.	*	2	0936	29	0.	*	3	0112	42	0.
1		0336	4	0.	*	1	1912	17	125.	*	2	1048	30	0.	*	3	0224	43	0.
1		0448	5	0.	*	1	2024	18	119.	*	2	1200	31	0.	*	3	0336	44	0.
1		0600	6	0.	*	1	2136	19	117.	*	2	1312	32	0.	*	3	0448	45	0.
1		0712	7	6.	*	1	2248	20	118.	*	2	1424	33	0.	*	3	0600	46	0.
1		0824	8	59.	*	2	0000	21	108.	*	2	1536	34	0.	*	3	0712	47	0.
1		0936	9	288.	*	2	0112	22	59.	*	2	1648	35	0.	*	3	0824	48	0.
1		1048	10	396.	*	2	0224	23	23.	*	2	1800	36	0.	*	3	0936	49	0.
1		1200	11	290.	*	2	0336	24	9.	*	2	1912	37	0.	*	3	1048	50	0.
1		1312	12	216.	*	2	0448	25	3.	*	2	2024	38	0.	*				
1		1424	13	183.	*	2	0600	26	1.	*	2	2136	39	0.	*				
					•					-					•				

	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	58.80-HR
	(5.5)	(,	(CFS)				
+	396.	10.80	` '	262.	128.	52.	52.
			(INCHES)	.514	1.005	1.005	1.005
			(AC-FT)	130.	254.	254.	254.

CUMULATIVE AREA = 4.74 SQ MI

*** ***

115 KK Reservoir Cove

Routing through Res'v

HYDROGRAPH ROUTING DATA

117 RS STORAGE ROUTING

1 NUMBER OF SUBREACHES ELEV TYPE OF INITIAL CONDITION 5545.50 INITIAL CONDITION NSTPS ${\tt RSVRIC}$.00 WORKING R AND D COEFFICIENT

95.0 118 SV STORAGE 19.0 240.0 453.0 738.0 1105.0 1563.0 2217.0 2773.0 3542.0 4423.0 5419.0 6149.0 7347.0 8000.0 120 SE ELEVATION 5470.00 5476.00 5482.00 5488.00 5536.00 5542.00 5548.00 5488.00 5494.00 5500.00 5506.00 5512.00 5518.00 5524.00 5552.00 5530.00 5558.00

122 SL LOW-LEVEL OUTLET

ELEVL 5545.50 ELEVATION AT CENTER OF OUTLET CAREA 4.91 CROSS-SECTIONAL AREA COQL .60 COEFFICIENT .50 EXPONENT OF HEAD EXPL

123 SS SPILLWAY

5549.20 SPILLWAY CREST ELEVATION 30.00 SPILLWAY WIDTH CREL SPWID 2.67 WEIR COEFFICIENT COOW 1.50 EXPONENT OF HEAD EXPW

124 ST TOP OF DAM TOPEL DAMWID

5552.00 ELEVATION AT TOP OF DAM 1892.00 DAM WIDTH 2.90 WEIR COEFFICIENT 1.50 EXPONENT OF HEAD COQD EXPD

*** COMPUTED OUTFLOW-ELEVATION DATA

(EXCLUDING FLOW OVER DAM)

OUTFLOW ELEVATION	.00 5470.00		25.78 5546.69		29.42 5547.05	31.65 5547.30			40.98 5548.51	45.44 5549.20
OUTFLOW	49.37		113.97			529.64		1156.85		
ELEVATION	5549.32	5549.60	5550.06	5550.68	5551.48	5552.44	5553.58	5554.88	5556.36	5558.00

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA

(INCLUDING FLOW OVER DAM)

STORAGE	.00	19.00	95.00	240.00	453.00	738.00	1105.00	1563.00	2217.00	2773.00
OUTFLOW	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
ELEVATION	5470.00	5476.00	5482.00	5488.00	5494.00	5500.00	5506.00	5512.00	5518.00	5524.00
STORAGE	3542.00	4423.00	5419.00	5844.83	5989.79	6009.51	6033.57	6063.27	6100.64	6148.41
OUTFLOW	.00	.00	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31
ELEVATION	5530.00	5536.00	5542.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00
STORAGE	6301.53	6508.46	6543.56	6628.96	6765.11	6952.15	7190.23	7347.00	7395.04	7518.54
OUTFLOW	40.98	45.44	49.37	68.29	113.97	198.20	332.85	435.48	2138.72	11657.74
ELEVATION	5548.51	5549.20	5549.32	5549.60	5550.06	5550.68	5551.48	5552.00	5552.44	5553.58
STORAGE OUTFLOW ELEVATION	7660.53 27985.71 5554.88	7821.02 51484.63 5556.36	8000.00 82813.63 5558.00							

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

****	***************************************																		
DA I	MON HRMN	ORD	OUTFLOW	STORAGE	STAGE	* * D. *	A MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE *		MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE
1	0000	1	0.	5844.8	5545.5	*	L	2024	18	29.	6028.3	5547.0 *	2	!	1648	35	29.	6026.4	5547.0
1	0112	2	0.	5844.8	5545.5	*	L	2136	19	30.	6037.1	5547.1 *	2	!	1800	36	29.	6023.5	5547.0
1	0224	3	0.	5844.8	5545.5	*	L	2248	20	30.	6045.7	5547.2 *	2	!	1912	37	28.	6020.7	5546.9
1	0336	4	0.	5844.8	5545.5	*	2	0000	21	31.	6053.9	5547.2 *	2	!	2024	38	28.	6017.9	5546.9
1	0448	5	0.	5844.8	5545.5	*	2	0112	22	31.	6059.1	5547.3 *	2	!	2136	39	28.	6015.1	5546.9
1	0600	6	0.	5844.8	5545.5	*	2	0224	23	31.	6060.1	5547.3 *	2	!	2248	40	28.	6012.4	5546.9
1	0712	7	1.	5845.1	5545.5	*	2	0336	24	31.	6058.5	5547.3 *	3	;	0000	41	27.	6009.6	5546.9
1	0824	8	4.	5848.0	5545.5	*	2	0448	25	31.	6056.0	5547.2 *	3	;	0112	42	27.	6006.9	5546.8
1	0936	9	10.	5864.6	5545.7	*	2	0600	26	31.	6053.1	5547.2 *	3	;	0224	43	27.	6004.2	5546.8
1	1048	10	16.	5897.3	5545.9	*	2	0712	27	31.	6050.0	5547.2 *	3	;	0336	44	27.	6001.6	5546.8
1	1200	11	20.	5929.6	5546.2	*	2	0824	28	30.	6047.0	5547.2 *	3	;	0448	45	27.	5998.9	5546.8
1	1312	12	22.	5952.7	5546.4	*	2	0936	29	30.	6044.0	5547.1 *	3	;	0600	46	26.	5996.3	5546.7
1	1424	13	24.	5970.2	5546.5	*	2	1048	30	30.	6041.0	5547.1 *	3	;	0712	47	26.	5993.6	5546.7
1	1536	14	25.	5984.9	5546.7	*	2	1200	31	30.	6038.0	5547.1 *	3	;	0824	48	26.	5991.1	5546.7
1	1648	15	26.	5997.5	5546.8	*	2	1312	32	30.	6035.1	5547.1 *	3	;	0936	49	26.	5988.5	5546.7
1	1800	16	27.	6008.8	5546.8	*	2	1424	33	29.	6032.1	5547.0 *	3	;	1048	50	25.	5986.0	5546.7
1	1912	17	28.	6019.0	5546.9	*	2	1536	34	29.	6029.2	5547.0 *	:						
						*						*							

PEAK OUTFLOW IS 31. AT TIME 26.40 HOURS

PEAK FLOW	TIME			MAXIMUM A	VERAGE FLOW	
+ (CFS)	(HR)		6-HR	24-HR	72-HR	58.80-HR
+ (CF3)	(fik)	(CFS)				
+ 31.	26.40		31.	30.	23.	23.
		(INCHES)	.061	.236	.447	.447
		(AC-FT)	15.	60.	113.	113.
PEAK STORAGE	TIME			MAXIMUM AV	ERAGE STORAGE	E
			6-HR	24-HR	72-HR	58.80-HR
+ (AC-FT)	(HR)					
6060.	26.40		6057.	6042.	5986.	5986.
PEAK STAGE	TIME			MAXIMUM A	VERAGE STAGE	
			6-HR	24-HR	72-HR	58.80-HR
+ (FEET)	(HR)					
5547.27	26.40		5547.25	5547.12	5546.66	5546.66

CUMULATIVE AREA = 4.74 SQ MI

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN			APPLIED	TO PRECIPITAT	ION
HYDROGRAPH AT +	B1	.50	1	FLOW TIME	31. 10.80			
ROUTED TO +	RB1	.50	1	FLOW TIME	29. 10.80			
HYDROGRAPH AT +	В2	.44	1	FLOW TIME	27. 10.80			
HYDROGRAPH AT +	В3	.28	1	FLOW TIME	15. 10.80			
3 COMBINED AT +	C1	1.22	1	FLOW TIME	70. 10.80			
ROUTED TO +	RC1	1.22	1	FLOW TIME	64. 10.80			
HYDROGRAPH AT +	В4	.45	1	FLOW TIME	29. 10.80			
HYDROGRAPH AT +	В5	.81	1	FLOW TIME	55. 10.80			
3 COMBINED AT +	C2	2.48	1	FLOW TIME	148. 10.80			
ROUTED TO +	RC2	2.48	1	FLOW TIME	145. 10.80			
HYDROGRAPH AT +	В6	.15	1	FLOW TIME	20. 9.60			
HYDROGRAPH AT +	В7	.33	1	FLOW TIME	25. 10.80			
3 COMBINED AT +	С3	2.95	1	FLOW TIME	190. 10.80			
ROUTED TO +	RC3	2.95	1	FLOW TIME	166. 10.80			
HYDROGRAPH AT	В8	1.01		FLOW TIME	128. 10.80			
HYDROGRAPH AT	В9	.24	1	FLOW TIME	34. 9.60			
HYDROGRAPH AT +	B10	.13	1	FLOW TIME	20. 9.60			
2 COMBINED AT	C4	.37	1	FLOW TIME	54. 9.60			
ROUTED TO +	RC4	.37	1	FLOW TIME	52. 10.80			
HYDROGRAPH AT	B11	.28	1	FLOW TIME	38. 9.60			
4 COMBINED AT +	C5	4.61	1	FLOW TIME	383. 10.80			

HYDROGRAPH AT +	B12	.13	1 FLOW TIME	14. 10.80							
2 COMBINED AT	Call	4.74	1 FLOW TIME	396. 10.80							
ROUTED TO +	Cove	4.74	1 FLOW TIME	31. 26.40							
			** PEAK ST 1 STAGE TIME	AGES IN FEET 5547.27 26.40	**						
1				Y OF KINEMATI LOW IS DIRECT			BASE FLOW)	TING			
ISTAÇ	ELEMENT	DT	PEAK	TIME TO PEAK	VOLUME	DT	COMPUTATIO PEAK		VOLUME		
		(MIN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
FOR PL RB1	AN = 1 RATI MANE	10.80	30.91	669.60	.72	72.00	28.63	648.00	.73		
CONTINUITY SUMMA	RY (AC-FT) -	· INFLOW=	.1937E+02 E	XCESS= .0000E	+00 OUTF	LOW= .193	88E+02 BASIN	STORAGE=	.4507E-02 PERCENT	ERROR=	1
FOR PL RC1	AN = 1 RATI MANE	[0= .00 10.80	69.48	669.60	.70	72.00	64.10	648.00	.71		
CONTINUITY SUMMA	RY (AC-FT) -	· INFLOW=	.4557E+02 E	XCESS= .0000E	+00 OUTF	LOW= .455	88E+02 BASIN	STORAGE=	.4033E-02 PERCENT	ERROR=	.0
FOR PL RC2	AN = 1 RAT	[O= .00 5.04	146.95	655.56	.74	72.00	145.12	648.00	.74		
CONTINUITY SUMMA	RY (AC-FT) -	· INFLOW=	.9743E+02 E	XCESS= .0000E	+00 OUTF	LOW= .974	44E+02 BASIN	STORAGE=	.3141E-02 PERCENT	ERROR=	.0
FOR PL RC3	AN = 1 RATI	[0= .00 14.40	187.14	676.80	.79	72.00	165.61	648.00	.78		
CONTINUITY SUMMA	RY (AC-FT) -	· INFLOW=	.1237E+03 E	XCESS= .0000E	+00 OUTF	LOW= .123	37E+03 BASIN	STORAGE=	.1170E-01 PERCENT	ERROR=	1
FOR PL RC4	AN = 1 RATI	iO= .00 11.89	54.51	594.33	1.48	72.00	52.02	648.00	1.48		
CONTINUITY SUMMA	RY (AC-FT) -	· INFLOW=	.2925E+02 E	XCESS= .0000E	+00 OUTF	LOW= .292	6E+02 BASIN	STORAGE=	.2520E-02 PERCENT	ERROR=	.0
1				OVERTOPPING/ R INTERNAL TI				Cove FORMATION)			
PLAN 1		ELEVA STORA OUTFL	TION GE	ITIAL VALUE 5545.50 5845. 0.		WAY CREST 549.20 6508. 45.	5552 73				
	RATIO OF PMF	MAXIMU RESERVO W.S.EL	IR DEP	TH STORAG	iE OUT	FLOW C	OURATION OVER TOP M HOURS	TIME OF AX OUTFLOW HOURS	TIME OF FAILURE HOURS		

1.00

5547.27

.00

6060.

31.

.00

26.40

.00

Storm Event 5. 50-year, 24-hour

1

LINE

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

 X
 X
 XXXXXXX
 XXXXXX
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 <t

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

HEC-1 INPUT PAGE 1 LINE ID.....1....2....3....4....5....6....7....8....9....10 HYDROLOGY STUDY for COVE RESERVOIR TD Located in KANE COUNTY, UTAH 2 ID ID TD AUG 2020 5 ID ID PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 TD 8 ID 10 11 ID ID FAX: (435) 628-6553 12 ID 50-YR, 24-HR, AMC II 13 ID *Diagram 14 JR PREC 1.0 15 ΙT 72 0 0 50 0 16 IO 17 IN 72 18 KK R1 19 20 KM Runoff from Basin 1 ВА 0.503 PB PC 21 3.14 22 0.020 0.046 0.070 0.095 0.130 0.180 0.300 0.520 0.650 0 23 PC 0.700 0.745 0.785 0.820 0.850 0.905 0.930 0.955 0.980 0.880 24 PC 1.000 25 15 a 72.8 26 0.51 UD 27 KK RB1 28 KM Route B1 29 RD .045 .050 4928 TRAP 20 20 30 KK B2 Runoff from Basin 2 31 KM 32 ВА 0.436 LS 72.5 33 34 0.52 UD 35 KK 36 37 KM BA Runoff from Basin 3 0.279 38 LS 39 UD 0.39 HEC-1 INPUT PAGE 2

ID.....1....2....3....4....5....6....7....8.....9....10

```
40
41
42
                KK
KM
HC
                      C1
Combine RB1, B2, B3
                KK
KM
RD
  43
                       RC1
 44
45
                      Route RC1
7255 .060
                                        .030
                                                            TRAP
                                                                                 20
                                                                        20
  46
                 KK
 47
48
49
                KM
BA
LS
                       Runoff from Basin 4
                       0.453
                                 73.3
                        0.48
  50
                 UD
                KK
KM
BA
LS
  51
52
53
54
55
                      Runoff from Basin 5
                                 74.1
                        0
0.63
                 UD
  56
                 KK
                KM
HC
*
  57
58
                       Combine RC1, B4, B5
                      RC2
Route C2
2380 .039
  59
60
                 KK
KM
  61
                 RD
                                                            TRAP
                                                                        40
                                                                                  2
                KM
BA
LS
 63
64
65
                       Runoff from Basin 6
                       0.150
                                 84.3
                        0.19
                UD
*
  66
 67
68
69
70
71
                 KK
KM
                       Runoff from Basin 7
                BA
LS
                      0.327
                                75.7
                UD
*
                        0.46
  72
                 KK
                KM
HC
*
  73
74
                       Combine RC2, B6, B7
                          3
                                                   HEC-1 INPUT
                                                                                                                    PAGE 3
LINE
                 ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
  75
                 KK
                       RC3
  76
77
                KM
RD
                       Route C3
                                       .030
                      11323 .023
                                                            TRAP
                                                                                 20
                                                                        40
  78
79
80
                 KK
KM
                       В8
                       Runoff from Basin 8
                BA
LS
                       1.012
                                 84.0
  81
                        0
0.67
                 UD
                 KK
                KM
BA
                      Runoff from Basin 9
 84
85
                      0.242
  86
87
                LS
UD
*
                       0.26
                                 85.5
 88
89
                 KK
                       B10
                 KM
                       Runoff from Basin 10
                 ВА
                       0.129
  91
92
                                 86.7
                LS
UD
                        0
0.18
  93
                 KK
                KM
HC
*
                       Combine B9, B10
  95
  96
                 KK
                       RC4
                 KM
  97
                       Route C4
                                .037
                                          .030
                                                            TRAP
                                                                        40
                                                                                 20
```

```
KK
KM
BA
LS
UD
              100
                                    Runoff from Basin 11
              101
102
                                    0.279
                                              84.8
                                     0.39
              103
                             KK
KM
HC
*
              104
                                    Combine RC3, B8, RC4, B11
             105
106
              107
                              KK
                                    B12
              108
                              KM
                                    Runoff from Basin 12
                             BA
LS
              109
                                    0.127
              110
                                              81.2
                                     0.40
              111
                              UD
1
                                                                 HEC-1 INPUT
                                                                                                                                  PAGE 4
                              ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
             LINE
             112
                                    Call
                              KK
                             KM
HC
*
                                    Combine C5, B12
              113
              114
                                    Cove Reservoir
Routing through Res'v
1 ELEV 5545.5
             115
116
                             KK
KM
              117
                             RS
SV
SV
SE
SE
SL
SS
                                                                                    738
8000
              118
119
                                              19
4423
                                                       95
5419
                                                                          453
7347
                                                                                                                         2773
                                        0
                                                                  240
                                                                                             1105
                                                                                                      1563
                                                                                                               2217
                                     3542
                                                                 6149
              120
                                     5470
                                              5476
                                                        5482
                                                                 5488
                                                                           5494
                                                                                             5506
                                                                                                       5512
                                                                                                                5518
                                                                                                                         5524
                                  5530
5545.5
5549.2
                                                       5542
0.6
2.67
                                                                 5548
0.5
1.5
              121
122
                                             5536
4.909
                                                                           5552
                                                                                    5558
              123
                                                 30
                             ST
*
                                              1892
             124
                                   5552.0
                                                         2.9
                                                                  1.5
1
                   SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
              (V) ROUTING
                                      (--->) DIVERSION OR PUMP FLOW
  LINE
   NO.
              (.) CONNECTOR
                                      (<---) RETURN OF DIVERTED OR PUMPED FLOW
    18
               В1
                    ٧
    27
               RB1
    30
                             B2
    35
                                           В3
    40
               C1
    43
               RC1
    46
    51
                                           В5
    56
               C2
    59
               RC2
    62
     67
                                           В7
    72
               С3
    75
               RC3
```

78

B11

```
83
                                    В9
                                                 B10
 88
 93
                                    C4
 96
                                    RC4
 99
                                                 B11
104
107
                       B12
112
          Call ...
115
          Cove
```

U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

HYDROLOGY STUDY for COVE RESERVOIR Located in KANE COUNTY, UTAH

AUG 2020

PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 FAX: (435) 628-6553

50-YR, 24-HR, AMC II

```
OUTPUT CONTROL VARIABLES
16 IO
                      IPRNT
                                       0 PRINT CONTROL
                      IPLOT
                                      0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
                      QSCAL
   ΙT
                HYDROGRAPH TIME DATA
                                      72 MINUTES IN COMPUTATION INTERVAL
                       NMIN
                      IDATE
                                          STARTING DATE
                                          STARTING TIME
NUMBER OF HYDROGRAPH ORDINATES
                      ITIME
                                    0000
                                      50
0
                         NO
                     NDDATE
                                          ENDING DATE
                     NDTIME
                                    1048
                                          ENDING TIME
                     ICENT
                                      19
                                          CENTURY MARK
                  COMPUTATION INTERVAL
                                           1.20 HOURS
                                          58.80 HOURS
                       TOTAL TIME BASE
```

ENGLISH UNITS
DRAINAGE AREA

DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION NPLAN

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION
RATIOS OF PRECIPITATION

*** ***

*** ***

Call * 112 KK

Combine C5, B12

114 HC

HYDROGRAPH AT STATION Call SUM OF 2 HYDROGRAPHS
PLAN 1, RATIO = 1.00

****	***************************************																		
					*					*					*				
DA	MON	HRMN	ORD	FLO	* ۱	DA	MON HRMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA MO	N HRMN	ORD	FLOW
					*					*					*				
1		0000	1	0	*	1	1536	14	196.	*	2	0712	27	0.	*	2	2248	40	0.
1		0112	2	0	*	1	1648	15	174.	*	2	0824	28	0.	*	3	0000	41	0.
1		0224	3	0	*	1	1800	16	165.	*	2	0936	29	0.	*	3	0112	42	0.
1		0336	4	0	*	1	1912	17	150.	*	2	1048	30	0.	*	3	0224	43	0.
1		0448	5	0	*	1	2024	18	142.	*	2	1200	31	0.	*	3	0336	44	0.
1		0600	6	1	*	1	2136	19	140.	*	2	1312	32	0.	*	3	0448	45	0.
1		0712	7	12	*	1	2248	20	141.	*	2	1424	33	0.	*	3	0600	46	0.
1		0824	8	85	*	2	0000	21	129.	*	2	1536	34	0.	*	3	0712	47	0.
1		0936	9	398	*	2	0112	22	69.	*	2	1648	35	0.	*	3	0824	48	0.
1		1048	10	506	*	2	0224	23	28.	*	2	1800	36	0.	*	3	0936	49	0.
1		1200	11	362	*	2	0336	24	9.	*	2	1912	37	0.	*	3	1048	50	0.
1		1312	12	268	*	2	0448	25	3.	*	2	2024	38	0.	*				
1		1424	13	223	*	2	0600	26	1.	*	2	2136	39	0.	*				
										•					*				

-	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	58.80-HR
			(CFS)				
+	506.	10.80		338.	160.	65.	65.
			(INCHES)	.662	1.254	1.255	1.255
			(AC-FT)	167.	317.	317.	317.
+	506.	10.80	(INCHES)	.662	1.254	1.255	1.25

CUMULATIVE AREA = 4.74 SQ MI

*** ***

115 KK Reservoir Cove

Routing through Res'v

5530.00

HYDROGRAPH ROUTING DATA

117 RS STORAGE ROUTING

1 NUMBER OF SUBREACHES ELEV TYPE OF INITIAL CONDITION 5545.50 INITIAL CONDITION NSTPS ${\tt RSVRIC}$.00 WORKING R AND D COEFFICIENT

95.0 118 SV STORAGE 19.0 240.0 453.0 738.0 1105.0 1563.0 2217.0 2773.0 3542.0 4423.0 5419.0 6149.0 7347.0 8000.0 120 SE ELEVATION 5470.00 5476.00 5482.00 5488.00 5536.00 5542.00 5548.00 5488.00 5494.00 5500.00 5506.00 5512.00 5518.00 5524.00 5552.00

5558.00

122 SL LOW-LEVEL OUTLET

ELEVL 5545.50 ELEVATION AT CENTER OF OUTLET CAREA 4.91 CROSS-SECTIONAL AREA COQL .60 COEFFICIENT .50 EXPONENT OF HEAD EXPL

123 SS SPILLWAY

5549.20 SPILLWAY CREST ELEVATION 30.00 SPILLWAY WIDTH CREL SPWID 2.67 WEIR COEFFICIENT COOW 1.50 EXPONENT OF HEAD EXPW

124 ST TOP OF DAM TOPEL DAMWID

5552.00 ELEVATION AT TOP OF DAM 1892.00 DAM WIDTH 2.90 WEIR COEFFICIENT 1.50 EXPONENT OF HEAD COQD EXPD

*** COMPUTED OUTFLOW-ELEVATION DATA

(EXCLUDING FLOW OVER DAM)

OUTFLOW ELEVATION	.00 5470.00	.00 5545.50	25.78 5546.69	27.48 5546.85	29.42 5547.05	31.65 5547.30	 	40.98 5548.51	45.44 5549.20
OUTFLOW ELEVATION	49.37	68.29 5549.60	113.97 5550.06		332.85 5551.48	529.64	 1156.85	1610.93 5556.36	

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA

(INCLUDING FLOW OVER DAM)

STORAGE	.00	19.00	95.00	240.00	453.00	738.00	1105.00	1563.00	2217.00	2773.00
OUTFLOW	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
ELEVATION	5470.00	5476.00	5482.00	5488.00	5494.00	5500.00	5506.00	5512.00	5518.00	5524.00
STORAGE	3542.00	4423.00	5419.00	5844.83	5989.79	6009.51	6033.57	6063.27	6100.64	6148.41
OUTFLOW	.00	.00	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31
ELEVATION	5530.00	5536.00	5542.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00
STORAGE	6301.53	6508.46	6543.56	6628.96	6765.11	6952.15	7190.23	7347.00	7395.04	7518.54
OUTFLOW	40.98	45.44	49.37	68.29	113.97	198.20	332.85	435.48	2138.72	11657.74
ELEVATION	5548.51	5549.20	5549.32	5549.60	5550.06	5550.68	5551.48	5552.00	5552.44	5553.58
STORAGE	7660.53	7821.02	8000.00							
OUTFLOW	27985.71	51484.63	82813.63							
ELEVATION	5554.88	5556.36	5558.00							

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

*****	******	****	*****	******	******	***	****	******	****	******	******	******	**	****	****	****	******	******	*****
						*							*						
DA MO	N HRMN	ORD	OUTFLOW	STORAGE	STAGE	*	DA M	10N HRMN	ORD	OUTFLOW	STORAGE	STAGE	* [10M AC	I HRMN	ORD	OUTFLOW	STORAGE	STAGE
						*							*						
1	0000	1	0.	5844.8	5545.5	*	1	2024	18	33.	6079.1	5547.4	*	2	1648	35	33.	6079.8	5547.4
1	0112	2	0.	5844.8	5545.5	*	1	2136	19	34.	6089.8	5547.5	*	2	1800	36	33.	6076.5	5547.4
1	0224	3	0.	5844.8	5545.5	*	1	2248	20	34.	6100.3	5547.6	*	2	1912	37	32.	6073.3	5547.4
1	0336	4	0.	5844.8	5545.5	*	2	0000	21	35.	6110.3	5547.7	*	2	2024	38	32.	6070.1	5547.4
1	0448	5	0.	5844.8	5545.5	*	2	0112	22	35.	6116.6	5547.7	*	2	2136	39	32.	6067.0	5547.3
1	0600	6	0.	5844.8	5545.5	*	2	0224	23	35.	6117.8	5547.7	*	2	2248	40	32.	6063.8	5547.3
1	0712	7	2.	5845.4	5545.5	*	2	0336	24	35.	6116.1	5547.7	*	3	0000	41	31.	6060.7	5547.3
1	0824	8	5.	5849.9	5545.5	*	2	0448	25	35.	6113.2	5547.7	*	3	0112	42	31.	6057.6	5547.2
1	0936	9	11.	5873.1	5545.7	*	2	0600	26	35.	6109.9	5547.7	*	3	0224	43	31.	6054.5	5547.2
1	1048	10	18.	5916.5	5546.1	*	2	0712	27	35.	6106.5	5547.7	*	3	0336	44	31.	6051.4	5547.2
1	1200	11	23.	5957.5	5546.4	*	2	0824	28	34.	6103.1	5547.6	*	3	0448	45	31.	6048.4	5547.2
1	1312	12	25.	5986.4	5546.7	*	2	0936	29	34.	6099.8	5547.6	*	3	0600	46	30.	6045.3	5547.1
1	1424	13	27.	6008.1	5546.8	*	2	1048	30	34.	6096.4	5547.6	*	3	0712	47	30.	6042.4	5547.1
1	1536	14	29.	6026.1	5547.0	*	2	1200	31	34.	6093.0	5547.5	*	3	0824	48	30.	6039.4	5547.1
1	1648	15	30.	6041.5	5547.1	*	2	1312	32	34.	6089.7	5547.5	*	3	0936	49	30.	6036.4	5547.1
1	1800	16	31.	6055.3	5547.2	*	2	1424	33	33.	6086.3	5547.5	*	3	1048	50	29.	6033.5	5547.1
1	1912	17	32.	6067.8	5547.3	*	2	1536	34	33.	6083.1	5547.5	*						
						*							*						

PEAK OUTFLOW IS 35. AT TIME 26.40 HOURS

F	PEAK FLOW	TIME			MAXIMUM A	VERAGE FLOW	
				6-HR	24-HR	72-HR	58.80-HR
+	(CFS)	(HR)					
			(CFS)				
+	35.	26.40		35.	34.	27.	27.
			(INCHES)	.069	.267	.509	.509
			(AC-FT)	17.	67.	129.	129.
PE	EAK STORAGE	TIME			MAXIMUM AV	ERAGE STORAGE	
				6-HR	24-HR	72-HR	58.80-HR
+	(AC-FT)	(HR)					
	6118.	26.40		6115.	6097.	6028.	6028.
F	PEAK STAGE	TIME			MAXIMUM A	VERAGE STAGE	
				6-HR	24-HR	72-HR	58.80-HR
+	(FEET)	(HR)					
	5547.74	26.40		5547.72	5547.57	5547.00	5547.00

CUMULATIVE AREA = 4.74 SQ MI

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

RATIOS APPLIED TO PRECIPITATION RATIO 1 OPERATION STATION AREA PLAN 1.00 HYDROGRAPH AT В1 .50 FLOW 42. TIME 10.80 ROUTED TO RB1 .50 FLOW 39. TIME 10.80 HYDROGRAPH AT R2 FLOW 36. .44 1 TIME 10.80 HYDROGRAPH AT FLOW 20. вз .28 TIME 10.80 3 COMBINED AT C1 1.22 FLOW 95. TIME 10.80 ROUTED TO 89. RC1 FLOW 1.22 1 TIME 10.80 HYDROGRAPH AT .45 FLOW 39. TIME 10.80 HYDROGRAPH AT В5 .81 1 FLOW 73. 10.80 TIME 3 COMBINED AT C2 2.48 FLOW 201. 1 TIME 10.80 ROUTED TO RC2 2.48 FLOW 198. TIME 10.80 HYDROGRAPH AT В6 .15 1 FLOW TIME 24. 9.60 HYDROGRAPH AT В7 .33 1 FLOW 33. TIME 10.80 3 COMBINED AT С3 2.95 FLOW 254. TIME 10.80 ROUTED TO RC3 FLOW 2.95 1 226. TIME 10.80 HYDROGRAPH AT В8 1.01 FLOW 156. TIME 10.80 HYDROGRAPH AT В9 .24 FLOW 43. 9.60 TIME HYDROGRAPH AT B10 .13 FLOW 24. TIME 9.60 2 COMBINED AT C4 .37 FLOW 67. TIME 9.60 ROUTED TO RC4 .37 1 FLOW 63. 10.80 TIME HYDROGRAPH AT B11 FLOW 47. .28 1 9.60 4 COMBINED AT C5 4.61 489.

TIME

10.80

HYDROGRAPH AT +	B12	.13	1 FLOW	17 10.8							
2 COMBINED AT +	Call	4.74	1 FLOW TIME	506 10.8							
ROUTED TO +	Cove	4.74	1 FLOW TIME	35 26.4							
1			** PEAK S 1 STAGE TIME		74						
•				ARY OF KINEN (FLOW IS DIF			INTERPO	LATED TO			
ISTAQ	ELEMENT	DT	PEAK	TIME TO PEAK	VOLUME	DT	COMPUTATION PEAK	TIME TO PEAK	VOLUME		
		(MIN)	(CFS) (MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
FOR PLA RB1	AN = 1 RATI MANE	0= .00 10.86	41.28	8 669.60	.93	72.00	39.32	648.00	.94		
CONTINUITY SUMMAR	RY (AC-FT) -	INFLOW=	.2506E+02	EXCESS= .00	000E+00 OUT	FLOW= .250	7E+02 BASIN	STORAGE=	.3252E-02 PERCENT	ERROR=	.0
FOR PLA RC1	AN = 1 RATI MANE	0= .00 10.86	93.8	5 669.60	.91	72.00	89.39	648.00	.92		
CONTINUITY SUMMAR	RY (AC-FT) -	INFLOW=	.5909E+02	EXCESS= .00	000E+00 OUT	FLOW= .591	.0E+02 BASIN	STORAGE=	.3497E-02 PERCENT	ERROR=	.0
FOR PLA RC2	AN = 1 RATI MANE	0= .00 4.52	199.6	1 651.21	.95	72.00	197.63	648.00	.95		
CONTINUITY SUMMAR	RY (AC-FT) -	INFLOW=	.1257E+03	EXCESS= .00	000E+00 OUT	FLOW= .125	7E+03 BASIN	STORAGE=	.3088E-02 PERCENT	ERROR=	.0
FOR PLA RC3	AN = 1 RATI MANE	0= .00 18.00	247.2	2 666.00	1.01	72.00	225.83	648.00	1.01		
CONTINUITY SUMMAR	RY (AC-FT) -	INFLOW=	.1584E+03	EXCESS= .00	000E+00 OUT	FLOW= .158	5E+03 BASIN	STORAGE=	.1185E-01 PERCENT	ERROR=	1
FOR PLA RC4	AN = 1 RATI MANE	0= .00 11.21	66.99	9 594.15	1.78	72.00	62.77	648.00	1.78		
CONTINUITY SUMMAR	RY (AC-FT) -	INFLOW=	.3515E+02	EXCESS= .00	000E+00 OUT	FLOW= .351	.6E+02 BASIN	STORAGE=	.2436E-02 PERCENT	ERROR=	.0
1				AM OVERTOPPI FOR INTERNAI			OR STATION ING BREACH	Cove FORMATION)			
PLAN 1		ELEVA STORA OUTFL	ATION AGE	INITIAL VALU 5545.50 5845. 0.		LWAY CREST 5549.20 6508. 45.	5552 73				
	RATIO OF PMF	MAXIMU RESERVO W.S.EL	DIR DI	EPTH STO	DRAGE OU	TFLOW 0	OURATION OVER TOP M HOURS	TIME OF AX OUTFLOW HOURS	TIME OF FAILURE HOURS		

1.00

5547.74

.00

6118.

35.

.00

26.40

.00

Storm Event 6. 100-year, 24-hour

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

PAGE 1

х	х	XXXXXXX	XX	xxx		х
X		Χ	Х	Х		XX
Χ	Х	Χ	Χ			Χ
XXX	XXXX	XXXX	Χ		XXXXX	Χ
Х	Х	X	Χ			Х
Χ	Х	X	Χ	Х		Х
Y	Y	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

HEC-1 INPUT

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

```
LINE
                ID.....1....2....3....4....5....6....7....8....9....10
                     HYDROLOGY STUDY for COVE RESERVOIR
                TD
                     Located in KANE COUNTY, UTAH
   2
                ID
                ID
                     AUG 2020
                TD
   5
                ID
                ID
                     PREPARED BY ALPHA ENGINEERING
                     43 SOUTH 100 EAST, SUITE 100
ST. GEORGE, UTAH 84770
TEL: (435) 628-6500
                TD
   8
                ID
 10
11
               ID
ID
                     FAX: (435) 628-6553
  12
                ID
                     100-YR, 24-HR, AMC II
  13
               ID
*Diagram
  14
                JR
                      PREC
                               1.0
  15
                ΙT
                        72
                                 0
                                          0
                                                  50
                         0
  16
                IO
  17
                IN
                        72
  18
                KK
                     R1
                     Runoff from Basin 1
 19
20
                KM
                ВА
                     0.503
               PB
PC
  21
                     3.51
  22
                             0.020
                                      0.046
                                              0.070
                                                       0.095
                                                               0.130
                                                                        0.180
                                                                                 0.300
                                                                                         0.520
                                                                                                  0.650
                         0
  23
                PC
                     0.700
                             0.745
                                      0.785
                                              0.820
                                                       0.850
                                                                0.880
                                                                        0.905
                                                                                 0.930
                                                                                         0.955
                                                                                                  0.980
  24
                PC
                     1.000
                               72.8
  25
                15
                         a
  26
                      0.51
                UD
  27
                KK
                     RB1
  28
                KM
                     Route B1
  29
                RD
                              .045
                                       .050
                                                        TRAP
                      4928
                                                                   20
                                                                           20
  30
                KK
                     B2
                     Runoff from Basin 2
  31
                KM
  32
                ВА
                     0.436
                LS
                               72.5
  33
  34
                      0.52
                UD
  35
                KK
 36
37
                KM
                     Runoff from Basin 3
                ВА
                     0.279
  38
                LS
  39
                UD
                      0.39
                                                HEC-1 INPUT
                                                                                                           PAGE 2
```

1

1

LINE ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10

```
40
41
42
                KK
KM
HC
                      C1
Combine RB1, B2, B3
                KK
KM
RD
  43
                       RC1
 44
45
                      Route RC1
7255 .060
                                        .030
                                                            TRAP
                                                                                 20
                                                                        20
  46
                 KK
 47
48
49
                KM
BA
LS
                       Runoff from Basin 4
                       0.453
                                 73.3
                        0.48
  50
                 UD
                KK
KM
BA
LS
  51
52
53
54
55
                      Runoff from Basin 5
                                 74.1
                        0
0.63
                 UD
  56
                 KK
                KM
HC
*
  57
58
                       Combine RC1, B4, B5
                      RC2
Route C2
2380 .039
  59
60
                 KK
KM
  61
                 RD
                                                            TRAP
                                                                        40
                                                                                  2
                KM
BA
LS
 63
64
65
                       Runoff from Basin 6
                       0.150
                                 84.3
                        0.19
                UD
*
  66
 67
68
69
70
71
                 KK
KM
                       Runoff from Basin 7
                BA
LS
                      0.327
                                75.7
                UD
*
                        0.46
  72
                 KK
                KM
HC
*
  73
74
                       Combine RC2, B6, B7
                          3
                                                   HEC-1 INPUT
                                                                                                                    PAGE 3
LINE
                 ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
  75
                 KK
                       RC3
  76
77
                KM
RD
                       Route C3
                                       .030
                      11323 .023
                                                            TRAP
                                                                                 20
                                                                        40
  78
79
80
                 KK
KM
                       В8
                       Runoff from Basin 8
                BA
LS
                       1.012
                                 84.0
  81
                        0
0.67
                 UD
                 KK
                KM
BA
                      Runoff from Basin 9
 84
85
                      0.242
  86
87
                LS
UD
*
                       0.26
                                 85.5
 88
89
                 KK
                       B10
                 KM
                       Runoff from Basin 10
                 ВА
                       0.129
  91
92
                                 86.7
                LS
UD
                        0
0.18
  93
                 KK
                KM
HC
*
                       Combine B9, B10
  95
  96
                 KK
                       RC4
                 KM
  97
                       Route C4
                                .037
                                          .030
                                                            TRAP
                                                                        40
                                                                                 20
```

```
KK
KM
BA
LS
UD
              100
                                    Runoff from Basin 11
              101
102
                                    0.279
                                              84.8
                                     0.39
              103
                             KK
KM
HC
*
              104
                                    Combine RC3, B8, RC4, B11
             105
106
              107
                              KK
                                    B12
              108
                              KM
                                    Runoff from Basin 12
                             BA
LS
              109
                                    0.127
              110
                                              81.2
                                     0.40
              111
                              UD
1
                                                                 HEC-1 INPUT
                                                                                                                                  PAGE 4
                              ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
             LINE
             112
                                    Call
                              KK
                             KM
HC
*
                                    Combine C5, B12
              113
              114
                                    Cove Reservoir
Routing through Res'v
1 ELEV 5545.5
             115
116
                             KK
KM
              117
                             RS
SV
SV
SE
SE
SL
SS
                                                                                    738
8000
              118
119
                                              19
4423
                                                       95
5419
                                                                          453
7347
                                                                                                                         2773
                                        0
                                                                  240
                                                                                             1105
                                                                                                      1563
                                                                                                               2217
                                     3542
                                                                 6149
              120
                                     5470
                                              5476
                                                        5482
                                                                 5488
                                                                           5494
                                                                                             5506
                                                                                                       5512
                                                                                                                5518
                                                                                                                         5524
                                  5530
5545.5
5549.2
                                                       5542
0.6
2.67
                                                                 5548
0.5
1.5
              121
122
                                             5536
4.909
                                                                           5552
                                                                                    5558
              123
                                                 30
                             ST
*
                                              1892
             124
                                   5552.0
                                                         2.9
                                                                  1.5
1
                   SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
              (V) ROUTING
                                      (--->) DIVERSION OR PUMP FLOW
  LINE
   NO.
              (.) CONNECTOR
                                      (<---) RETURN OF DIVERTED OR PUMPED FLOW
    18
               В1
                    ٧
    27
               RB1
    30
                             B2
    35
                                           В3
    40
               C1
    43
               RC1
    46
    51
                                           В5
    56
               C2
    59
               RC2
    62
     67
                                           В7
    72
               С3
    75
               RC3
```

78

B11

```
83
                                    В9
                                                 B10
 88
 93
                                    C4
 96
                                    RC4
 99
                                                 B11
104
107
                       B12
112
          Call ...
115
          Cove
```

* U.S. ARMY CORPS OF ENGINEERS
* HYDROLOGIC ENGINEERING CENTER
* 609 SECOND STREET
* DAVIS, CALIFORNIA 95616
* (916) 756-1104
*

HYDROLOGY STUDY for COVE RESERVOIR Located in KANE COUNTY, UTAH

AUG 2020

PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 FAX: (435) 628-6553

100-YR, 24-HR, AMC II

OUTPUT CONTROL VARIABLES 16 IO IPRNT 0 PRINT CONTROL 0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE IPLOT QSCAL ΙT HYDROGRAPH TIME DATA 72 MINUTES IN COMPUTATION INTERVAL NMIN IDATE STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ITIME 0000 50 0 NO NDDATE ENDING DATE NDTIME 1048 ENDING TIME **ICENT** 19 CENTURY MARK

COMPUTATION INTERVAL 1.20 HOURS TOTAL TIME BASE 58.80 HOURS

ENGLISH UNITS
DRAINAGE AREA

DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION NPLAN

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION
RATIOS OF PRECIPITATION

*** ***

*** ***

Call * 112 KK

Combine C5, B12

114 HC

HYDROGRAPH COMBINATION
ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION Call SUM OF 2 HYDROGRAPHS
PLAN 1, RATIO = 1.00

****	****	*****	****	********	****	****	****	****	****	******	****	****	*******	*****	*******	****	*****	*****	*****	******
					*						*					*				
DA	MON	HRMN	ORD	FLOW	*	DA	MON	HRMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA M	ON HRMN	ORD	FLOW
					*						*					*				
1		0000	1	0.	*	1		1536	14	233.	*	2	0712	27	0.	*	2	2248	40	0.
1		0112	2	0.	*	1		1648	15	206.	*	2	0824	28	0.	*	3	0000	41	0.
1		0224	3	0.	*	1		1800	16	194.	*	2	0936	29	0.	*	3	0112	42	0.
1		0336	4	0.	*	1		1912	17	177.	*	2	1048	30	0.	*	3	0224	43	0.
1		0448	5	0.	*	1		2024	18	167.	*	2	1200	31	0.	*	3	0336	44	0.
1		0600	6	3.	*	1		2136	19	165.	*	2	1312	32	0.	*	3	0448	45	0.
1		0712	7	20.	*	1		2248	20	165.	*	2	1424	33	0.	*	3	0600	46	0.
1		0824	8	116.	*	2		9000	21	150.	*	2	1536	34	0.	*	3	0712	47	0.
1		0936	9	519.	*	2		ð112	22	79.	*	2	1648	35	0.	*	3	0824	48	0.
1		1048	10	632.	*	2		ð224	23	32.	*	2	1800	36	0.	*	3	0936	49	0.
1		1200	11	442.	*	2		0336	24	11.	*	2	1912	. 37	0.	*	3	1048	50	0.
1		1312	12	321.	*	2		9448	25	3.	*	2	2024	. 38	0.	*				
1		1424	13	265.	*	2		9699	26	1.	*	2	2136	39	0.	*				
					•						•					4				

	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	58.80-HR
	(,	()	(CFS)				
+	632.	10.80		421.	195.	80.	80.
			(INCHES) (AC-FT)	.826 209.	1.529 387.	1.530 387.	1.530 387.

CUMULATIVE AREA = 4.74 SQ MI

*** ***

115 KK Reservoir Cove

Routing through Res'v

HYDROGRAPH ROUTING DATA

117 RS STORAGE ROUTING

1 NUMBER OF SUBREACHES ELEV TYPE OF INITIAL CONDITION 5545.50 INITIAL CONDITION NSTPS ${\tt RSVRIC}$.00 WORKING R AND D COEFFICIENT

95.0 118 SV STORAGE 19.0 240.0 453.0 738.0 1105.0 1563.0 2217.0 2773.0 3542.0 4423.0 5419.0 6149.0 7347.0 8000.0 120 SE ELEVATION 5470.00 5476.00 5482.00 5536.00 5542.00 5482.00 5488.00 5494.00 5500.00 5506.00 5512.00 5518.00 5524.00 5548.00 5552.00 5530.00 5558.00

122 SL LOW-LEVEL OUTLET

ELEVL 5545.50 ELEVATION AT CENTER OF OUTLET CAREA 4.91 CROSS-SECTIONAL AREA COQL .60 COEFFICIENT .50 EXPONENT OF HEAD EXPL

123 SS SPILLWAY

5549.20 SPILLWAY CREST ELEVATION 30.00 SPILLWAY WIDTH CREL SPWID 2.67 WEIR COEFFICIENT COOW 1.50 EXPONENT OF HEAD EXPW

124 ST TOP OF DAM TOPEL DAMWID

5552.00 ELEVATION AT TOP OF DAM 1892.00 DAM WIDTH 2.90 WEIR COEFFICIENT 1.50 EXPONENT OF HEAD COQD EXPD

COMPUTED OUTFLOW-ELEVATION DATA

(EXCLUDING FLOW OVER DAM)

OUTFLOW ELEVATION	.00 5470.00	.00 5545.50	25.78 5546.69	27.48 5546.85	29.42 5547.05	31.65 5547.30	 	40.98 5548.51	45.44 5549.20
OUTFLOW ELEVATION	49.37	68.29 5549.60	113.97 5550.06		332.85 5551.48	529.64	 1156.85	1610.93 5556.36	

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA

(INCLUDING FLOW OVER DAM)

STORAGE	.00	19.00	95.00	240.00	453.00	738.00	1105.00	1563.00	2217.00	2773.00
OUTFLOW	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
ELEVATION	5470.00	5476.00	5482.00	5488.00	5494.00	5500.00	5506.00	5512.00	5518.00	5524.00
STORAGE	3542.00	4423.00	5419.00	5844.83	5989.79	6009.51	6033.57	6063.27	6100.64	6148.41
OUTFLOW	.00	.00	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31
ELEVATION	5530.00	5536.00	5542.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00
STORAGE	6301.53	6508.46	6543.56	6628.96	6765.11	6952.15	7190.23	7347.00	7395.04	7518.54
OUTFLOW	40.98	45.44	49.37	68.29	113.97	198.20	332.85	435.48	2138.72	11657.74
ELEVATION	5548.51	5549.20	5549.32	5549.60	5550.06	5550.68	5551.48	5552.00	5552.44	5553.58
STORAGE	7660.53	7821.02	8000.00							
OUTFLOW	27985.71	51484.63	82813.63							
ELEVATION	5554.88	5556.36	5558.00							

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

***	***************************************																					
							*								*							
DA	MON HRI	MN O	RD	OUTFLOW	STORAGE	STAGE	*	DA	MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE	*	DA	MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE
							*								*							
1	000	000	1	0.	5844.8	5545.5	*	1		2024	18	36.	6135.3	5547.9	*	2		1648	35	37.	6140.0	5547.9
1	01:	.12	2	0.	5844.8	5545.5	*	1		2136	19	37.	6148.0	5548.0	*	2		1800	36	37.	6136.3	5547.9
1	02:	24	3	0.	5844.8	5545.5	*	1		2248	20	38.	6160.7	5548.0	*	2		1912	37	36.	6132.7	5547.9
1	03:	36	4	0.	5844.8	5545.5	*	2		0000	21	38.	6172.5	5548.1	*	2		2024	38	36.	6129.2	5547.8
1	04	48	5	0.	5844.8	5545.5	*	2		0112	22	38.	6180.1	5548.1	*	2		2136	39	36.	6125.6	5547.8
1	060	00	6	1.	5845.0	5545.5	*	2		0224	23	38.	6181.9	5548.1	*	2		2248	40	36.	6122.0	5547.8
1	07:	12	7	2.	5846.0	5545.5	*	2		0336	24	38.	6180.1	5548.1	*	3		0000	41	35.	6118.5	5547.7
1	083	324	8	6.	5852.3	5545.6	*	2		0448	25	38.	6177.1	5548.1	*	3		0112	42	35.	6115.0	5547.7
1	09:	136	9	13.	5882.9	5545.8	*	2		0600	26	38.	6173.4	5548.1	*	3		0224	43	35.	6111.5	5547.7
1	10	48	10	21.	5938.3	5546.3	*	2		0712	27	38.	6169.8	5548.1	*	3		0336	44	35.	6108.1	5547.7
1	120	.00	11	26.	5989.3	5546.7	*	2		0824	28	38.	6166.0	5548.1	*	3		0448	45	35.	6104.6	5547.6
1	13:	12	12	29.	6024.4	5547.0	*	2		0936	29	38.	6162.2	5548.0	*	3		0600	46	34.	6101.2	5547.6
1	14	24	13	31.	6050.6	5547.2	*	2		1048	30	38.	6158.4	5548.0	*	3		0712	47	34.	6097.9	5547.6
1	15	36	14	32.	6072.1	5547.4	*	2		1200	31	37.	6154.7	5548.0	*	3		0824	48	34.	6094.5	5547.6
1	16	48	15	34.	6090.6	5547.5	*	2		1312	32	37.	6151.0	5548.0	*	3		0936	49	34.	6091.1	5547.5
1	180	800	16	35.	6107.0	5547.7	*	2		1424	33	37.	6147.3	5548.0	*	3		1048	50	33.	6087.8	5547.5
1	19:	12	17	36.	6121.9	5547.8	*	2		1536	34	37.	6143.7	5548.0	*							
							*								*							

PEAK OUTFLOW IS 38. AT TIME 26.40 HOURS

F	PEAK FLOW	TIME			MAXIMUM AV	ERAGE FLOW	
				6-HR	24-HR	72-HR	58.80-HR
+	(CFS)	(HR)					
			(CFS)				
+	38.	26.40		38.	37.	30.	30.
			(INCHES)	.075	.294	.568	.568
			(AC-FT)	19.	74.	144.	144.
PE	AK STORAGE	TIME			MAXIMUM AVE	RAGE STORAGE	
				6-HR	24-HR	72-HR	58.80-HR
+	(AC-FT)	(HR)					
	6182.	26.40		6178.	6158.	6075.	6075.
F	PEAK STAGE	TIME			MAXIMUM AV	ERAGE STAGE	
				6-HR	24-HR	72-HR	58.80-HR
+	(FEET)	(HR)					
	5548.11	26.40		5548.10	5548.02	5547.36	5547.36

CUMULATIVE AREA = 4.74 SQ MI

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN			S APPLIED ⁻	TO PRECIPIT	TATION
HYDROGRAPH AT +	B1	.50	1	FLOW TIME	54. 10.80			
ROUTED TO +	RB1	.50	1	FLOW TIME	51. 10.80			
HYDROGRAPH AT +	В2	.44	1	FLOW TIME	46. 10.80			
HYDROGRAPH AT +	В3	.28	1	FLOW TIME	27. 10.80			
3 COMBINED AT +	C1	1.22	1	FLOW TIME	124. 10.80			
ROUTED TO +	RC1	1.22	1	FLOW TIME	118. 10.80			
HYDROGRAPH AT +	В4	.45	1	FLOW TIME	50. 10.80			
HYDROGRAPH AT +	В5	.81	1	FLOW TIME	92. 10.80			
3 COMBINED AT	C2	2.48	1	FLOW TIME	260. 10.80			
ROUTED TO	RC2	2.48	1	FLOW TIME	257. 10.80			
HYDROGRAPH AT	В6	.15	1	FLOW TIME	30. 9.60			
HYDROGRAPH AT	В7	.33	1	FLOW TIME	41. 10.80			
3 COMBINED AT	С3	2.95	1	FLOW TIME	326. 10.80			
ROUTED TO +	RC3	2.95	1	FLOW TIME	298. 10.80			
HYDROGRAPH AT HYDROGRAPH AT	В8	1.01	1	FLOW TIME	190. 9.60			
+ HYDROGRAPH AT	В9	.24	1	FLOW TIME	51. 9.60			
+ 2 COMBINED AT	B10	.13	1	FLOW TIME	29. 9.60			
+	C4	.37	1	FLOW TIME	81. 9.60			
ROUTED TO +	RC4	.37	1	FLOW TIME	74. 10.80			
+ A COMPINED AT	B11	.28	1	FLOW TIME	57. 9.60			
4 COMBINED AT +	C5	4.61	1	FLOW TIME	611. 10.80			

HYDROGRAPH AT +	B12	.13	1 FLOW TIME	21. 9.60							
2 COMBINED AT +	Call	4.74	1 FLOW TIME	632. 10.80							
ROUTED TO +	Cove	4.74	1 FLOW TIME	38. 26.40							
1			** PEAK ST 1 STAGE TIME	AGES IN FEET 5548.11 26.40	**						
-				Y OF KINEMATI LOW IS DIRECT			BASE FLOW)	ITING DLATED TO			
ISTAQ	ELEMENT	DT	PEAK	TIME TO PEAK	VOLUME	DT		N INTERVAL TIME TO PEAK	VOLUME		
		(MIN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
FOR PLA RB1	AN = 1 RATI MANE	IO= .00 10.80	52.87	669.60	1.17	72.00	51.47	648.00	1.18		
CONTINUITY SUMMA	RY (AC-FT)	- INFLOW=	.3151E+02 E	XCESS= .0000E	+00 OUTF	LOW= .315	52E+02 BASIN	I STORAGE=	.3618E-02 PERCENT	ERROR=	.0
FOR PL RC1	AN = 1 RATI MANE	IO= .00 10.80	122.15	658.80	1.15	72.00	118.32	648.00	1.15		
CONTINUITY SUMMA	RY (AC-FT)	- INFLOW=	.7446E+02 E	XCESS= .0000E	+00 OUTF	LOW= .744	18E+02 BASIN	I STORAGE=	.3965E-02 PERCENT	ERROR=	.0
FOR PL RC2	AN = 1 RATI MANE	IO= .00 4.12	258.94	650.80	1.19	72.00	257.20	648.00	1.20		
CONTINUITY SUMMA	RY (AC-FT)	- INFLOW=	.1578E+03 E	XCESS= .0000E	+00 OUTF	LOW= .157	78E+03 BASIN	I STORAGE=	.3030E-02 PERCENT	ERROR=	.0
FOR PL RC3	AN = 1 RATI MANE	IO= .00 18.00	321.28	666.00	1.25	72.00	298.28	648.00	1.26		
CONTINUITY SUMMA	RY (AC-FT)	- INFLOW=	.1975E+03 E	XCESS= .0000E	+00 OUTF	LOW= .197	76E+03 BASIN	I STORAGE=	.8525E-02 PERCENT	ERROR=	1
FOR PL RC4	AN = 1 RATI MANE	IO= .00 10.64	80.58	595.79	2.10	72.00	74.24	648.00	2.11		
CONTINUITY SUMMA	RY (AC-FT)	- INFLOW=	.4157E+02 E	XCESS= .0000E	+00 OUTF	LOW= .415	58E+02 BASIN	I STORAGE=	.3047E-02 PERCENT	ERROR=	.0
1				OVERTOPPING/ OR INTERNAL TI				Cove FORMATION)			
PLAN 1		ELEVA STORA OUTFL	ATION AGE	TITIAL VALUE 5545.50 5845. 0.		WAY CREST 549.20 6508. 45.	5552 73				
	RATIO OF PMF	MAXIMU RESERVO W.S.EL	OIR DEP	TH STORAG	E OUT		DURATION DVER TOP M HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS		

1.00

5548.11

.00

6182.

38.

.00

26.40

.00

Storm Event 7. 500-year, 24-hour

1

LINE

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

HEC-1 INPUT PAGE 1 LINE ID.....1....2....3....4....5....6....7....8....9....10 HYDROLOGY STUDY for COVE RESERVOIR TD Located in KANE COUNTY, UTAH 2 ID ID TD AUG 2020 5 ID ID PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 TD 8 ID 10 11 ID ID FAX: (435) 628-6553 12 ID 500-YR, 24-HR, AMC II 13 ID *Diagram 14 JR PREC 1.0 15 ΙT 72 0 0 50 0 16 IO 17 IN 72 18 KK R1 19 20 KM Runoff from Basin 1 ВА 0.503 PB PC 21 4.69 22 0.020 0.046 0.070 0.095 0.130 0.180 0.300 0.520 0.650 0 23 PC 0.700 0.745 0.785 0.820 0.850 0.905 0.930 0.955 0.980 0.880 24 PC 1.000 25 15 a 72.8 26 0.51 UD 27 KK RB1 28 KM Route B1 29 RD .045 .050 4928 TRAP 20 20 30 KK B2 Runoff from Basin 2 31 KM 32 ВА 0.436 LS 72.5 33 34 0.52 UD 35 KK 36 37 KM BA Runoff from Basin 3 0.279 38 LS 39 UD 0.39 HEC-1 INPUT PAGE 2

ID.....1....2....3....4....5....6....7....8.....9....10

```
40
41
42
                KK
KM
HC
                      C1
Combine RB1, B2, B3
                KK
KM
RD
  43
                       RC1
 44
45
                      Route RC1
7255 .060
                                        .030
                                                            TRAP
                                                                                 20
                                                                        20
  46
                 KK
 47
48
49
                KM
BA
LS
                       Runoff from Basin 4
                       0.453
                                 73.3
                        0.48
  50
                 UD
                KK
KM
BA
LS
  51
52
53
54
55
                      Runoff from Basin 5
                                 74.1
                        0
0.63
                 UD
  56
                 KK
                KM
HC
*
  57
58
                       Combine RC1, B4, B5
                      RC2
Route C2
2380 .039
  59
60
                 KK
KM
  61
                 RD
                                                            TRAP
                                                                        40
                                                                                  2
                KM
BA
LS
 63
64
65
                       Runoff from Basin 6
                       0.150
                                 84.3
                        0.19
                UD
*
  66
 67
68
69
70
71
                 KK
KM
                       Runoff from Basin 7
                BA
LS
                      0.327
                                75.7
                UD
*
                        0.46
  72
                 KK
                KM
HC
*
  73
74
                       Combine RC2, B6, B7
                          3
                                                   HEC-1 INPUT
                                                                                                                    PAGE 3
LINE
                 ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
  75
                 KK
                       RC3
  76
77
                KM
RD
                       Route C3
                                       .030
                      11323 .023
                                                            TRAP
                                                                                 20
                                                                        40
  78
79
80
                 KK
KM
                       В8
                       Runoff from Basin 8
                BA
LS
                       1.012
                                 84.0
  81
                        0
0.67
                 UD
                 KK
                KM
BA
                      Runoff from Basin 9
 84
85
                      0.242
  86
87
                LS
UD
*
                       0.26
                                 85.5
 88
89
                 KK
                       B10
                 KM
                       Runoff from Basin 10
                 ВА
                       0.129
  91
92
                                 86.7
                LS
UD
                        0
0.18
  93
                 KK
                KM
HC
*
                       Combine B9, B10
  95
  96
                 KK
                       RC4
                 KM
  97
                       Route C4
                                .037
                                          .030
                                                            TRAP
                                                                        40
                                                                                 20
```

```
KK
KM
BA
LS
UD
              100
                                    Runoff from Basin 11
              101
102
                                    0.279
                                              84.8
                                     0.39
              103
                             KK
KM
HC
*
              104
                                    Combine RC3, B8, RC4, B11
             105
106
              107
                              KK
                                    B12
              108
                              KM
                                    Runoff from Basin 12
                             BA
LS
              109
                                    0.127
              110
                                              81.2
                                     0.40
              111
                              UD
1
                                                                 HEC-1 INPUT
                                                                                                                                  PAGE 4
                              ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
             LINE
             112
                                    Call
                              KK
                             KM
HC
*
                                    Combine C5, B12
              113
              114
                                    Cove Reservoir
Routing through Res'v
1 ELEV 5545.5
             115
116
                             KK
KM
              117
                             RS
SV
SV
SE
SE
SL
SS
                                                                                    738
8000
              118
119
                                              19
4423
                                                       95
5419
                                                                          453
7347
                                                                                                                         2773
                                        0
                                                                  240
                                                                                             1105
                                                                                                      1563
                                                                                                               2217
                                     3542
                                                                 6149
              120
                                     5470
                                              5476
                                                        5482
                                                                 5488
                                                                           5494
                                                                                             5506
                                                                                                       5512
                                                                                                                5518
                                                                                                                         5524
                                  5530
5545.5
5549.2
                                                       5542
0.6
2.67
                                                                 5548
0.5
1.5
              121
122
                                             5536
4.909
                                                                           5552
                                                                                    5558
              123
                                                 30
                             ST
*
                                              1892
             124
                                   5552.0
                                                         2.9
                                                                  1.5
1
                   SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
              (V) ROUTING
                                      (--->) DIVERSION OR PUMP FLOW
  LINE
   NO.
              (.) CONNECTOR
                                      (<---) RETURN OF DIVERTED OR PUMPED FLOW
    18
               В1
                    ٧
    27
               RB1
    30
                             B2
    35
                                           В3
    40
               C1
    43
               RC1
    46
    51
                                           В5
    56
               C2
    59
               RC2
    62
     67
                                           В7
    72
               С3
    75
               RC3
```

78

B11

```
83
                                    В9
                                                 B10
 88
 93
                                    C4
 96
                                    RC4
 99
                                                 B11
104
107
                       B12
112
          Call ...
115
          Cove
```

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

HYDROLOGY STUDY for COVE RESERVOIR Located in KANE COUNTY, UTAH

AUG 2020

PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 FAX: (435) 628-6553

500-YR, 24-HR, AMC II

16 IO OUTPUT CONTROL VARIABLES

IPRNT 0 PRINT CONTROL

IPLOT 0 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

IT HYDROGRAPH TIME DATA

NMIN 72 MINUTES IN COMPUTATION INTERVAL

IDATE 1 0 STARTING DATE

ITIME 0000 STARTING TIME

COMPUTATION INTERVAL 1.20 HOURS TOTAL TIME BASE 58.80 HOURS

ENGLISH UNITS
DRAINAGE AREA

DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
FENT
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION NPLAN

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION
RATIOS OF PRECIPITATION

*** ***

*** ***

Call * 112 KK

Combine C5, B12

114 HC

HYDROGRAPH COMBINATION
ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION Call SUM OF 2 HYDROGRAPHS
PLAN 1, RATIO = 1.00

****	****	*****	****	*******	****	****	******	*****	*******	****	****	******	*****	******	***	*****	*****	*****	*******
					*					*					*				
DA	MON	HRMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA MO	N HRMN	ORD	FLOW
					*					*					*				
1		0000	1	0.	*	1	1536	14	352.	*	2	0712	27	0.	*	2	2248	40	0.
1		0112	2	0.	*	1	1648	15	309.	*	2	0824	28	0.	*	3	0000	41	0.
1		0224	3	0.	*	1	1800	16	291.	*	2	0936	29	0.	*	3	0112	42	0.
1		0336	4	0.	*	1	1912	17	263.	*	2	1048	30	0.	*	3	0224	43	0.
1		0448	5	2.	*	1	2024	18	247.	*	2	1200	31	0.	*	3	0336	44	0.
1		0600	6	17.	*	1	2136	19	244.	*	2	1312	32	0.	*	3	0448	45	0.
1		0712	7	55.	*	1	2248	20	244.	*	2	1424	33	0.	*	3	0600	46	0.
1		0824	8	257.	*	2	0000	21	221.	*	2	1536	34	0.	*	3	0712	47	0.
1		0936	9	937.	*	2	0112	22	114.	*	2	1648	35	0.	*	3	0824	48	0.
1		1048	10	1064.	*	2	0224	23	43.	*	2	1800	36	0.	*	3	0936	49	0.
1		1200	11	711.	*	2	0336	24	13.	*	2	1912	37	0.	*	3	1048	50	0.
1		1312	12	497.	*	2	0448	25	3.	*	2	2024	38	0.	*				
1		1424	13	404.	*	2	0600	26	1.	*	2	2136	39	0.	*				
															*				

Р	EAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	58.80-HR
	` ,	` ,	(CFS)				
+	1064.	10.80		708.	314.	128.	128.
			(INCHES)	1.388	2.465	2.466	2.466
			(AC-FT)	351.	623.	624.	624.

CUMULATIVE AREA = 4.74 SQ MI

*** ***

115 KK Cove * Reservoir

Routing through Res'v

HYDROGRAPH ROUTING DATA

117 RS STORAGE ROUTING NSTPS

1 NUMBER OF SUBREACHES ELEV TYPE OF INITIAL CONDITION 5545.50 INITIAL CONDITION ${\tt RSVRIC}$.00 WORKING R AND D COEFFICIENT 19.0

95.0 118 SV STORAGE 240.0 1105.0 1563.0 2217.0 2773.0 3542.0 4423.0 5419.0 6149.0 7347.0 8000.0 120 SE ELEVATION 5470.00 5476.00 5482.00 5488.00 5530.00 5536.00 5542.00 5548.00 5488.00 5494.00 5500.00 5506.00 5512.00 5518.00 5524.00 5552.00 5558.00

453.0

738.0

122 SL LOW-LEVEL OUTLET

ELEVL 5545.50 ELEVATION AT CENTER OF OUTLET CAREA 4.91 CROSS-SECTIONAL AREA .60 COEFFICIENT .50 EXPONENT OF HEAD COQL EXPL

123 SS SPILLWAY

5549.20 SPILLWAY CREST ELEVATION 30.00 SPILLWAY WIDTH CREL SPWID 2.67 WEIR COEFFICIENT COOW 1.50 EXPONENT OF HEAD EXPW

124 ST TOP OF DAM TOPEL DAMWID

5552.00 ELEVATION AT TOP OF DAM 1892.00 DAM WIDTH 2.90 WEIR COEFFICIENT 1.50 EXPONENT OF HEAD COQD EXPD

*** COMPUTED OUTFLOW-ELEVATION DATA

(EXCLUDING FLOW OVER DAM)

OUTFLOW ELEVATION	.00 5470.00	.00 5545.50	25.78 5546.69	27.48 5546.85	 	34.25 5547.60		40.98 5548.51	
OUTFLOW ELEVATION	49.37	68.29 5549.60	113.97		529.64		1156.85 5554.88		

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA

(INCLUDING FLOW OVER DAM)

STORAGE OUTFLOW	.00	19.00	95.00 .00	240.00	453.00 .00	738.00 .00 5500.00	1105.00	1563.00 .00	2217.00	2773.00	
ELEVATION	5470.00	5476.00	5482.00	5488.00	5494.00	5500.00	5506.00	5512.00	5518.00	5524.00	
STORAGE OUTFLOW	3542.00	4423.00	5419.00	5844.83	5989.79 25.78	6009.51	6033.57	6063.27 31.65	6100.64 34.25	6148.41	
ELEVATION	5530.00	5536.00	5542.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00	
STORAGE OUTFLOW ELEVATION	6301.53 40.98 5548.51	6508.46 45.44 5549.20	6543.56 49.37 5549.32	6628.96 68.29 5549.60	6765.11 113.97 5550.06	6952.15 198.20 5550.68	7190.23 332.85 5551.48	7347.00 435.48 5552.00	7395.04 2138.72 5552.44	7518.54 11657.74 5553.58	
STORAGE OUTFLOW ELEVATION	7660.53 27985.71 5554.88	7821.02 51484.63 5556.36	8000.00 82813.63 5558.00								

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

*****	******	****	*****	******	******	***	***	******	****	******	******	******	***	****	****	****	******	*****	*****
						*						:	*						
DA MO	N HRMN	ORD	OUTFLOW	STORAGE	STAGE	*	DA I	MON HRMN	ORD	OUTFLOW	STORAGE	STAGE :	* [A MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE
						*						:	*						
1	0000	1	0.	5844.8	5545.5	*	1	2024	18	42.	6333.4	5548.6	*	2	1648	35	42.	6361.0	5548.7
1	0112	2	0.	5844.8	5545.5	*	1	2136	19	42.	6353.6	5548.7	*	2	1800	36	42.	6356.8	5548.7
1	0224	3	0.	5844.8	5545.5	*	1	2248	20	43.	6373.6	5548.8	*	2	1912	37	42.	6352.6	5548.7
1	0336	4	0.	5844.8	5545.5	*	2	0000	21	43.	6392.5	5548.8	*	2	2024	38	42.	6348.3	5548.7
1	0448	5	1.	5845.0	5545.5	*	2	0112	22	43.	6404.8	5548.9	*	2	2136	39	42.	6344.2	5548.7
1	0600	6	2.	5845.8	5545.5	*	2	0224	23	43.	6408.3	5548.9	*	2	2248	40	42.	6340.1	5548.6
1	0712	7	4.	5849.1	5545.5	*	2	0336	24	43.	6406.8	5548.9	*	3	0000	41	42.	6336.0	5548.6
1	0824	8	9.	5863.8	5545.7	*	2	0448	25	43.	6403.3	5548.8	*	3	0112	42	42.	6331.9	5548.6
1	0936	9	19.	5921.6	5546.1	*	2	0600	26	43.	6399.2	5548.8	*	3	0224	43	42.	6327.9	5548.6
1	1048	10	28.	6018.5	5546.9	*	2	0712	27	43.	6395.0	5548.8	*	3	0336	44	41.	6323.8	5548.6
1	1200	11	34.	6103.4	5547.6	*	2	0824	28	43.	6390.7	5548.8	*	3	0448	45	41.	6319.7	5548.6
1	1312	12	38.	6159.7	5548.0	*	2	0936	29	43.	6386.5	5548.8	*	3	0600	46	41.	6315.6	5548.6
1	1424	13	39.	6200.6	5548.2	*	2	1048	30	43.	6382.3	5548.8	*	3	0712	47	41.	6311.5	5548.5
1	1536	14	39.	6234.3	5548.3	*	2	1200	31	43.	6378.0	5548.8	*	3	0824	48	41.	6307.4	5548.5
1	1648	15	40.	6263.1	5548.4	*	2	1312	32	43.	6373.8	5548.8	*	3	0936	49	41.	6303.3	5548.5
1	1800	16	41.	6288.8	5548.5	*	2	1424	33	42.	6369.5	5548.7	*	3	1048	50	41.	6299.2	5548.5
1	1912	17	41.	6312.2	5548.5	*	2	1536	34	42.	6365.3	5548.7	*						
						*						:	*						

PEAK OUTFLOW IS 43. AT TIME 26.40 HOURS

PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
	4		6-HR	24-HR	72-HR	58.80-HR
+ (CFS)	(HR)	(CFS)				
+ 43.	26.40	(013)	43.	43.	35.	35.
		(INCHES)	.085	.335	.670	.670
		`(AC-FT)	21.	85.	169.	169.
PEAK STORAGE	TIME			MAXIMUM AVER	AGE STORAGE	
FLAK STOKAGE	TIME		6-HR	24-HR	72-HR	58.80-HR
+ (AC-FT)	(HR)		0	2	/2	30100 1
6408.	26.40		6404.	6380.	6245.	6245.
PEAK STAGE	TIME			MAXTMUM AVE	RAGE STAGE	
			6-HR	24-HR	72-HR	58.80-HR
+ (FEET)	(HR)					
5548.87	26.40		5548.85	5548.77	5548.06	5548.06

CUMULATIVE AREA = 4.74 SQ MI

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN			S APPLIED	TO PRECIPII	TATION
HYDROGRAPH AT +	B1	.50	1	FLOW TIME	95. 10.80			
ROUTED TO +	RB1	.50	1	FLOW TIME	96. 10.80			
HYDROGRAPH AT +	В2	.44	1	FLOW TIME	82. 10.80			
HYDROGRAPH AT +	В3	.28	1	FLOW TIME	49. 10.80			
3 COMBINED AT +	C1	1.22	1	FLOW TIME	227. 10.80			
ROUTED TO +	RC1	1.22	1	FLOW TIME	221. 10.80			
HYDROGRAPH AT +	В4	.45	1	FLOW TIME	88. 10.80			
HYDROGRAPH AT +	В5	.81	1	FLOW TIME	161. 10.80			
3 COMBINED AT +	C2	2.48	1	FLOW TIME	469. 10.80			
ROUTED TO +	RC2	2.48	1	FLOW TIME	467. 10.80			
HYDROGRAPH AT +	В6	.15	1	FLOW TIME	48. 9.60			
HYDROGRAPH AT +	В7	.33	1	FLOW TIME	70. 9.60			
3 COMBINED AT +	С3	2.95	1	FLOW TIME	579. 10.80			
ROUTED TO +	RC3	2.95	1	FLOW TIME	555. 10.80			
HYDROGRAPH AT +	В8	1.01	1	FLOW TIME	307. 9.60			
HYDROGRAPH AT +	В9	.24	1	FLOW TIME	81. 9.60			
HYDROGRAPH AT +	B10	.13	1	FLOW TIME	45. 9.60			
2 COMBINED AT +	C4	.37	1	FLOW TIME	126. 9.60			
ROUTED TO +	RC4	.37	1	FLOW TIME	117. 9.60			
HYDROGRAPH AT +	B11	.28	1	FLOW TIME	91. 9.60			
4 COMBINED AT +	C5	4.61	1	FLOW TIME	1031. 10.80			

HYDROGRAPH AT +	B12	.13	1 FLOW TIME	36. 9.60							
2 COMBINED AT	Call	4.74	1 FLOW TIME	1064. 10.80							
ROUTED TO +	Cove	4.74	1 FLOW TIME	43. 26.40							
1			** PEAK STA 1 STAGE TIME	AGES IN FEET 5548.87 26.40	**						
1				Y OF KINEMATI LOW IS DIRECT			ASE FLOW)	TING LATED TO			
IST	AQ ELEMENT	DT	PEAK	TIME TO PEAK	VOLUME	DT	COMPUTATIO PEAK	N INTERVAL TIME TO PEAK	VOLUME		
		(MIN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
	PLAN = 1 RAT 31 MANE	IO= .00 14.40	95.90	648.00	2.02	72.00	95.90	648.00	2.04		
CONTINUITY SUM	MARY (AC-FT)	- INFLOW=	.5431E+02 E	XCESS= .0000E	+00 OUTF	LOW= .543	2E+02 BASIN	STORAGE=	.4285E-02 PERCENT	ERROR=	.0
	PLAN = 1 RAT C1 MANE	IO= .00 13.43	223.85	658.04	1.99	72.00	220.85	648.00	2.00		
CONTINUITY SUM	MARY (AC-FT)	- INFLOW=	.1292E+03 E	XCESS= .0000E	+00 OUTF	LOW= .129	3E+03 BASIN	STORAGE=	.3778E-02 PERCENT	ERROR=	.0
	PLAN = 1 RAT C2 MANE	IO= .00 3.33	467.63	649.64	2.05	72.00	466.77	648.00	2.06		
CONTINUITY SUM	MARY (AC-FT)	- INFLOW=	.2710E+03 E	XCESS= .0000E	+00 OUTF	LOW= .271	.0E+03 BASIN	STORAGE=	.3014E-02 PERCENT	ERROR=	.0
	PLAN = 1 RAT C3 MANE	IO= .00 21.60	572.39	669.60	2.13	72.00	554.87	648.00	2.13		
CONTINUITY SUM	MARY (AC-FT)	- INFLOW=	.3352E+03 E	XCESS= .0000E	+00 OUTF	LOW= .335	4E+03 BASIN	STORAGE=	.1060E-01 PERCENT	ERROR=	.0
	PLAN = 1 RAT C4 MANE	IO= .00 9.39	125.40	591.38	3.17	72.00	117.08	576.00	3.18		
CONTINUITY SUM	MARY (AC-FT)	- INFLOW=	.6274E+02 E	XCESS= .0000E	+00 OUTF	LOW= .627	4E+02 BASIN	STORAGE=	.2980E-02 PERCENT	ERROR=	.0
1				OVERTOPPING/ R INTERNAL TI				Cove FORMATION)			
PLAN 1 .		ELEVA STORA OUTFL	ATION AGE	ITIAL VALUE 5545.50 5845. 0.		WAY CREST 549.20 6508. 45.	5552 73				
	RATIO OF PMF	MAXIMU RESERVO W.S.EL	OIR DEP	TH STORAG	E OUT	FLOW C	OURATION OVER TOP M HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS		

1.00

5548.87

.00

6408.

43.

.00

26.40

.00

Storm Event 8. 100-year, 6-hour AMC III

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

PAGE 1

 X
 X
 XXXXXXX
 XXXXXX
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 <t

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

HEC-1 INPUT

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE ID.....1....2....3....4....5....6....7....8....9....10 HYDROLOGY STUDY for COVE RESERVOIR TD Located in KANE COUNTY, UTAH 2 ID ID TD AUG 2020 5 ID ID PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 TD 8 ID 10 11 ID ID FAX: (435) 628-6553 12 ID 100-YR, 6-HR, AMC III 13 ID *Diagram 14 JR PREC 1.0 18 0 15 ΙT 0 0 50 16 IO 17 IN 18 18 KK R1 19 KM Runoff from Basin 1 20 ВА 0.503 PB PC 21 2.75 22 0.020 0.046 0.070 0.095 0.130 0.180 0.300 0.520 0.650 0 23 PC 0.700 0.745 0.785 0.820 0.850 0.905 0.930 0.955 0.980 0.880 24 PC 1.000 25 15 a 86.0 26 0.34 UD 27 KK RB1 28 KM Route B1 29 RD .045 4928 .050 TRAP 20 20 30 KK B2 Runoff from Basin 2 31 KM 32 ВА 0.436 LS 85.8 33 34 0.34 UD 35 KK 36 37 KM Runoff from Basin 3 ВА 0.279 38 LS 39 UD 0.25 HEC-1 INPUT PAGE 2

LINE ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10

1

1

```
40
41
42
                 KK
KM
HC
                      C1
Combine RB1, B2, B3
                 KK
KM
RD
  43
                       RC1
 44
45
                       Route RC1
7255 .060
                                        .030
                                                             TRAP
                                                                                  20
                                                                         20
  46
                 KK
 47
48
49
                 KM
BA
LS
                       Runoff from Basin 4
                       0.453
                                  86.3
                        0.32
  50
                 UD
                 KK
KM
BA
LS
  51
52
53
54
55
                       Runoff from Basin 5
                                 86.8
                        0
0.42
                 UD
  56
                 KK
                 KM
HC
*
  57
58
                       Combine RC1, B4, B5
                       RC2
Route C2
2380 .039
  59
60
                 KK
KM
  61
                 RD
                                                             TRAP
                                                                         40
                                                                                   2
                 KM
BA
LS
 63
64
65
                       Runoff from Basin 6
                       0.150
                                 92.5
                        0.14
                 UD
*
  66
 67
68
69
70
71
                 KK
KM
                       В7
                       Runoff from Basin 7
                       0.327
0
0.31
                 BA
LS
                                 87.8
                 UD
*
  72
                 KK
                 KM
HC
*
                       Combine RC2, B6, B7
                          3
                                                    HEC-1 INPUT
                                                                                                                     PAGE 3
LINE
                 ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
  75
                 KK
                       RC3
  76
77
                 KM
RD
                       Route C3
                                        .030
                       11323 .023
                                                             TRAP
                                                                                  20
                                                                         40
  78
79
80
                 KK
KM
                       В8
                       Runoff from Basin 8
                 BA
LS
                       1.012
                                 92.4
  81
                        0
0.48
                 UD
                 KK
                 KM
BA
                       Runoff from Basin 9
 84
85
                       0.242
  86
87
                 LS
UD
*
                        0.19
0.19
                                 93.1
 88
89
                 KK
                       B10
                 KM
                       Runoff from Basin 10
                       0.129
  91
92
                                 93.7
                 LS
UD
                        0
0.14
  93
                 KK
                 KM
HC
*
                       Combine B9, B10
  95
  96
                 KK
                       RC4
                 KM
  97
                       Route C4
                                .037
                                           .030
                                                             TRAP
                                                                         40
                                                                                  20
```

```
KK
KM
BA
LS
UD
              100
                                    Runoff from Basin 11
             101
102
                                   0.279
                                              92.8
                                     0.28
              103
                             KK
KM
HC
*
              104
                                   Combine RC3, B8, RC4, B11
             105
106
              107
                              KK
                                    B12
              108
                              KM
                                    Runoff from Basin 12
                             BA
LS
              109
                                   0.127
              110
                                              90.9
                                     0.28
             111
                              UD
1
                                                                 HEC-1 INPUT
                                                                                                                                  PAGE 4
                              ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
            LINE
             112
                                    Call
                              KK
                             KM
HC
*
                                    Combine C5, B12
             113
             114
                                   Cove Reservoir
Routing through Res'v
1 ELEV 5545.5
             115
116
                             KK
KM
              117
                             RS
SV
SV
SE
SE
SL
SS
                                                                                   738
8000
             118
119
                                              19
4423
                                                       95
5419
                                                                          453
7347
                                                                                                                        2773
                                        0
                                                                  240
                                                                                            1105
                                                                                                      1563
                                                                                                               2217
                                     3542
                                                                 6149
              120
                                     5470
                                              5476
                                                       5482
                                                                 5488
                                                                          5494
                                                                                             5506
                                                                                                      5512
                                                                                                               5518
                                                                                                                         5524
                                  5530
5545.5
5549.2
                                                       5542
0.6
2.67
                                                                 5548
0.5
1.5
              121
                                             5536
4.909
                                                                          5552
                                                                                   5558
              122
              123
                                                30
                             ST
*
                                              1892
             124
                                  5552.0
                                                        2.9
                                                                  1.5
1
                   SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
             (V) ROUTING
                                      (--->) DIVERSION OR PUMP FLOW
  LINE
   NO.
              (.) CONNECTOR
                                      (<---) RETURN OF DIVERTED OR PUMPED FLOW
    18
               В1
                    ٧
    27
               RB1
    30
                             В2
    35
                                           В3
    40
               C1
    43
               RC1
    46
    51
                                           В5
    56
               C2
    59
               RC2
    62
     67
                                           В7
    72
               С3
    75
               RC3
     78
                             В8
```

B11

```
83
                                    В9
                                                 B10
 88
 93
                                    C4
 96
                                    RC4
 99
                                                 B11
104
107
                       B12
112
          Call ...
115
          Cove
```

* U.S. ARMY CORPS OF ENGINEERS
* HYDROLOGIC ENGINEERING CENTER
* 609 SECOND STREET
* DAVIS, CALIFORNIA 95616
* (916) 756-1104
*

HYDROLOGY STUDY for COVE RESERVOIR Located in KANE COUNTY, UTAH

AUG 2020

PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 FAX: (435) 628-6553

100-YR, 6-HR, AMC III

OUTPUT CONTROL VARIABLES 16 IO IPRNT 0 PRINT CONTROL 0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE IPLOT QSCAL ΙT HYDROGRAPH TIME DATA 18 MINUTES IN COMPUTATION INTERVAL NMIN IDATE STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ITIME 0000 NO 50 NDDATE ENDING DATE

NDTIME 1442 ENDING TIME ICENT 19 CENTURY MARK

COMPUTATION INTERVAL .30 HOURS TOTAL TIME BASE 14.70 HOURS

ENGLISH UNITS
DRAINAGE AREA

DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
FENT
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION NPLAN

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION
RATIOS OF PRECIPITATION

*** ***

*** ***

Call * 112 KK

Combine C5, B12

114 HC

HYDROGRAPH COMBINATION
ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION Call SUM OF 2 HYDROGRAPHS
PLAN 1, RATIO = 1.00

****	****	*****	****	******	***	****	****	****	****	*******	****	****	******	****	*******	****	*****	*****	*****	******
					*						*					*				
DA	MON	HRMN	ORD	FLOW	*	DA	MON H	RMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA MO	N HRMN	ORD	FLOW
					*						*					*				
1		0000	1	0.	*	1	0	354	14	1248.	*	1	0748	27	53.	*	1	1142	40	0.
1		0018	2	0.	*	1	0	412	15	1032.	*	1	0806	28	30.	*	1	1200	41	0.
1		0036	3	0.	*	1	0	430	16	892.	*	1	0824	29	15.	*	1	1218	42	0.
1		0054	4	1.	*	1	0	448	17	796.	*	1	0842	30	8.	*	1	1236	43	0.
1		0112	5	10.	*	1	0	506	18	719.	*	1	0900	31	4.	*	1	1254	44	0.
1		0130	6	39.	*	1	0	524	19	668.	*	1	0918	32	2.	*	1	1312	45	0.
1		0148	7	106.	*	1	0	542	20	638.	*	1	0936	33	1.	*	1	1330	46	0.
1		0206	8	321.	*	1	0	600	21	611.	*	1	0954	34	0.	*	1	1348	47	0.
1		0224	9	883.	*	1	0	618	22	529.	*	1	1012	35	0.	*	1	1406	48	0.
1		0242	10	1826.	*	1	0	636	23	386.	*	1	1030	36	0.	*	1	1424	49	0.
1		0300	11	2280.	*	1	0	654	24	254.	*	1	1048	37	0.	*	1	1442	50	0.
1		0318	12	1978.	*	1	0	712	25	156.	*	1	1106	38	0.	*				
1		0336	13	1550.	*	1	0	730	26	95.	*	1	1124	39	0.	*				
					•						-					•				

	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	14.70-HR
	` ,	` ,	(CFS)				
+	2280.	3.00		847.	350.	350.	350.
			(INCHES)	1.661	1.679	1.679	1.679
			(AC-FT)	420.	425.	425.	425.

CUMULATIVE AREA = 4.74 SQ MI

*** ***

115 KK Reservoir Cove

Routing through Res'v

HYDROGRAPH ROUTING DATA

117 RS STORAGE ROUTING NSTPS

1 NUMBER OF SUBREACHES ELEV TYPE OF INITIAL CONDITION 5545.50 INITIAL CONDITION ${\tt RSVRIC}$.00 WORKING R AND D COEFFICIENT

95.0 118 SV STORAGE 19.0 240.0 453.0 738.0 1105.0 1563.0 2217.0 2773.0 3542.0 4423.0 5419.0 6149.0 7347.0 8000.0 120 SE ELEVATION 5470.00 5476.00 5482.00 5536.00 5542.00 5482.00 5488.00 5494.00 5500.00 5506.00 5512.00 5518.00 5524.00 5548.00 5552.00 5530.00 5558.00

122 SL LOW-LEVEL OUTLET

ELEVL 5545.50 ELEVATION AT CENTER OF OUTLET CAREA 4.91 CROSS-SECTIONAL AREA COQL .60 COEFFICIENT .50 EXPONENT OF HEAD EXPL

123 SS SPILLWAY

5549.20 SPILLWAY CREST ELEVATION 30.00 SPILLWAY WIDTH CREL SPWID 2.67 WEIR COEFFICIENT COOW 1.50 EXPONENT OF HEAD EXPW

124 ST TOP OF DAM TOPEL DAMWID

5552.00 ELEVATION AT TOP OF DAM 1892.00 DAM WIDTH 2.90 WEIR COEFFICIENT 1.50 EXPONENT OF HEAD COQD EXPD

*** COMPUTED OUTFLOW-ELEVATION DATA

(EXCLUDING FLOW OVER DAM)

OUTFLOW ELEVATION	.00 5470.00	.00 5545.50	25.78 5546.69	27.48 5546.85	 	34.25 5547.60		40.98 5548.51	
OUTFLOW ELEVATION	49.37	68.29 5549.60	113.97		529.64		1156.85 5554.88		

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA

(INCLUDING FLOW OVER DAM)

STORAGE	.00	19.00	95.00	240.00	453.00	738.00	1105.00	1563.00	2217.00	2773.00
OUTFLOW	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
ELEVATION	5470.00	5476.00	5482.00	5488.00	5494.00	5500.00	5506.00	5512.00	5518.00	5524.00
STORAGE	3542.00	4423.00	5419.00	5844.83	5989.79	6009.51	6033.57	6063.27	6100.64	6148.41
OUTFLOW	.00	.00	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31
ELEVATION	5530.00	5536.00	5542.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00
STORAGE	6301.53	6508.46	6543.56	6628.96	6765.11	6952.15	7190.23	7347.00	7395.04	7518.54
OUTFLOW	40.98	45.44	49.37	68.29	113.97	198.20	332.85	435.48	2138.72	11657.74
ELEVATION	5548.51	5549.20	5549.32	5549.60	5550.06	5550.68	5551.48	5552.00	5552.44	5553.58
STORAGE	7660.53	7821.02	8000.00							
OUTFLOW	27985.71	51484.63	82813.63							

ELEVATION 5554.88 5556.36 5558.00

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

**	****	*****	****	******	******	******	**	***	****	****	****	*******	*******	******	**	***	***	*****	****	*******	******	******
							*								*							
D.	A MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE	*	DA	MON I	HRMN	ORD	OUTFLOW	STORAGE	STAGE	*	DA	MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE
							*								*							
	1	0000	1	0.	5844.8	5545.5	*	1		0506	18	38.	6168.2	5548.1	*	1		1012	35	40.	6245.8	5548.3
	1	0018	2	0.	5844.8	5545.5	*	1		0524	19	38.	6184.4	5548.1	*	1		1030	36	40.	6244.8	5548.3
	1	0036	3	0.	5844.8	5545.5	*	1		0542	20	39.	6199.6	5548.2	*	1		1048	37	40.	6243.8	5548.3
	1	0054	4	0.	5844.8	5545.5	*	1		0600	21	39.	6214.1	5548.2	*	1		1106	38	40.	6242.7	5548.3
	1	0112	5	1.	5845.0	5545.5	*	1		0618	22	39.	6227.2	5548.3	*	1		1124	39	40.	6241.7	5548.3
	1	0130	6	2.	5845.5	5545.5	*	1		0636	23	39.	6237.6	5548.3	*	1		1142	40	40.	6240.7	5548.3
	1	0148	7	3.	5847.3	5545.5	*	1		0654	24	40.	6244.6	5548.3	*	1		1200	41	40.	6239.7	5548.3
	1	0206	8	6.	5852.4	5545.6	*	1		0712	25	40.	6248.7	5548.3	*	1		1218	42	40.	6238.6	5548.3
	1	0224	9	10.	5867.2	5545.7	*	1		0730	26	40.	6250.9	5548.3	*	1		1236	43	39.	6237.6	5548.3
	1	0242	10	16.	5900.4	5546.0	*	1		0748	27	40.	6251.8	5548.3	*	1		1254	44	39.	6236.6	5548.3
	1	0300	11	22.	5950.9	5546.4	*	1		0806	28	40.	6251.8	5548.3	*	1		1312	45	39.	6235.6	5548.3
	1	0318	12	27.	6003.0	5546.8	*	1		0824	29	40.	6251.4	5548.3	*	1		1330	46	39.	6234.6	5548.3
	1	0336	13	30.	6046.0	5547.2	*	1		0842	30	40.	6250.6	5548.3	*	1		1348	47	39.	6233.5	5548.3
	1	0354	14	33.	6080.0	5547.4	*	1		0900	31	40.	6249.8	5548.3	*	1		1406	48	39.	6232.5	5548.3
	1	0412	15	35.	6107.4	5547.7	*	1		0918	32	40.	6248.9	5548.3	*	1		1424	49	39.	6231.5	5548.3
	1	0430	16	36.	6130.3	5547.8	*	1		0936	33	40.	6247.9	5548.3	*	1		1442	50	39.	6230.5	5548.3
	1	0448	17	37.	6150.3	5548.0	*	1		0954	34	40.	6246.8	5548.3	*							
							*								*							

PEAK OUTFLOW IS 40. AT TIME 7.80 HOURS

F	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
				6-HR	24-HR	72-HR	14.70-HR
+	(CFS)	(HR)					
			(CFS)				
+	40.	7.80		40.	31.	31.	31.
			(INCHES)	.078	.151	.151	.151
			(AC-FT)	20.	38.	38.	38.
PE	AK STORAGE	TIME			MAXIMUM AVER	AGE STORAGE	
				6-HR	24-HR	72-HR	14.70-HR
+	(AC-FT)	(HR)					
	6252.	7.80		6246.	6138.	6138.	6138.
F	PEAK STAGE	TIME			MAXIMUM AVE	RAGE STAGE	
				6-HR	24-HR	72-HR	14.70-HR
+	(FEET)	(HR)					
	5548.34	7.80		5548.32	5547.63	5547.63	5547.63

CUMULATIVE AREA = 4.74 SQ MI

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

RATIOS APPLIED TO PRECIPITATION RATIO 1 OPERATION STATION AREA PLAN 1.00 HYDROGRAPH AT В1 .50 FLOW 252. TIME 2.70 ROUTED TO RB1 .50 FLOW 245. TIME 3.00 HYDROGRAPH AT R2 FLOW TIME 216. .44 1 2.70 HYDROGRAPH AT В3 FLOW .28 142. TIME 2.70 3 COMBINED AT C1 1.22 FLOW 542. TIME 2.70 ROUTED TO RC1 FLOW 538. 1.22 1 TIME 3.00 HYDROGRAPH AT .45 FLOW 237. TIME 2.70 HYDROGRAPH AT В5 .81 1 FLOW 376. TIME 2.70 3 COMBINED AT C2 2.48 FLOW 1100. 1 ROUTED TO RC2 2.48 FLOW 1090. TIME 3.00 HYDROGRAPH AT В6 .15 1 FLOW TIME 128. 2.40 HYDROGRAPH AT В7 .33 1 FLOW 188. TIME 2.70 3 COMBINED AT С3 2.95 FLOW 1294. TIME 3.00 ROUTED TO FLOW RC3 1250. 2.95 1 TIME 3.30 HYDROGRAPH AT В8 1.01 FLOW 620. TIME 3.00 HYDROGRAPH AT В9 .24 FLOW 196. TIME 2.40 HYDROGRAPH AT B10 .13 FLOW 118. TIME 2.40 2 COMBINED AT C4 .37 FLOW 314. TIME 2.40 ROUTED TO RC4 .37 1 FLOW 290. 2.70 TIME HYDROGRAPH AT FLOW B11 212. .28 1 2.70 4 COMBINED AT

C5

4.61

2218.

3.00

TIME

HYDROGRAPH AT +	B12	.13	1 FLOW TIME	88. 2.70							
2 COMBINED AT	Call	4.74	1 FLOW TIME	2280. 3.00							
ROUTED TO +	Cove	4.74	1 FLOW TIME	40. 7.80							
			** PEAK ST 1 STAGE TIME	TAGES IN FEET 5548.34 7.80	**						
1				RY OF KINEMATI FLOW IS DIRECT			ASE FLOW)	ΓING ∟ATED TO			
ISTAÇ) ELEMENT	DT	PEAK	TIME TO PEAK	VOLUME	DT	COMPUTATION PEAK		VOLUME		
		(MIN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
FOR PL RB1	AN = 1 RAT	IO= .00 4.50	251.41	175.50	1.45	18.00	245.28	180.00	1.45		
CONTINUITY SUMMA	ARY (AC-FT)	- INFLOW=	.3891E+02 E	EXCESS= .0000E	+00 OUTF	LOW= .3894	4E+02 BASIN	STORAGE=	.4659E-02 PERCE	NT ERROR=	1
FOR PL RC1	.AN = 1 RAT: MANE	IO= .00 4.50	551.33	175.50	1.43	18.00	538.17	180.00	1.42		
CONTINUITY SUMMA	ARY (AC-FT)	- INFLOW=	.9271E+02 E	EXCESS= .0000E	+00 OUTF	LOW= .927!	5E+02 BASIN	STORAGE=	.3503E-02 PERCE	NT ERROR=	.0
FOR PL RC2	AN = 1 RAT	IO= .00 2.45	1093.25	181.44	1.46	18.00	1089.58	180.00	1.46		
CONTINUITY SUMMA	ARY (AC-FT)	- INFLOW=	.1924E+03 E	EXCESS= .0000E	+00 OUTF	LOW= .192!	5E+03 BASIN	STORAGE=	.2883E-02 PERCE	NT ERROR=	.0
FOR PL RC3	.AN = 1 RAT	IO= .00 7.20	1313.52	187.20	1.50	18.00	1250.30	198.00	1.50		
CONTINUITY SUMMA	ARY (AC-FT)	- INFLOW=	.2363E+03 E	EXCESS= .0000E	+00 OUTF	LOW= .2366	6E+03 BASIN	STORAGE=	.1038E-01 PERCE	NT ERROR=	1
FOR PL RC4	.AN = 1 RAT: MANE	IO= .00 5.40	310.06	156.60	2.04	18.00	289.52	162.00	2.04		
CONTINUITY SUMMA	ARY (AC-FT)	- INFLOW=	.4045E+02 E	EXCESS= .0000E	+00 OUTF	LOW= .4046	6E+02 BASIN	STORAGE=	.2901E-02 PERCE	NT ERROR=	.0
1				M OVERTOPPING/ OR INTERNAL TI				Cove FORMATION)			
PLAN 1		ELEVA STORA OUTFL	TION GE	NITIAL VALUE 5545.50 5845. 0.		MAY CREST 549.20 6508. 45.	5552 734	.00			
	RATIO OF PMF	MAXIMU RESERVO W.S.EL	IR DEF	TH STORAG	E OUT	FLOW O	URATION VER TOP MA HOURS	TIME OF AX OUTFLOW HOURS	TIME OF FAILURE HOURS		

1.00

5548.34

.00

6252.

40.

.00

7.80

.00

Storm Event 9. 100-year, 24-hour AMC III

1

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

PAGE 1

 X
 X
 XXXXXXX
 XXXXXX
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 <t

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

HEC-1 INPUT

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE ID.....1....2....3....4....5....6....7....8....9....10 HYDROLOGY STUDY for COVE RESERVOIR TD Located in KANE COUNTY, UTAH 2 ID ID TD AUG 2020 5 ID ID PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 TD 8 ID 10 11 ID ID FAX: (435) 628-6553 12 ID 100-YR, 24-HR, AMC III 13 ID *Diagram 14 JR PREC 1.0 15 ΙT 72 0 0 50 0 16 IO 17 IN 72 18 KK R1 19 20 KM Runoff from Basin 1 ВА 0.503 PB PC 21 3.51 22 0.020 0.046 0.070 0.095 0.130 0.180 0.300 0.520 0.650 0 23 PC 0.700 0.745 0.785 0.820 0.850 0.905 0.930 0.955 0.980 0.880 24 PC 1.000 25 15 a 86.0 26 0.34 UD 27 KK RB1 28 KM Route B1 29 RD .045 4928 .050 TRAP 20 20 30 KK B2 Runoff from Basin 2 31 KM 32 ВА 0.436 LS 85.8 33 34 0.34 UD 35 KK 36 37 KM Runoff from Basin 3 ВА 0.279 38 LS 39 UD 0.25 HEC-1 INPUT PAGE 2 LINE ID.....1....2....3....4....5....6....7....8.....9....10

```
40
41
42
                 KK
KM
HC
                      C1
Combine RB1, B2, B3
                 KK
KM
RD
  43
                       RC1
 44
45
                       Route RC1
7255 .060
                                        .030
                                                             TRAP
                                                                                  20
                                                                         20
  46
                 KK
 47
48
49
                 KM
BA
LS
                       Runoff from Basin 4
                       0.453
                                  86.3
                        0.32
  50
                 UD
                 KK
KM
BA
LS
  51
52
53
54
55
                       Runoff from Basin 5
                                 86.8
                        0
0.42
                 UD
  56
                 KK
                 KM
HC
*
  57
58
                       Combine RC1, B4, B5
                       RC2
Route C2
2380 .039
  59
60
                 KK
KM
  61
                 RD
                                                             TRAP
                                                                         40
                                                                                   2
                 KM
BA
LS
 63
64
65
                       Runoff from Basin 6
                       0.150
                                 92.5
                        0.14
                 UD
*
  66
 67
68
69
70
71
                 KK
KM
                       В7
                       Runoff from Basin 7
                       0.327
0
0.31
                 BA
LS
                                 87.8
                 UD
*
  72
                 KK
                 KM
HC
*
                       Combine RC2, B6, B7
                          3
                                                    HEC-1 INPUT
                                                                                                                     PAGE 3
LINE
                 ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
  75
                 KK
                       RC3
  76
77
                 KM
RD
                       Route C3
                                        .030
                       11323 .023
                                                             TRAP
                                                                                  20
                                                                         40
  78
79
80
                 KK
KM
                       В8
                       Runoff from Basin 8
                 BA
LS
                       1.012
                                 92.4
  81
                        0
0.48
                 UD
                 KK
                 KM
BA
                       Runoff from Basin 9
 84
85
                       0.242
  86
87
                 LS
UD
*
                        0.19
0.19
                                 93.1
 88
89
                 KK
                       B10
                 KM
                       Runoff from Basin 10
                       0.129
  91
92
                                 93.7
                 LS
UD
                        0
0.14
  93
                 KK
                 KM
HC
*
                       Combine B9, B10
  95
  96
                 KK
                       RC4
                 KM
  97
                       Route C4
                                .037
                                           .030
                                                             TRAP
                                                                         40
                                                                                  20
```

```
KK
KM
BA
LS
UD
              100
                                    Runoff from Basin 11
             101
102
                                   0.279
                                              92.8
                                     0.28
              103
                             KK
KM
HC
*
              104
                                   Combine RC3, B8, RC4, B11
             105
106
              107
                              KK
                                    B12
              108
                              KM
                                    Runoff from Basin 12
                             BA
LS
              109
                                   0.127
              110
                                              90.9
                                     0.28
             111
                              UD
1
                                                                 HEC-1 INPUT
                                                                                                                                  PAGE 4
                              ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
            LINE
             112
                                    Call
                              KK
                             KM
HC
*
                                    Combine C5, B12
             113
             114
                                   Cove Reservoir
Routing through Res'v
1 ELEV 5545.5
             115
116
                             KK
KM
              117
                             RS
SV
SV
SE
SE
SL
SS
                                                                                   738
8000
             118
119
                                              19
4423
                                                       95
5419
                                                                          453
7347
                                                                                                                        2773
                                        0
                                                                  240
                                                                                            1105
                                                                                                      1563
                                                                                                               2217
                                     3542
                                                                 6149
              120
                                     5470
                                              5476
                                                       5482
                                                                 5488
                                                                          5494
                                                                                             5506
                                                                                                      5512
                                                                                                               5518
                                                                                                                         5524
                                  5530
5545.5
5549.2
                                                       5542
0.6
2.67
                                                                 5548
0.5
1.5
              121
                                             5536
4.909
                                                                          5552
                                                                                   5558
              122
              123
                                                30
                             ST
*
                                              1892
             124
                                  5552.0
                                                        2.9
                                                                  1.5
1
                   SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
             (V) ROUTING
                                      (--->) DIVERSION OR PUMP FLOW
  LINE
   NO.
              (.) CONNECTOR
                                      (<---) RETURN OF DIVERTED OR PUMPED FLOW
    18
               В1
                    ٧
    27
               RB1
    30
                             В2
    35
                                           В3
    40
               C1
    43
               RC1
    46
    51
                                           В5
    56
               C2
    59
               RC2
    62
     67
                                           В7
    72
               С3
    75
               RC3
     78
                             В8
```

B11

```
83
                                    В9
                                                 B10
 88
 93
                                    C4
 96
                                    RC4
 99
                                                 B11
104
107
                       B12
112
          Call ...
115
          Cove
```

* U.S. ARMY CORPS OF ENGINEERS
* HYDROLOGIC ENGINEERING CENTER
* 609 SECOND STREET
* DAVIS, CALIFORNIA 95616
* (916) 756-1104
*

HYDROLOGY STUDY for COVE RESERVOIR Located in KANE COUNTY, UTAH

AUG 2020

PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 FAX: (435) 628-6553

100-YR, 24-HR, AMC III

```
OUTPUT CONTROL VARIABLES
16 IO
                       IPRNT
                                        0 PRINT CONTROL
                                       0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
                       IPLOT
                       QSCAL
   ΙT
                HYDROGRAPH TIME DATA
                                       72 MINUTES IN COMPUTATION INTERVAL
                        NMIN
                       IDATE
                                            STARTING DATE
                                           STARTING TIME
NUMBER OF HYDROGRAPH ORDINATES
                       ITIME
                                     0000
                                       50
0
                          NO
                      NDDATE
                                           ENDING DATE
```

COMPUTATION INTERVAL 1.20 HOURS TOTAL TIME BASE 58.80 HOURS

1048

19

ENDING TIME

CENTURY MARK

ENGLISH UNITS
DRAINAGE AREA

DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION NPLAN

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION
RATIOS OF PRECIPITATION

NDTIME

ICENT

*** ***

*** ***

Call * 112 KK

Combine C5, B12

114 HC

HYDROGRAPH COMBINATION
ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION Call SUM OF 2 HYDROGRAPHS
PLAN 1, RATIO = 1.00

****	****	*****	****	******	****	*****	*****	*****	********	***	****	******	*****	********	***	*****	*****	*****	*******
					*					*					*				
DA	MON	HRMN	ORD	FLOW	*	DA MO	N HRMN	ORD	FLOW	*	DA N	MON HRMN	ORD	FLOW	*	DA MOI	N HRMN	ORD	FLOW
					*					*					*				
1		0000	1	0.	*	1	1536	14	305.	*	2	0712	27	0.	*	2	2248	40	0.
1		0112	2	0.	*	1	1648	15	266.	*	2	0824	28	0.	*	3	0000	41	0.
1		0224	3	0.	*	1	1800	16	248.	*	2	0936	29	0.	*	3	0112	42	0.
1		0336	4	6.	*	1	1912	17	223.	*	2	1048	30	0.	*	3	0224	43	0.
1		0448	5	18.	*	1	2024	18	209.	*	2	1200	31	0.	*	3	0336	44	0.
1		0600	6	44.	*	1	2136	19	205.	*	2	1312	32	0.	*	3	0448	45	0.
1		0712	7	101.	*	1	2248	20	204.	*	2	1424	33	0.	*	3	0600	46	0.
1		0824	8	371.	*	2	0000	21	185.	*	2	1536	34	0.	*	3	0712	47	0.
1		0936	9	1026.	*	2	0112	22	96.	*	2	1648	35	0.	*	3	0824	48	0.
1		1048	10	1031.	*	2	0224	23	37.	*	2	1800	36	0.	*	3	0936	49	0.
1		1200	11	662.	*	2	0336	24	12.	*	2	1912	37	0.	*	3	1048	50	0.
1		1312	12	453.	*	2	0448	25	3.	*	2	2024	38	0.	*				
1		1424	13	356.	*	2	0600	26	1.	*	2	2136	39	0.	*				
					*					*					*				

1	PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	58.80-HR
			(CFS)				
+	1031.	10.80	(INCHES) (AC-FT)	707. 1.386 351.	302. 2.372 600.	124. 2.377 601.	124. 2.377 601.

CUMULATIVE AREA = 4.74 SQ MI

*** ***

115 KK Cove * Reservoir

Routing through Res'v

HYDROGRAPH ROUTING DATA

117 RS STORAGE ROUTING NSTPS

1 NUMBER OF SUBREACHES ELEV TYPE OF INITIAL CONDITION 5545.50 INITIAL CONDITION ${\tt RSVRIC}$.00 WORKING R AND D COEFFICIENT

19.0

95.0 118 SV STORAGE 240.0 1105.0 1563.0 2217.0 2773.0 3542.0 4423.0 5419.0 6149.0 7347.0 8000.0 120 SE ELEVATION 5470.00 5476.00 5482.00 5488.00 5530.00 5536.00 5542.00 5548.00 5488.00 5494.00 5500.00 5506.00 5512.00 5518.00 5524.00 5552.00 5558.00

453.0

738.0

122 SL LOW-LEVEL OUTLET

ELEVL 5545.50 ELEVATION AT CENTER OF OUTLET CAREA 4.91 CROSS-SECTIONAL AREA .60 COEFFICIENT .50 EXPONENT OF HEAD COQL EXPL

123 SS SPILLWAY

5549.20 SPILLWAY CREST ELEVATION 30.00 SPILLWAY WIDTH CREL SPWID 2.67 WEIR COEFFICIENT COOW 1.50 EXPONENT OF HEAD EXPW

124 ST TOP OF DAM TOPEL DAMWID

5552.00 ELEVATION AT TOP OF DAM 1892.00 DAM WIDTH 2.90 WEIR COEFFICIENT 1.50 EXPONENT OF HEAD COQD EXPD

COMPUTED OUTFLOW-ELEVATION DATA

(EXCLUDING FLOW OVER DAM)

OUTFLOW ELEVATION	.00 5470.00	.00 5545.50	25.78 5546.69	27.48 5546.85	 	34.25 5547.60		40.98 5548.51	
OUTFLOW ELEVATION	49.37	68.29 5549.60	113.97		529.64		1156.85 5554.88		

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA

(INCLUDING FLOW OVER DAM)

STORAGE	.00	19.00	95.00	240.00	453.00	738.00	1105.00	1563.00	2217.00	2773.00
OUTFLOW	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
ELEVATION	5470.00	5476.00	5482.00	5488.00	5494.00	5500.00	5506.00	5512.00	5518.00	5524.00
STORAGE	3542.00	4423.00	5419.00	5844.83	5989.79	6009.51	6033.57	6063.27	6100.64	6148.41
OUTFLOW	.00	.00	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31
ELEVATION	5530.00	5536.00	5542.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00
STORAGE	6301.53	6508.46	6543.56	6628.96	6765.11	6952.15	7190.23	7347.00	7395.04	7518.54
OUTFLOW	40.98	45.44	49.37	68.29	113.97	198.20	332.85	435.48	2138.72	11657.74
ELEVATION	5548.51	5549.20	5549.32	5549.60	5550.06	5550.68	5551.48	5552.00	5552.44	5553.58
STORAGE OUTFLOW ELEVATION	7660.53 27985.71 5554.88	7821.02 51484.63 5556.36	8000.00 82813.63 5558.00							

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

****	*****	****	******	******			****	****	****	******	******	*******		****	*****	****	******	******	******
DA	MON HRMI	ORD	OUTFLOW	STORAGE	STAGE	* * D *	A MON	I HRMN	ORD	OUTFLOW	STORAGE	STAGE *		MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE
1	0000) 1	0.	5844.8	5545.5	*	1	2024	18	42.	6325.1	5548.6 *	2		1648	35	42.	6337.5	5548.6
1	011	2	0.	5844.8	5545.5	*	1	2136	19	42.	6341.5	5548.6 *	2		1800	36	42.	6333.4	5548.6
1	0224	1 3	0.	5844.8	5545.5	*	1	2248	20	42.	6357.5	5548.7 *	2		1912	37	42.	6329.3	5548.6
1	033	5 4	1.	5845.1	5545.5	*	2	0000	21	43.	6372.6	5548.7 *	2		2024	38	42.	6325.2	5548.6
1	0448	5	2.	5846.1	5545.5	*	2	0112	22	43.	6382.3	5548.8 *	2		2136	39	41.	6321.1	5548.6
1	0600	6	4.	5848.8	5545.5	*	2	0224	23	43.	6384.6	5548.8 *	2		2248	40	41.	6317.0	5548.6
1	071	2 7	7.	5855.4	5545.6	*	2	0336	24	43.	6382.8	5548.8 *	3		0000	41	41.	6312.9	5548.5
1	082	8	12.	5877.9	5545.8	*	2	0448	25	43.	6379.3	5548.8 *	3		0112	42	41.	6308.8	5548.5
1	093	9	21.	5945.5	5546.3	*	2	0600	26	43.	6375.2	5548.8 *	3		0224	43	41.	6304.7	5548.5
1	1048	10	30.	6044.9	5547.1	*	2	0712	27	43.	6371.0	5548.7 *	3		0336	44	41.	6300.7	5548.5
1	1200	11	36.	6125.6	5547.8	*	2	0824	28	42.	6366.8	5548.7 *	3		0448	45	41.	6296.6	5548.5
1	131	12	38.	6177.2	5548.1	*	2	0936	29	42.	6362.5	5548.7 *	3		0600	46	41.	6292.5	5548.5
1	142	13	39.	6213.5	5548.2	*	2	1048	30	42.	6358.3	5548.7 *	3		0712	47	41.	6288.4	5548.5
1	1530	14	40.	6242.4	5548.3	*	2	1200	31	42.	6354.0	5548.7 *	3		0824	48	41.	6284.3	5548.5
1	1648	15	40.	6266.9	5548.4	*	2	1312	32	42.	6349.8	5548.7 *	3		0936	49	40.	6280.3	5548.4
1	1800	16	41.	6288.4	5548.5	*	2	1424	33	42.	6345.7	5548.7 *	3		1048	50	40.	6276.4	5548.4
1	191	17	41.	6307.7	5548.5	*	2	1536	34	42.	6341.6	5548.6 *							
						*						*							

PEAK OUTFLOW IS 43. AT TIME 26.40 HOURS

PEA	K FLOW	TIME			MAXIMUM A	VERAGE FLOW	
				6-HR	24-HR	72-HR	58.80-HR
+ (CFS)	(HR)					
			(CFS)				
+	43.	26.40		43.	42.	35.	35.
			(INCHES)	.084	.331	.671	.671
			(AC-FT)	21.	84.	170.	170.
PEAK	STORAGE	TIME			MAXIMUM AV	ERAGE STORAGE	
				6-HR	24-HR	72-HR	58.80-HR
+ (A	C-FT)	(HR)					
	6385.	26.40		6381.	6358.	6233.	6233.
PEA	K STAGE	TIME			MAXIMUM A	VERAGE STAGE	
				6-HR	24-HR	72-HR	58.80-HR
+ (FEET)	(HR)					
,	48.79	26.40		5548.77	5548.70	5548.03	5548.03

CUMULATIVE AREA = 4.74 SQ MI

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

RATIOS APPLIED TO PRECIPITATION RATIO 1 OPERATION STATION AREA PLAN 1.00 HYDROGRAPH AT В1 .50 FLOW 110. TIME 9.60 ROUTED TO RB1 .50 FLOW 102. TIME 10.80 HYDROGRAPH AT R2 FLOW 94. .44 1 TIME 9.60 HYDROGRAPH AT В3 FLOW .28 57. TIME 9.60 3 COMBINED AT C1 1.22 FLOW 245. TIME 9.60 ROUTED TO RC1 FLOW 241. 1.22 1 TIME 10.80 HYDROGRAPH AT .45 FLOW 100. TIME 9.60 HYDROGRAPH AT В5 .81 1 FLOW 183. TIME 9.60 3 COMBINED AT C2 2.48 FLOW 502. 1 9.60 ROUTED TO RC2 2.48 FLOW 496. TIME 10.80 HYDROGRAPH AT В6 .15 1 FLOW TIME 44. 9.60 HYDROGRAPH AT В7 .33 1 FLOW 78. TIME 9.60 3 COMBINED AT С3 2.95 FLOW 612. TIME 9.60 ROUTED TO RC3 FLOW 2.95 1 589. TIME 10.80 HYDROGRAPH AT В8 1.01 FLOW 298. TIME 9.60 HYDROGRAPH AT В9 .24 FLOW 73. 9.60 TIME HYDROGRAPH AT B10 .13 FLOW 40. TIME 9.60 2 COMBINED AT C4 .37 FLOW 113. TIME 9.60 ROUTED TO RC4 .37 1 FLOW 106. TIME 9.60 HYDROGRAPH AT FLOW B11 83. .28 1 9.60 4 COMBINED AT

C5

4.61

1001.

10.80

TIME

HYDROGRAPH AT +	B12	.13	1 FLOW TIME	35. 9.60							
2 COMBINED AT	Call	4.74	1 FLOW TIME	1031. 10.80							
ROUTED TO +	Cove	4.74	1 FLOW TIME	43. 26.40							
			** PEAK ST 1 STAGE TIME	TAGES IN FEET 5548.79 26.40	**						
1				RY OF KINEMATI FLOW IS DIRECT							
ISTAQ	ELEMENT	DT	PEAK	TIME TO PEAK	VOLUME	DT	COMPUTATION PEAK		VOLUME		
		(MIN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
FOR PLA RB1	NN = 1 RATI MANE	0= .00 17.89	109.66	608.15	2.11	72.00	102.14	648.00	2.12		
CONTINUITY SUMMAR	RY (AC-FT) -	INFLOW=	.5653E+02 E	EXCESS= .0000E	+00 OUTFL	.0W= .5654	4E+02 BASIN	STORAGE=	.5474E-02 PERCENT	ERROR=	.0
FOR PLA RC1	N = 1 RATI MANE	0= .00 13.16	246.58	605.26	2.08	72.00	240.71	648.00	2.09		
CONTINUITY SUMMAR	RY (AC-FT) -	INFLOW=	.1354E+03 E	EXCESS= .0000E	+00 OUTFL	.0W= .1354	4E+03 BASIN	STORAGE=	.3020E-02 PERCENT	ERROR=	.0
FOR PLA RC2	AN = 1 RATI MANE	0= .00 3.25	5 503.11	582.29	2.13	72.00	496.18	648.00	2.13		
CONTINUITY SUMMAR	RY (AC-FT) -	INFLOW=	.2808E+03 E	EXCESS= .0000E	+00 OUTFL	.0W= .2808	BE+03 BASIN	STORAGE=	.2726E-02 PERCENT	ERROR=	.0
FOR PLA RC3	AN = 1 RATI MANE	0= .00 23.97	630.14	623.12	2.17	72.00	588.94	648.00	2.18		
CONTINUITY SUMMAR	RY (AC-FT) -	INFLOW=	.3423E+03 E	EXCESS= .0000E	+00 OUTFL	.0W= .3424	4E+03 BASIN	STORAGE=	.1070E-01 PERCENT	ERROR=	.0
FOR PLA RC4	AN = 1 RATI MANE	0= .00 9.67	112.23	590.06	2.78	72.00	105.70	576.00	2.78		
CONTINUITY SUMMAR	RY (AC-FT) -	INFLOW=	.5492E+02 E	EXCESS= .0000E	+00 OUTFL	.0W= .5492	2E+02 BASIN	STORAGE=	.2119E-02 PERCENT	ERROR=	.0
1				M OVERTOPPING/ OR INTERNAL TI				Cove FORMATION)			
PLAN 1		ELEVA STORA OUTFL	ATION AGE	NITIAL VALUE 5545.50 5845. 0.	55	AY CREST 49.20 6508. 45.	TOP OF 5552 734 43	.00			
	RATIO OF PMF	MAXIMU RESERVO W.S.EL	OIR DEF	TH STORAG	E OUTF	LOW O	JRATION VER TOP MA HOURS	TIME OF AX OUTFLOW HOURS	TIME OF FAILURE HOURS		

1.00

5548.79

.00

6385.

43.

.00

26.40

.00

Storm Event 10. Local SEP Hydrograph

1

LINE

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

PAGE 1

 X
 X
 XXXXXXX
 XXXXXX
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 <t

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

HEC-1 INPUT

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE ID.....1....2....3....4....5....6....7....8....9....10 HYDROLOGY STUDY for COVE RESERVOIR 1 TD Located in KANE COUNTY, UTAH 2 ID ID TD AUG 2020 5 ID ID PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 TD 8 ID 10 11 ID ID FAX: (435) 628-6553 12 ID Local SEP 13 ID *Diagram 14 JR PREC 18 0 15 ΙT 0 0 50 16 IO 17 IN 18 18 KK R1 19 20 KM Runoff from Basin 1 ВА 0.503 PB PC 21 7.67 22 0.020 0.046 0.070 0.095 0.130 0.180 0.300 0.520 0.650 0 23 PC 0.700 0.745 0.785 0.820 0.850 0.905 0.930 0.955 0.980 0.880 24 PC 1.000 25 15 a 72.8 26 0.51 UD 27 KK RB1 28 KM Route B1 29 RD .045 .050 4928 TRAP 20 20 30 KK B2 Runoff from Basin 2 31 KM 32 ВА 0.436 LS 72.5 33 34 0.52 UD 35 KK 36 37 KM BA Runoff from Basin 3 0.279 38 LS 39 UD 0.39 HEC-1 INPUT PAGE 2

ID.....1....2....3....4....5....6....7....8.....9....10

```
40
41
42
                KK
KM
HC
                      C1
Combine RB1, B2, B3
                KK
KM
RD
  43
                       RC1
 44
45
                      Route RC1
7255 .060
                                        .030
                                                            TRAP
                                                                                 20
                                                                        20
  46
                 KK
 47
48
49
                KM
BA
LS
                       Runoff from Basin 4
                       0.453
                                 73.3
                        0.48
  50
                 UD
                KK
KM
BA
LS
  51
52
53
54
55
                      Runoff from Basin 5
                                 74.1
                        0
0.63
                 UD
  56
                 KK
                KM
HC
*
  57
58
                       Combine RC1, B4, B5
                      RC2
Route C2
2380 .039
  59
60
                 KK
KM
  61
                 RD
                                                            TRAP
                                                                        40
                                                                                  2
                KM
BA
LS
 63
64
65
                       Runoff from Basin 6
                       0.150
                                 84.3
                        0.19
                UD
*
  66
 67
68
69
70
71
                 KK
KM
                       Runoff from Basin 7
                BA
LS
                      0.327
                                75.7
                UD
*
                        0.46
  72
                 KK
                KM
HC
*
  73
74
                       Combine RC2, B6, B7
                          3
                                                   HEC-1 INPUT
                                                                                                                    PAGE 3
LINE
                 ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
  75
                 KK
                       RC3
  76
77
                KM
RD
                       Route C3
                                       .030
                      11323 .023
                                                            TRAP
                                                                                 20
                                                                        40
  78
79
80
                 KK
KM
                       В8
                       Runoff from Basin 8
                BA
LS
                       1.012
                                 84.0
  81
                        0
0.67
                 UD
                 KK
                KM
BA
                      Runoff from Basin 9
 84
85
                      0.242
  86
87
                LS
UD
*
                       0.26
                                 85.5
 88
89
                 KK
                       B10
                 KM
                       Runoff from Basin 10
                 ВА
                       0.129
  91
92
                                 86.7
                LS
UD
                        0
0.18
  93
                 KK
                KM
HC
*
                       Combine B9, B10
  95
  96
                 KK
                       RC4
                 KM
  97
                       Route C4
                                .037
                                          .030
                                                            TRAP
                                                                        40
                                                                                 20
```

```
KK
KM
BA
LS
UD
              100
                                    Runoff from Basin 11
              101
102
                                    0.279
                                              84.8
                                     0.39
              103
                             KK
KM
HC
*
              104
                                    Combine RC3, B8, RC4, B11
             105
106
              107
                              KK
                                    B12
              108
                              KM
                                    Runoff from Basin 12
                             BA
LS
              109
                                    0.127
              110
                                              81.2
                                     0.40
              111
                              UD
1
                                                                 HEC-1 INPUT
                                                                                                                                  PAGE 4
                              ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
             LINE
             112
                                    Call
                              KK
                             KM
HC
*
                                    Combine C5, B12
              113
              114
                                    Cove Reservoir
Routing through Res'v
1 ELEV 5545.5
             115
116
                             KK
KM
              117
                             RS
SV
SV
SE
SE
SL
SS
                                                                                    738
8000
              118
119
                                              19
4423
                                                       95
5419
                                                                          453
7347
                                                                                                                         2773
                                        0
                                                                  240
                                                                                             1105
                                                                                                      1563
                                                                                                               2217
                                     3542
                                                                 6149
              120
                                     5470
                                              5476
                                                        5482
                                                                 5488
                                                                           5494
                                                                                             5506
                                                                                                       5512
                                                                                                                5518
                                                                                                                         5524
                                  5530
5545.5
5549.2
                                                       5542
0.6
2.67
                                                                 5548
0.5
1.5
              121
122
                                             5536
4.909
                                                                           5552
                                                                                    5558
              123
                                                 30
                             ST
*
                                              1892
             124
                                   5552.0
                                                         2.9
                                                                  1.5
1
                   SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
              (V) ROUTING
                                      (--->) DIVERSION OR PUMP FLOW
  LINE
   NO.
              (.) CONNECTOR
                                      (<---) RETURN OF DIVERTED OR PUMPED FLOW
    18
               В1
                    ٧
    27
               RB1
    30
                             B2
    35
                                           В3
    40
               C1
    43
               RC1
    46
    51
                                           В5
    56
               C2
    59
               RC2
    62
     67
                                           В7
    72
               С3
    75
               RC3
```

78

B11

```
83
                                    В9
                                                 B10
 88
 93
                                    C4
 96
                                    RC4
 99
                                                 B11
104
107
                       B12
112
          Call ...
115
          Cove
```

U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

HYDROLOGY STUDY for COVE RESERVOIR Located in KANE COUNTY, UTAH

AUG 2020

PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 FAX: (435) 628-6553

Local SEP

```
OUTPUT CONTROL VARIABLES
16 IO
                        IPRNT
                                          0 PRINT CONTROL
                        IPLOT
                                         0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
                        QSCAL
   ΙT
                 HYDROGRAPH TIME DATA
                                         18 MINUTES IN COMPUTATION INTERVAL
                         NMIN
                        IDATE
                                              STARTING DATE
                                             STARTING TIME
NUMBER OF HYDROGRAPH ORDINATES
                        ITIME
                                       0000
                                         50
0
                           NO
                       NDDATE
                                             ENDING DATE
                       NDTIME
                                       1442
                                             ENDING TIME
                       ICENT
                                         19
                                             CENTURY MARK
                    COMPUTATION INTERVAL
                         UTATION INTERVAL .30 HOURS
TOTAL TIME BASE 14.70 HOURS
         ENGLISH UNITS
DRAINAGE AREA
                                        SQUARE MILES
```

PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SUPERACE ABEA ACRES

SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION NPLAN

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION
RATIOS OF PRECIPITATION
1.00

** ***

*** ***

Call * 112 KK

Combine C5, B12

114 HC

HYDROGRAPH COMBINATION
ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION Call SUM OF 2 HYDROGRAPHS
PLAN 1, RATIO = 1.00

****	****	*****	****	******	****	****	*****	****	****	*******	****	****	*******	****	********	****	*****	*****	*****	******
					*						*					*				
DA	MON	HRMN	ORD	FLOW	*	DA	MON F	HRMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA MO	N HRMN	ORD	FLOW
					*						*					*				
1		0000	1	0.	*	1	6	354	14	4063.	*	1	0748	27	201.	*	1	1142	40	0.
1		0018	2	0.	*	1	6	9412	15	3364.	*	1	0806	28	113.	*	1	1200	41	0.
1		0036	3	0.	*	1	6	9430	16	2855.	*	1	0824	29	62.	*	1	1218	42	0.
1		0054	4	8.	*	1	6	9448	17	2500.	*	1	0842	30	34.	*	1	1236	43	0.
1		0112	5	43.	*	1	6	9506	18	2228.	*	1	0900	31	18.	*	1	1254	44	0.
1		0130	6	129.	*	1	6	3524	19	2039.	*	1	0918	32	9.	*	1	1312	45	0.
1		0148	7	306.	*	1	6	3542	20	1913.	*	1	0936	33	5.	*	1	1330	46	0.
1		0206	8	824.	*	1	6	9600	21	1819.	*	1	0954	34	2.	*	1	1348	47	0.
1		0224	9	2325.	*	1	6	9618	22	1614.	*	1	1012	35	1.	*	1	1406	48	0.
1		0242	10	4867.	*	1	6	9636	23	1240.	*	1	1030	36	0.	*	1	1424	49	0.
1		0300	11	6395.	*	1	6	654	24	851.	*	1	1048	37	0.	*	1	1442	50	0.
1		0318	12	6123.	*	1	6	712	25	540.	*	1	1106	38	0.	*				
1		0336	13	5053.	*	1	6	730	26	332.	*	1	1124	39	0.	*				
					*						•					•				

-	PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	14.70-HR
	` '	` ,	(CFS)				
+	6395.	3.00		2560.	1059.	1059.	1059.
			(INCHES)	5.019	5.085	5.085	5.085
			(AC-FT)	1269.	1286.	1286.	1286.

CUMULATIVE AREA = 4.74 SQ MI

*** ***

115 KK Reservoir Cove

Routing through Res'v

HYDROGRAPH ROUTING DATA

117 RS STORAGE ROUTING

1 NUMBER OF SUBREACHES ELEV TYPE OF INITIAL CONDITION 5545.50 INITIAL CONDITION NSTPS ${\tt RSVRIC}$.00 WORKING R AND D COEFFICIENT

95.0 118 SV STORAGE 19.0 240.0 453.0 738.0 1105.0 1563.0 2217.0 2773.0 3542.0 4423.0 5419.0 6149.0 7347.0 8000.0 120 SE ELEVATION 5470.00 5476.00 5482.00 5488.00 5530.00 5536.00 5542.00 5548.00 5488.00 5494.00 5500.00 5506.00 5512.00 5518.00 5524.00 5552.00 5558.00

122 SL LOW-LEVEL OUTLET

ELEVL 5545.50 ELEVATION AT CENTER OF OUTLET CAREA 4.91 CROSS-SECTIONAL AREA .60 COEFFICIENT .50 EXPONENT OF HEAD COQL EXPL

123 SS SPILLWAY

5549.20 SPILLWAY CREST ELEVATION 30.00 SPILLWAY WIDTH CREL SPWID 2.67 WEIR COEFFICIENT COOW 1.50 EXPONENT OF HEAD EXPW

124 ST TOP OF DAM TOPEL DAMWID

5552.00 ELEVATION AT TOP OF DAM 1892.00 DAM WIDTH 2.90 WEIR COEFFICIENT 1.50 EXPONENT OF HEAD COQD EXPD

COMPUTED OUTFLOW-ELEVATION DATA

(EXCLUDING	FLOW	OVER	DAM)	
------------	------	------	------	--

OUTFLOW ELEVATION	.00 5470.00		25.78 5546.69	27.48 5546.85		31.65 5547.30			40.98 5548.51	45.44 5549.20
OUTFLOW	49.37		113.97			529.64		1156.85		
ELEVATION	5549.32	5549.60	5550.06	5550.68	5551.48	5552.44	5553.58	5554.88	5556.36	5558.00

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA

(INCLUDING FLOW OVER DAM)

STORAGE	.00	19.00	95.00	240.00	453.00	738.00	1105.00	1563.00	2217.00	2773.00
OUTFLOW	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
ELEVATION	5470.00	5476.00	5482.00	5488.00	5494.00	5500.00	5506.00	5512.00	5518.00	5524.00
STORAGE	3542.00	4423.00	5419.00	5844.83	5989.79	6009.51	6033.57	6063.27	6100.64	6148.41
OUTFLOW	.00	.00	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31
ELEVATION	5530.00	5536.00	5542.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00
STORAGE	6301.53	6508.46	6543.56	6628.96	6765.11	6952.15	7190.23	7347.00	7395.04	7518.54
OUTFLOW	40.98	45.44	49.37	68.29	113.97	198.20	332.85	435.48	2138.72	11657.74
ELEVATION	5548.51	5549.20	5549.32	5549.60	5550.06	5550.68	5551.48	5552.00	5552.44	5553.58
STORAGE	7660.53	7821.02	8000.00							
OUTFLOW	27985.71	51484.63	82813.63							
ELEVATION	5554.88	5556.36	5558.00							

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

*****	******	****	******	******	******	***	****	*****	****	******	******	******	***	****	*****	****	******	******	*****
						*							*						
DA MO	N HRMN	ORD	OUTFLOW	STORAGE	STAGE	* D	A MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE	* D	A MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE
						*							*						
1	0000	1	0.	5844.8	5545.5	*	1	0506	18	137.	6821.4	5550.2	*	1	1012	35	233.	7019.3	5550.9
1	0018	2	0.	5844.8	5545.5	*	1	0524	19	159.	6870.7	5550.4	*	1	1030	36	230.	7013.6	5550.9
1	0036	3	0.	5844.8	5545.5	*	1	0542	20	180.	6915.4	5550.6	*	1	1048	37	227.	7007.9	5550.9
1	0054	4	1.	5845.0	5545.5	*	1	0600	21	201.	6957.0	5550.7	*	1	1106	38	224.	7002.3	5550.8
1	0112	5	2.	5845.5	5545.5	*	1	0618	22	220.	6994.3	5550.8	*	1	1124	39	221.	6996.8	5550.8
1	0130	6	4.	5847.6	5545.5	*	1	0636	23	236.	7024.0	5550.9	*	1	1142	40	218.	6991.3	5550.8
1	0148	7	6.	5852.9	5545.6	*	1	0654	24	247.	7043.8	5551.0	*	1	1200	41	216.	6985.9	5550.8
1	0206	8	10.	5866.8	5545.7	*	1	0712	25	253.	7054.8	5551.0	*	1	1218	42	213.	6980.7	5550.8
1	0224	9	17.	5905.5	5546.0	*	1	0730	26	255.	7059.3	5551.0	*	1	1236	43	210.	6975.4	5550.8
1	0242	10	26.	5994.1	5546.7	*	1	0748	27	256.	7059.6	5551.0	*	1	1254	44	207.	6970.3	5550.7
1	0300	11	36.	6133.0	5547.9	*	1	0806	28	254.	7057.2	5551.0	*	1	1312	45	205.	6965.2	5550.7
1	0318	12	41.	6287.2	5548.5	*	1	0824	29	252.	7053.1	5551.0	*	1	1330	46	202.	6960.0	5550.7
1	0336	13	44.	6424.7	5548.9	*	1	0842	30	249.	7048.1	5551.0	*	1	1348	47	200.	6955.1	5550.7
1	0354	14	48.	6536.5	5549.3	*	1	0900	31	246.	7042.5	5551.0	*	1	1406	48	197.	6950.1	5550.7
1	0412	15	68.	6627.1	5549.6	*	1	0918	32	243.	7036.8	5551.0	*	1	1424	49	195.	6945.3	5550.7
1	0430	16	91.	6702.2	5549.8	*	1	0936	33	240.	7031.0	5550.9	*	1	1442	50	192.	6940.5	5550.6
1	0448	17	114.	6766.0	5550.1	*	1	0954	34	237.	7025.1	5550.9	*						
						*							*						

PEAK OUTFLOW IS 256. AT TIME 7.80 HOURS

PEAK FLOW TIME				MAXIMUM AVE	RAGE FLOW		
				6-HR	24-HR	72-HR	14.70-HR
+	(CFS)	(HR)					
			(CFS)				
+	256.	7.80		238.	156.	156.	156.
			(INCHES)	.466	.752	.752	.752
			(AC-FT)	118.	190.	190.	190.
PΕ	EAK STORAGE	TIME			MAXIMUM AVER	AGE STORAGE	
				6-HR	24-HR	72-HR	14.70-HR
+	(AC-FT)	(HR)					
	7060.	7.80		7027.	6705.	6705.	6705.
F	PEAK STAGE	TIME			MAXIMUM AVE	RAGE STAGE	
				6-HR	24-HR	72-HR	14.70-HR
+	(FEET)	(HR)					
	5551.04	7.80		5550.93	5549.59	5549.59	5549.59

CUMULATIVE AREA = 4.74 SQ MI

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN		RATIOS RATIO 1 1.00	S APPLIED	TO PRECIPITA	TION
HYDROGRAPH AT +	B1	.50	1	FLOW TIME	689. 3.00			
ROUTED TO +	RB1	.50	1	FLOW TIME	657. 3.00			
HYDROGRAPH AT +	В2	.44	1	FLOW TIME	589. 3.00			
HYDROGRAPH AT +	В3	.28	1	FLOW TIME	393. 2.70			
3 COMBINED AT +	C1	1.22	1	FLOW TIME	1608. 3.00			
ROUTED TO +	RC1	1.22	1	FLOW TIME	1507. 3.00			
HYDROGRAPH AT +	В4	.45	1	FLOW TIME	636. 3.00			
HYDROGRAPH AT +	В5	.81	1	FLOW TIME	1050. 3.00			
3 COMBINED AT +	C2	2.48	1	FLOW TIME	3194. 3.00			
ROUTED TO +	RC2	2.48	1	FLOW TIME	3137. 3.00			
HYDROGRAPH AT +	В6	.15	1	FLOW TIME	351. 2.40			
HYDROGRAPH AT +	В7	.33	1	FLOW TIME	490. 3.00			
3 COMBINED AT +	С3	2.95	1	FLOW TIME	3813. 3.00			
ROUTED TO +	RC3	2.95	1	FLOW TIME	3723. 3.30			
HYDROGRAPH AT +	В8	1.01	1	FLOW TIME	1656. 3.00			
HYDROGRAPH AT +	В9	.24	1	FLOW TIME	547. 2.70			
HYDROGRAPH AT +	B10	.13	1	FLOW TIME	326. 2.40			
2 COMBINED AT +	C4	.37	1	FLOW TIME	835. 2.70			
ROUTED TO +	RC4	.37	1	FLOW TIME	819. 2.70			
HYDROGRAPH AT +	B11	.28	1	FLOW TIME	575. 2.70			
4 COMBINED AT +	C5	4.61	1	FLOW TIME	6184. 3.00			

IN/DDOCDADII A	• -												
HYDROGRAPH A	AI B1	.2	.13	1 FL TI		238. 2.70							
2 COMBINED +		11	4.74	1 FL TI		6395. 3.00							
ROUTED TO +	Co	ove	4.74	1 FL TI		256. 7.80							
				1 ST		IN FEET 5551.04 7.80	**						
1					MMARY OF	KINEMATI			M-CUNGE ROUT ASE FLOW)	TING LATED TO			
I	ISTAQ	ELEMENT	DT	PE		ME TO PEAK	VOLUME	DT	COMPUTATION		VOLUME		
			(MIN) (C	FS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
FC		: 1 RATIO)= .00 5.40	9 673	.41 1	89.00	4.50	18.00	657.41	180.00	4.48		
CONTINUITY S	SUMMARY (AC-FT) -	INFLOW=	.1206E+	03 EXCES	S= .0000E	+00 OUTF	LOW= .120	7E+03 BASIN	STORAGE=	.3686E-02 PERCENT	ERROR=	.0
FC		: 1 RATIO)= .00 5.40	0 1594	.30 1	89.00	4.43	18.00	1507.33	180.00	4.43		
CONTINUITY S	SUMMARY (AC-FT) -	INFLOW=	.2880E+	03 EXCES	S= .0000E	+00 OUTF	LOW= .288	1E+03 BASIN	STORAGE=	.3547E-02 PERCENT	ERROR=	.0
FC		: 1 RATIO)= .00 1.6	7 3186	.21 1	82.05	4.52	18.00	3137.38	180.00	4.53		
CONTINUITY S	SUMMARY (AC-FT) -	INFLOW=	.5970E+	03 EXCES	S= .0000E	+00 OUTF	LOW= .597	0E+03 BASIN	STORAGE=	.3099E-02 PERCENT	ERROR=	.0
FC		: 1 RATIO)= .00 7.20	3778	.09 1	94.40	4.63	18.00	3723.23	198.00	4.64		
CONTINUITY S	SUMMARY (AC-FT) -	INFLOW=	.7287E+	03 EXCES	S= .0000E	+00 OUTF	LOW= .729	1E+03 BASIN	STORAGE=	.1048E-01 PERCENT	ERROR=	1
FC		: 1 RATIO)= .00 5.5	3 841	.55 1	54.72	6.01	18.00	818.78	162.00	6.02		
CONTINUITY S	SUMMARY (AC-FT) -	INFLOW=	.1188E+	03 EXCES	S= .0000E	+00 OUTF	LOW= .118	9E+03 BASIN	STORAGE=	.2808E-02 PERCENT	ERROR=	.0
1									OR STATION ING BREACH I	Cove FORMATION)			
PLAN 1	1		ELEV/ STOR/ OUTF		554	L VALUE 5.50 845. 0.		WAY CREST 549.20 6508. 45.	5552 734	.00			

RATIO OF PMF

1.00

MAXIMUM RESERVOIR W.S.ELEV

5551.04

MAXIMUM DEPTH OVER DAM

.00

MAXIMUM STORAGE AC-FT

7060.

MAXIMUM OUTFLOW CFS

256.

DURATION OVER TOP HOURS

.00

TIME OF MAX OUTFLOW HOURS

7.80

TIME OF FAILURE HOURS

.00

Storm Event 11. General SEP Hydrograph

1************** FLOOD HYDROGRAPH PACKAGE (HEC-1) JUN 1998 VERSION 4.1 RUN DATE 06AUG20 TIME 02:56:37 ************

1

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

PAGE 1

X X X XXXXXXX XXXXX XX X X Х XXXXXXX XXXX XXXXX Х Х х xxxxxxXXXXX XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

HEC-1 INPUT

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE ID.....1....2....3....4....5....6....7....8....9....10 HYDROLOGY STUDY for COVE RESERVOIR 1 TD Located in KANE COUNTY, UTAH 2 ID ID TD AUG 2020 5 ID ID PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 TD 8 ID 10 11 ID ID FAX: (435) 628-6553 12 ID SEP General 13 ID *Diagram 14 JR PREC 15 ΙT 216 0 0 50 16 IO 0 17 IN 216 18 KK R1 19 20 KM Runoff from Basin 1 ВА 0.503 PB PC 21 12.50 22 0.020 0.046 0.070 0.095 0.130 0.180 0.300 0.520 0.650 0 23 PC 0.700 0.745 0.785 0.820 0.850 0.905 0.930 0.955 0.980 0.880 24 PC 1.000 25 15 a 72.8 26 0.51 UD 27 KK RB1 28 KM Route B1 29 RD .045 .050 4928 TRAP 20 20 30 KK B2 Runoff from Basin 2 31 KM 32 ВА 0.436 LS 72.5 33 34 0.52 UD 35 KK 36 37 KM BA Runoff from Basin 3 0.279 38 LS 39 UD 0.39 HEC-1 INPUT PAGE 2 LINE

ID.....1....2....3....4....5....6....7....8.....9....10

```
40
41
42
                KK
KM
HC
                      C1
Combine RB1, B2, B3
                KK
KM
RD
  43
                       RC1
 44
45
                      Route RC1
7255 .060
                                        .030
                                                            TRAP
                                                                                 20
                                                                        20
  46
                 KK
 47
48
49
                KM
BA
LS
                       Runoff from Basin 4
                       0.453
                                 73.3
                        0.48
  50
                 UD
                KK
KM
BA
LS
  51
52
53
54
55
                      Runoff from Basin 5
                                 74.1
                        0
0.63
                 UD
  56
                 KK
                KM
HC
*
  57
58
                       Combine RC1, B4, B5
                      RC2
Route C2
2380 .039
  59
60
                 KK
KM
  61
                 RD
                                                            TRAP
                                                                        40
                                                                                  2
                KM
BA
LS
 63
64
65
                       Runoff from Basin 6
                       0.150
                                 84.3
                        0.19
                UD
*
  66
 67
68
69
70
71
                 KK
KM
                       Runoff from Basin 7
                BA
LS
                      0.327
                                75.7
                UD
*
                        0.46
  72
                 KK
                KM
HC
*
  73
74
                       Combine RC2, B6, B7
                          3
                                                   HEC-1 INPUT
                                                                                                                    PAGE 3
LINE
                 ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
  75
                 KK
                       RC3
  76
77
                KM
RD
                       Route C3
                                       .030
                      11323 .023
                                                            TRAP
                                                                                 20
                                                                        40
  78
79
80
                 KK
KM
                       В8
                       Runoff from Basin 8
                BA
LS
                       1.012
                                 84.0
  81
                        0
0.67
                 UD
                 KK
                KM
BA
                      Runoff from Basin 9
 84
85
                      0.242
  86
87
                LS
UD
*
                       0.26
                                 85.5
 88
89
                 KK
                       B10
                 KM
                       Runoff from Basin 10
                 ВА
                       0.129
  91
92
                                 86.7
                LS
UD
                        0
0.18
  93
                 KK
                KM
HC
*
                       Combine B9, B10
  95
  96
                 KK
                       RC4
                 KM
  97
                       Route C4
                                .037
                                          .030
                                                            TRAP
                                                                        40
                                                                                 20
```

```
KK
KM
BA
LS
UD
              100
                                    Runoff from Basin 11
              101
102
                                    0.279
                                               84.8
                                     0.39
              103
                              KK
KM
HC
*
              104
                                    Combine RC3, B8, RC4, B11
             105
106
              107
                              KK
                                    B12
              108
                              KM
                                    Runoff from Basin 12
                              BA
LS
              109
                                    0.127
              110
                                               81.2
                                     0.40
              111
                              UD
1
                                                                 HEC-1 INPUT
                                                                                                                                  PAGE 4
                              ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
             LINE
             112
                                    Call
                              KK
                              KM
HC
*
                                    Combine C5, B12
              113
              114
                                    Cove Reservoir
Routing through Res'v
1 ELEV 5545.5
             115
116
                              KK
KM
              117
                              RS
SV
SV
SE
SE
SL
SS
                                                                                    738
8000
              118
119
                                              19
4423
                                                        95
5419
                                                                          453
7347
                                                                                                                         2773
                                        0
                                                                  240
                                                                                             1105
                                                                                                      1563
                                                                                                                2217
                                     3542
                                                                 6149
              120
                                     5470
                                               5476
                                                        5482
                                                                 5488
                                                                           5494
                                                                                             5506
                                                                                                       5512
                                                                                                                5518
                                                                                                                         5524
                                  5530
5545.5
5549.2
                                                        5542
0.6
2.67
                                                                 5548
0.5
1.5
              121
122
                                             5536
4.909
                                                                           5552
                                                                                    5558
              123
                                                 30
                              ST
*
                                              1892
             124
                                   5552.0
                                                         2.9
                                                                  1.5
1
                   SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
              (V) ROUTING
                                      (--->) DIVERSION OR PUMP FLOW
  LINE
   NO.
              (.) CONNECTOR
                                      (<---) RETURN OF DIVERTED OR PUMPED FLOW
    18
               В1
                    ٧
    27
               RB1
    30
                             B2
    35
                                           В3
    40
               C1
    43
               RC1
    46
    51
                                           В5
    56
               C2
    59
               RC2
    62
     67
                                           В7
    72
               С3
    75
               RC3
```

78

B11

```
83
                                    В9
                                                 B10
 88
 93
                                    C4
 96
                                    RC4
 99
                                                 B11
104
107
                       B12
112
          Call ...
115
          Cove
```

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION FLOOD HYDROGRAPH PACKAGE (HEC-1) JUN 1998 VERSION 4.1 RUN DATE 06AUG20 TIME 02:56:37

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104 ***********

HYDROLOGY STUDY for COVE RESERVOIR Located in KANE COUNTY, UTAH

AUG 2020

PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 FAX: (435) 628-6553

SEP General

```
OUTPUT CONTROL VARIABLES
16 IO
                        IPRNT
                                          0 PRINT CONTROL
                        IPLOT
                                         0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
                        QSCAL
                                       ...
216 MINUTES IN COMPUTATION INTERVAL
0 STARTING DATF
   IT
                 HYDROGRAPH TIME DATA
                         NMIN
                        IDATE
                                             STARTING TIME
NUMBER OF HYDROGRAPH ORDINATES
                        ITIME
                                       0000
                                         50
0
                           NO
                       NDDATE
                                             ENDING DATE
                                       0824 ENDING TIME
                       NDTIME
                       ICENT
                                         19
                                             CENTURY MARK
                   COMPUTATION INTERVAL
                                              3.60 HOURS
                         TOTAL TIME BASE 176.40 HOURS
         ENGLISH UNITS
DRAINAGE AREA
```

STORAGE VOLUME ACRE-FEET SURFACE AREA ACRES TEMPERATURE DEGREES FAHRENHEIT

JΡ

PRECIPITATION DEPTH

LENGTH, ELEVATION FLOW

MULTI-PLAN OPTION NPLAN 1 NUMBER OF PLANS

SQUARE MILES

CUBIC FEET PER SECOND

INCHES

FEET

MULTI-RATIO OPTION
RATIOS OF PRECIPITATION JR

*** ***

Call * 112 KK

Combine C5, B12

114 HC

HYDROGRAPH COMBINATION
ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION Call SUM OF 2 HYDROGRAPHS
PLAN 1, RATIO = 1.00

****	*****	****	****	*******	****	****	******	*****	*******	****	****	******	*****	*******	***	*****	*****	*****	*******
					*					*					*				
DA	MON H	IRMN	ORD	FLOW	*	DA	MON HRM	IN ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA MON	N HRMN	ORD	FLOW
					*					*					*				
1	0	000	1	0.	*	2	224	18 14	372.	*	4	2136	27	0.	*	6	2024	40	0.
1	0	336	2	0.	*	3	022	24 15	323.	*	5	0112	28	0.	*	7	0000	41	0.
1	0	712	3	5.	*	3	066	90 16	307.	*	5	0448	29	0.	*	7	0336	42	0.
1	1	.048	4	25.	*	3	093	36 17	271.	*	5	0824	30	0.	*	7	0712	43	0.
1	1	424	5	56.	*	3	13:	.2 18	257.	*	5	1200	31	0.	*	7	1048	44	0.
1	1	800	6	120.	*	3	164	18 19	254.	*	5	1536	32	0.	*	7	1424	45	0.
1	2	2136	7	235.	*	3	202	24 20	254.	*	5	1912	33	0.	*	7	1800	46	0.
2	0	112	8	688.	*	4	000	90 21	221.	*	5	2248	34	0.	*	7	2136	47	0.
2	0	448	9	1587.	*	4	033	36 22	81.	*	6	0224	35	0.	*	8	0112	48	0.
2	0	824	10	1393.	*	4	07:	2 23	21.	*	6	0600	36	0.	*	8	0448	49	0.
2	1	200	11	771.	*	4	104	18 24	4.	*	6	0936	37	0.	*	8	0824	50	0.
2	1	536	12	523.	*	4	142	24 25	1.	*	6	1312	38	0.	*				
2	1	912	13	428.	*	4	186	90 26	0.	*	6	1648	39	0.	*				
					and the					-					- L				

1	PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	176.40-HR
	` ,	` ,	(CFS)				
+	1587.	28.80		1490.	882.	409.	167.
			(INCHES)	1.753	6.228	9.622	9.643
			(AC-FT)	443.	1575.	2433.	2439.

CUMULATIVE AREA = 4.74 SQ MI

*** ***

115 KK Reservoir Cove

Routing through Res'v

HYDROGRAPH ROUTING DATA

117 RS STORAGE ROUTING

1 NUMBER OF SUBREACHES ELEV TYPE OF INITIAL CONDITION 5545.50 INITIAL CONDITION NSTPS ${\tt RSVRIC}$.00 WORKING R AND D COEFFICIENT

95.0 118 SV STORAGE 19.0 240.0 453.0 738.0 1105.0 1563.0 2217.0 2773.0 3542.0 4423.0 5419.0 6149.0 7347.0 8000.0

120 SE ELEVATION 5470.00 5476.00 5482.00 5488.00 5530.00 5536.00 5542.00 5548.00 5488.00 5494.00 5500.00 5506.00 5512.00 5518.00 5524.00 5552.00 5558.00

122 SL LOW-LEVEL OUTLET ELEVL

5545.50 ELEVATION AT CENTER OF OUTLET CAREA 4.91 CROSS-SECTIONAL AREA .60 COEFFICIENT .50 EXPONENT OF HEAD COQL EXPL

123 SS SPILLWAY

5549.20 SPILLWAY CREST ELEVATION 30.00 SPILLWAY WIDTH CREL SPWID 2.67 WEIR COEFFICIENT COOW 1.50 EXPONENT OF HEAD EXPW

124 ST TOP OF DAM TOPEL DAMWID

5552.00 ELEVATION AT TOP OF DAM 1892.00 DAM WIDTH 2.90 WEIR COEFFICIENT 1.50 EXPONENT OF HEAD COQD EXPD

*** COMPUTED OUTFLOW-ELEVATION DATA

(EXCLUDING FLOW OVER DAM)

OUTFLOW ELEVATION	.00 5470.00	.00 5545.50	25.78 5546.69	27.48 5546.85	 	34.25 5547.60		40.98 5548.51	
OUTFLOW ELEVATION	49.37	68.29 5549.60	113.97		529.64		1156.85 5554.88		

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA

(INCLUDING FLOW OVER DAM)

STORAGE	.00	19.00	95.00	240.00	453.00	738.00	1105.00	1563.00	2217.00	2773.00
OUTFLOW	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
ELEVATION	5470.00	5476.00	5482.00	5488.00	5494.00	5500.00	5506.00	5512.00	5518.00	5524.00
STORAGE	3542.00	4423.00	5419.00	5844.83	5989.79	6009.51	6033.57	6063.27	6100.64	6148.41
OUTFLOW	.00	.00	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31
ELEVATION	5530.00	5536.00	5542.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00
STORAGE	6301.53	6508.46	6543.56	6628.96	6765.11	6952.15	7190.23	7347.00	7395.04	7518.54
OUTFLOW	40.98	45.44	49.37	68.29	113.97	198.20	332.85	435.48	2138.72	11657.74
ELEVATION	5548.51	5549.20	5549.32	5549.60	5550.06	5550.68	5551.48	5552.00	5552.44	5553.58
STORAGE	7660.53	7821.02	8000.00							
OUTFLOW	27985.71	51484.63	82813.63							

ELEVATION 5554.88 5556.36 5558.00

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

*****	*****	****	******	******	******	***	****	****	****	******	******	******	**	***	****	****	****	******	******	******
					*	:							*							
DA MON	I HRMN	ORD	OUTFLOW	STORAGE	STAGE 3	D/	MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE	* [DΑ	MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE
					*								*							
1	0000	1	0.	5844.8	5545.5	: 3		1312	18	326.	7179.3	5551.4	*	6		0224	35	61.	6601.8	5549.5
1	0336	2	0.	5844.8	5545.5	3		1648	19	314.	7160.1	5551.4	*	6		0600	36	57.	6584.2	5549.5
1	0712	3	2.	5845.4	5545.5	: 3		2024	20	304.	7143.7	5551.3	*	6		0936	37	54.	6567.7	5549.4
1	1048	4	4.	5849.0	5545.5			0000	21	294.	7125.6	5551.3	*	6		1312	38	51.	6552.2	5549.3
1	1424	5	8.	5859.3	5545.6			0336	22	271.	7086.7	5551.1	*	6		1648	39	48.	6537.4	5549.3
1	1800	6	13.	5882.4	5545.8			0712	23	237.	7026.1	5550.9	*	6		2024	40	47.	6523.2	5549.2
1	2136	7	20.	5930.4	5546.2			1048	24	204.	6964.1	5550.7	*	7		0000	41	45.	6509.5	5549.2
2	0112	8	31.	6060.0	5547.3			1424	25	177.	6908.3	5550.5	*	7		0336	42	45.	6496.0	5549.2
2	0448	9	43.	6386.9	5548.8			1800	26	154.	6859.3	5550.4	*	7		0712	43	45.	6482.6	5549.1
2	0824	10	130.	6804.4	5550.2 *			2136	27	135.	6816.4	5550.2	*	7		1048	44	45.	6469.3	5549.1
2	1200	11	261.	7069.4	5551.1		,	0112	28	119.	6778.6	5550.1	*	7		1424	45	44.	6456.0	5549.0
2	1536	12	323.	7174.9	5551.4 *		,	0448	29	106.	6745.1	5550.0	*	7		1800	46	44.	6442.9	5549.0
2	1912	13	349.	7216.3	5551.6 *		,	0824	30	95.	6715.1	5549.9	*	7		2136	47	44.	6429.9	5548.9
2	2248	14	358.	7230.0	5551.6		,	1200	31	86.	6688.0	5549.8	*	8		0112	48	44.	6417.1	5548.9
3	0224	15	356.	1536	32	78.	6663.6	5549.7	*	8		0448	49	43.	6404.2	5548.9				
3	0600	16	349.	33	72.	6641.2	5549.6	*	8		0824	50	43.	6391.5	5548.8					
3	0936	17	339.	7199.7	5551.5		,	2248	34	66.	6620.8	5549.6	*							
					*								*							

PEAK OUTFLOW IS 358. AT TIME 46.80 HOURS

F	PEAK FLOW	TIME			MAXIMUM A	VERAGE FLOW	
	(CEC)	(IIB)		6-HR	24-HR	72-HR	176.40-HR
+	(CFS)	(HR)	(CFS)				
+	358.	46.80		357.	346.	254.	130.
			(INCHES)	.420	2.442	5.987	7.487
			(AC-FT)	106.	618.	1514.	1894.
PI	EAK STORAGE	TIME			MAXIMUM AV	ERAGE STORAGE	E
				6-HR	24-HR	72-HR	176.40-HR
+	(AC-FT)	(HR)					
	7230.	46.80		7229.	7211.	7044.	6643.
F	PEAK STAGE	TIME			MAXIMUM A	VERAGE STAGE	
				6-HR	24-HR	72-HR	176.40-HR
+	(FEET)	(HR)					
	5551.61	46.80		5551.60	5551.55	5550.99	5549.46

CUMULATIVE AREA = 4.74 SQ MI

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN		RATIOS RATIO 1 1.00	APPLIED	TO PRECIPIT	TATION
HYDROGRAPH AT +	B1	.50	1	FLOW TIME	162. 28.80			
ROUTED TO +	RB1	.50	1	FLOW TIME	156. 28.80			
HYDROGRAPH AT	В2	.44	1	FLOW TIME	140. 28.80			
HYDROGRAPH AT +	В3	.28	1	FLOW TIME	87. 28.80			
3 COMBINED AT	C1	1.22	1	FLOW TIME	382. 28.80			
ROUTED TO +	RC1	1.22	1	FLOW TIME	371. 28.80			
HYDROGRAPH AT +	В4	.45	1	FLOW TIME	147. 28.80			
HYDROGRAPH AT	В5	.81	1	FLOW TIME	266. 28.80			
3 COMBINED AT	C2	2.48	1	FLOW TIME	785. 28.80			
ROUTED TO +	RC2	2.48	1	FLOW TIME	780. 28.80			
HYDROGRAPH AT +	В6	.15	1	FLOW TIME	58. 28.80			
HYDROGRAPH AT +	В7	.33	1	FLOW TIME	111. 28.80			
3 COMBINED AT +	С3	2.95	1	FLOW TIME	949. 28.80			
ROUTED TO +	RC3	2.95	1	FLOW TIME	900. 28.80			
HYDROGRAPH AT +	В8	1.01	1	FLOW TIME	389. 28.80			
HYDROGRAPH AT +	В9	.24	1	FLOW TIME	95. 28.80			
HYDROGRAPH AT +	B10	.13	1	FLOW TIME	51. 28.80			
2 COMBINED AT +	C4	.37	1	FLOW TIME	146. 28.80			
ROUTED TO +	RC4	.37	1	FLOW TIME	143. 28.80			
HYDROGRAPH AT +	B11	.28	1	FLOW TIME	108. 28.80			
4 COMBINED AT +	C5	4.61	1	FLOW TIME	1540. 28.80			

HYDROGRAPH AT		312	.13		LOW IME	2	47. 28.80									
2 COMBINED A		Call	4.74		LOW IME		1587. 28.80									
ROUTED TO +	(Cove	4.74		LOW IME	4	358. 16.80									
1				1 S	AK STAG TAGE IME	555	N FEET ¹ 51.61 16.80	**								
-				S							M-CUNGE ASE FLOI INTI	W)	ING ATED TO			
IS	TAQ	ELEMENT	DT	Р	EAK	TIME PEA		VOLUMI	E	DT	COMPUTA PEA		INTERVAL TIME TO PEAK	VOLUME		
			(MIN)	(CFS)	(1	MIN)	(IN)	(1)	MIN)	(CFS	S)	(MIN)	(IN)		
	PLAN RB1	= 1 RATIO	0= .00 16.14	16	1.33	1758	.92	8.92	216	5.00	155.9	93	1728.00	8.94		
CONTINUITY SU	MMARY	(AC-FT) -	INFLOW=	.2392E	+03 EX	CESS=	.0000E-	+00 OU	TFLOW=	.239	2E+03 B	ASIN	STORAGE=	.3928E-02 PERCE	NT ERROR:	0
	PLAN RC1	= 1 RATIO	O= .00 11.70	38	1.73	1743	.12	8.85	216	5.00	371.4	42	1728.00	8.87		
CONTINUITY SU	MMARY	(AC-FT) -	INFLOW=	.5750E	+03 EXC	CESS=	.0000E-	+00 OU	TFLOW=	.575	0E+03 B/	ASIN	STORAGE=	.2955E-02 PERCE	NT ERROR	.0
	PLAN RC2	= 1 RATIO	O= .00 2.77	78	4.17	1730	. 55	8.97	216	5.00	779.8	86	1728.00	8.97		
CONTINUITY SU	MMARY	(AC-FT) -	INFLOW=	.1184E	+04 EX	CESS=	.0000E-	+00 OU	TFLOW=	.118	4E+04 BA	ASIN	STORAGE=	.2978E-02 PERCE	NT ERROR	.0
	PLAN RC3	= 1 RATIO	D= .00 21.20	94	5.64	1759	. 24	9.09	216	5.00	900.:	19	1728.00	9.11		
CONTINUITY SU	MMARY	(AC-FT) -	INFLOW=	.1431E	+04 EX	CESS=	.0000E-	+00 OU	TFLOW=	.143	1E+04 B	ASIN	STORAGE=	.1049E-01 PERCE	NT ERROR=	.0
	PLAN RC4	= 1 RATIO	0= .00 9.01	. 14	5.33	1739	.46	10.73	216	5.00	142.9	95	1728.00	10.74		
CONTINUITY SU	MMARY	(AC-FT) -	INFLOW=	.2123E	+03 EX	CESS=	.0000E-	+00 OU	TFLOW=	.212	3E+03 B/	ASIN	STORAGE=	.2832E-02 PERCE	NT ERROR:	.0
1											OR STAT: ING BREA		Cove ORMATION)			
PLAN 1			ELEVA STORA OUTFL	GE		TIAL \ 5545.5 5845	50	SPI	LLWAY (5549.2 6508 45	20 3.		P OF 5552. 734 43	00 7.			
		RATIO OF PMF	MAXIMU RESERVO W.S.EL	IR	MAXIMU DEPTH OVER DA	+	MAXIMUI STORAGI AC-FT		AXIMUM JTFLOW CFS	0	URATION VER TOP HOURS		TIME OF X OUTFLOW HOURS	TIME OF FAILURE HOURS		

1.00

5551.61

.00

7230.

358.

.00

46.80

.00

Storm Event 12. Principal Spillway Hydrograph

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

PAGE 1

Х	XXXXXXX	XX	XXX		Х
Х	X	Х	Х		XX
Х	X	Χ			Х
(XXX	XXXX	Χ		XXXXX	Χ
Х	X	Χ			Х
Х	X	Χ	Х		Х
Х	XXXXXXX	XX	XXX		XXX
	X X X X X	X X X X XXXX XXXX X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

HEC-1 INPUT

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

```
51
                          SS 5549.2
                                          30
                                              2.67
                                                         1.5
1
                                                         HEC-1 INPUT
                                                                                                                  PAGE 2
           LINE
                          \mathtt{ID}.\dots.1\dots.2\dots.3\dots.4\dots.5\dots.6\dots.7\dots.8\dots.9\dots.10
             52
                          ST 5552.0
                                        1892
                                                 2.9
                                                          1.5
             53
                          ZZ
1
                 SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
  LINE
            (V) ROUTING
                                 (--->) DIVERSION OR PUMP FLOW
   NO.
            (.) CONNECTOR
                                 (<---) RETURN OF DIVERTED OR PUMPED FLOW
 *** HEC1 ERROR 4 *** NO HYDROGRAPHS AVAILABLE TO ROUTE
                 V
    43
             Cove
 (***) RUNOFF ALSO COMPUTED AT THIS LOCATION
1 ERRORS IN STREAM SYSTEM
                                                                                               ***********
     FLOOD HYDROGRAPH PACKAGE (HEC-1)
                                                                                                    U.S. ARMY CORPS OF ENGINEERS
              JUN 1998
VERSION 4.1
                                                                                                    HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
                                                                                                       DAVIS, CALIFORNIA 95616
    RUN DATE 06AUG20 TIME 03:15:56
                                                                                                          (916) 756-1104
 ************
                                                                                               ***********
                            HYDROLOGY STUDY for COVE RESERVOIR
                            Located in KANE COUNTY, UTAH
                            PREPARED BY ALPHA ENGINEERING
                            A3 SOUTH 100 EAST, SUITE 100
ST. GEORGE, UTAH 84770
TEL: (435) 628-6500
FAX: (435) 628-6553
                            PSH (NEH)
                  OUTPUT CONTROL VARIABLES
   16 IO
                        IPRNT
                                   0 PRINT CONTROL
                        IPLOT
                                        0 PLOT CONTROL
                                       0. HYDROGRAPH PLOT SCALE
                        OSCAL
                  HYDROGRAPH TIME DATA
      IT
                         NMIN
                                       60 MINUTES IN COMPUTATION INTERVAL
                        IDATE
                                          STARTING DATE
STARTING TIME
                        ITIME
                                     0000
                                      350 NUMBER OF HYDROGRAPH ORDINATES
                           NQ
                       NDDATE
                                    0 ENDING DATE
1300 ENDING TIME
                       NDTIME
                                       19 CENTURY MARK
                       ICENT
                    COMPUTATION INTERVAL
                         UTATION INTERVAL 1.00 HOURS
TOTAL TIME BASE 349.00 HOURS
           ENGLISH UNITS
                DRAINAGE AREA
                                       SQUARE MILES
                PRECIPITATION DEPTH
                                      INCHES
                LENGTH, ELEVATION
                                       FEET
                                       CUBIC FEET PER SECOND
                STORAGE VOLUME
                                       ACRE-FEET
                SURFACE AREA
                                      ACRES
                TEMPERATURE
                                      DEGREES FAHRENHEIT
                  MULTI-PLAN OPTION
      JΡ
                        NPLAN
                                        1 NUMBER OF PLANS
      JR
                  MULTI-RATIO OPTION
                      RATIOS OF PRECIPITATION
   17 IN
                  TIME DATA FOR INPUT TIME SERIES
                                       60 TIME INTERVAL IN MINUTES
0 STARTING DATE
                        JXMIN
                       JXDATE
                       JXTIME
                                         0 STARTING TIME
                SUBBASIN RUNOFF DATA
```

SUBBASIN CHARACTERISTICS

0 BA

HYDROGRAPH AT STATION Cove

*****	****	****	****	*******	****	****	******	****	*******	****	****	******	****	*******	****	****	*******	****	******
DA	MON	HRMN	ORD	FLOW	* *	DA	MON HRMN	ORD	FLOW	*	DA	MON HRM	N ORI) FLOW	*	DA	MON HRMN	ORD	FLOW
1		0000	1	0.	*	4	1600	89	33.	*	8	080	3 17	7 24.	*	12	0000	265	1.
1		0100	2	11.	*	4	1700	90	33.	*	8	090			*	12	0100	266	1.
1		0200	3	14.	*	4	1800	91	34.	*	8	100	179	23.	*	12	0200	267	1.
1		0300	4	15.	*	4	1900	92	35.	*	8	110	180	23.	*	12	0300	268	1.
1		0400	5	15.	*	4	2000	93	35.	*	8	120			*	12	0400	269	1.
1		0500	6	15.	*	4	2100	94	36.	*	8	130			*	12	0500	270	1.
1		0600	7	15.	*	4	2200	95	37.	*	8	140			*	12	0600	271	1.
1		0700	8 9	15.	*	4	2300	96	38.	*	8	150			*	12	0700	272	1.
1		0800 0900	10	15. 15.	*	5 5	0000 0100	97 98	39. 40.	*	8	160 170			*	12 12	0800 0900	273 274	1. 1.
1		1000	11	15.	*	5	0200	99	41.	*	8	180			*	12	1000	275	1.
1		1100	12	16.	*	5	0300	100	42.	*	8	190			*	12	1100	276	1.
1		1200	13	16.	*	5	0400	101	43.	*	8	200			*	12	1200	277	1.
1		1300	14	16.	*	5	0500	102	45.	*	8	210	190	21.	*	12	1300	278	1.
1		1400	15	16.	*	5	0600	103	46.	*	8	220	19:	L 21.	*	12	1400	279	1.
1		1500	16	16.	*	5	0700	104	48.	*	8	230			*	12	1500	280	1.
1		1600	17	16.	*	5	0800	105	49.	*	9	000			*	12	1600	281	1.
1		1700	18	16.	*	5	0900	106	51.	*	9	010			*	12	1700	282	1.
1		1800	19	16.	*	5 5	1000	107	53.	*	9	020			*	12	1800	283	1.
1		1900 2000	20 21	16. 16.	*	5	1100 1200	108 109	56. 58.	*	9	030 040			*	12 12	1900 2000	284 285	1. 1.
1		2100	22	17.	*	5	1300	110	61.	*	9	050			*	12	2100	286	1.
1		2200	23	17.	*	5	1400	111	65.	*	9	060			*	12	2200	287	1.
1		2300	24	17.	*	5	1500	112	69.	*	9	070			*	12	2300	288	1.
2		0000	25	17.	*	5	1600	113	74.	*	9	080			*	13	0000	289	1.
2		0100	26	17.	*	5	1700	114	80.	*	9	090	202	2 19.	*	13	0100	290	1.
2		0200	27	17.	*	5	1800	115	87.	*	9	100	203	3 19.	*	13	0200	291	1.
2		0300	28	17.	*	5	1900	116	96.	*	9	110			*	13	0300	292	1.
2		0400	29	17.	*	5	2000	117	109.	*	9	120			*	13	0400	293	1.
2		0500	30	17.	*	5	2100	118	127.	*	9	130			*	13	0500	294	1.
2		0600 0700	31 32	17. 18.	*	5 5	2200 2300	119 120	157. 219.	*	9	140 150			*	13 13	0600 0700	295 296	1.
2		0800	33	18.	*	6	0000	121	850.	*	9	160			*	13	0800	290	1. 1.
2		0900	34	18.	*	6	0100	122	479.	*	9	170			*	13	0900	298	1.
2		1000	35	18.	*	6	0200	123	259.	*	9	180			*	13	1000	299	1.
2		1100	36	18.	*	6	0300	124	172.	*	9	190			*	13	1100	300	1.
2		1200	37	18.	*	6	0400	125	132.	*	9	200			*	13	1200	301	1.
2		1300	38	18.	*	6	0500	126	111.	*	9	210	214	1 17.	*	13	1300	302	1.
2		1400	39	18.	*	6	0600	127	98.	*	9	220			*	13	1400	303	1.
2		1500	40	19.	*	6	0700	128	88.	*	9	230			*	13	1500	304	1.
2		1600	41	19.	*	6	0800	129	81.	*	10	000			*	13	1600	305	1.
2		1700 1800	42 43	19. 19.	*	6	0900 1000	130 131	75. 70.	*	10 10	010 020			*	13 13	1700 1800	306 307	1.
2		1900	44	19.	*	6 6	1100	132	65.	*	10	030			*	13	1900	308	1. 1.
2		2000	45	19.	*	6	1200	133	62.	*	10	040			*	13	2000	309	1.
2		2100	46	20.	*	6	1300	134	59.	*	10	050			*	13	2100	310	1.
2		2200	47	20.	*	6	1400	135	56.	*	10	060			*	13	2200	311	1.
2		2300	48	20.	*	6	1500	136	54.	*	10	070	224	16.	*	13	2300	312	1.
3		0000	49	20.	*	6	1600	137	51.	*	10	080	22!	16.	*	14	0000	313	1.
3		0100	50	20.	*	6	1700	138	50.	*	10	090			*	14	0100	314	1.
3		0200	51	20.	*	6	1800	139	48.	*	10	100			*	14	0200	315	1.
3		0300 0400	52	21.	*	6	1900 2000	140	46.	*	10 10	110			*	14 14	0300	316	1.
3		0500	53 54	21. 21.	*	6 6	2100	141 142	45. 43.	*	10	120 130			*	14	0400 0500	317 318	1. 1.
3		0600	55	21.	*	6	2200	143	42.	*	10	140			*	14	0600	319	1.
3		0700	56	21.	*	6	2300	144	41.	*	10	150			*	14	0700	320	1.
3		0800	57	21.	*	7	0000	145	40.	*	10	160			*	14	0800	321	1.
3		0900	58	22.	*	7	0100	146	39.	*	10	170	234	1 15.	*	14	0900	322	1.
3		1000	59	22.	*	7	0200	147	38.	*	10	180	23!	5 15.	*	14	1000	323	1.
3		1100	60	22.	*	7	0300	148	37.	*	10	190			*	14	1100	324	1.
3		1200	61	22.	*	7	0400	149	36.	*	10	200			*	14	1200	325	1.
3		1300	62	23.	*	7	0500	150	35.	*	10	210			*	14	1300	326	1.
3		1400 1500	63 64	23. 23.	*	7 7	0600 0700	151 152	35. 34.	*	10 10	220 230			*	14 14	1400 1500	327 328	1. 1.
3		1600	64 65	23.	*	7	0800	153	33.	*	11	000			*	14	1600	329	1.
3		1700	66	24.	*	7	0900	154	33.	*	11	010			*	14	1700	330	1.
3		1800	67	24.	*	7	1000	155	32.	*	11	020			*	14	1800	331	1.
3		1900	68	24.	*	7	1100	156	32.	*	11	030			*	14	1900	332	1.
3		2000	69	24.	*	7	1200	157	31.	*	11	040			*	14	2000	333	1.
3		2100	70	25.	*	7	1300	158	30.	*	11	050			*	14	2100	334	1.
3		2200	71	25.	*	7	1400	159	30.	*	11	060			*	14	2200	335	1.
3		2300	72	25.	*	7	1500	160	29.	*	11	070			*	14	2300	336	1.
4		0000	73	26.	*	7	1600	161	29.	*	11	080			*	15	0000	337	1.
4		0100	74	26.	*	7	1700	162	29.	*	11	090			*	15	0100	338	1.
4		0200	75 76	26.	*	7	1800	163	28.	*	11	100			*	15	0200	339	1.
4		0300 0400	76 77	27. 27.	*	7 7	1900 2000	164 165	28. 27.	*	11 11	110 120			*	15 15	0300 0400	340 341	1. 1.
4		0500	77 78	27. 27.	*	7	2100	166	27.	*	11	130			*	15	0500	341	1.
4		0600	78 79	28.	*	7	2200	167	27.	*	11	140			*	15	0600	343	1.
4		0700	80	28.	*	7	2300	168	26.	*	11	150			*	15	0700	344	1.

4	0800	81	29.	*	8	0000	169	26.	*	11	1600	257	1.	*	15	0800	345	1.
4	0900	82	29.	*	8	0100	170	26.	*	11	1700	258	1.	*	15	0900	346	1.
4	1000	83	29.	*	8	0200	171	25.	*	11	1800	259	1.	*	15	1000	347	1.
4	1100	84	30.	*	8	0300	172	25.	*	11	1900	260	1.	*	15	1100	348	1.
4	1200	85	30.	*	8	0400	173	25.	*	11	2000	261	1.	*	15	1200	349	1.
4	1300	86	31.	*	8	0500	174	24.	*	11	2100	262	1.	*	15	1300	350	1.
4	1400	87	31.	*	8	0600	175	24.	*	11	2200	263	1.	*				
4	1500	88	32.	*	8	0700	176	24.	*	11	2300	264	1.	*				
				*					*					*				

PEAK FLOW TIME 6-HR 24-HR 72-HR 349.00-HR
+ (CFS) (HR) (CFS)
+ 850. 120.00 (INCHES) .000 .000 .000 .000 .000 (AC-FT) 175. 305. 468. 757.

CUMULATIVE AREA = .00 SQ MI

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

*:	*****	******	*****	*******	****	******	*****	****	*******	***:	******	*****	****	*******	***	******	*****	k*****	******
~ -		****		****	****	****	*****			***	****	****		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			****		
	DA MO	N HRMN	ORD	FLOW	*	DA MO	N HRMN	ORD	FLOW	*	DA MO	N HRMN	ORD	FLOW	*	DA MON	HRMN	ORD	FLOW
					*					*					*				
	1	0000	1	0.	*	4	1600	89	33.	*	8	0800	177	24.	*	12	0000	265	1.
	1	0100	2	11.	*	4	1700	90	33.	*	8	0900	178	23.	*	12	0100	266	1.
	1	0200	3	14.	*	4	1800	91	34.	*	8	1000	179	23.	*	12	0200	267	1.
	1	0300	4	15.	*	4	1900	92	35.	*	8	1100	180	23.	*	12	0300	268	1.
	1	0400	5		*	4	2000	93	35.	*	8	1200	181	23.	*	12	0400	269	
	_			15.						-									1.
	1	0500	6	15.	*	4	2100	94	36.	*	8	1300	182	22.	*	12	0500	270	1.
	1	0600	7	15.	*	4	2200	95	37.	*	8	1400	183	22.	*	12	0600	271	1.
	1	0700	8	15.	*	4	2300	96	38.	*	8	1500	184	22.	*	12	0700	272	1.
	1	0800	9	15.	*	5	0000	97	39.	*	8	1600	185	22.	*	12	0800	273	1.
	1	0900	10	15.	*	5	0100	98	40.	*	8	1700	186	22.	*	12	0900	274	1.
	1	1000	11	15.	*	5	0200	99	41.	*	8	1800	187	21.	*	12	1000	275	1.
	_									*					*				
	1	1100	12	16.	*	5	0300	100	42.	*	8	1900	188	21.		12	1100	276	1.
	1	1200	13	16.	*	5	0400	101	43.	*	8	2000	189	21.	*	12	1200	277	1.
	1	1300	14	16.	*	5	0500	102	45.	*	8	2100	190	21.	*	12	1300	278	1.
	1	1400	15	16.	*	5	0600	103	46.	*	8	2200	191	21.	*	12	1400	279	1.
	1	1500	16	16.	*	5	0700	104	48.	*	8	2300	192	20.	*	12	1500	280	1.
	1	1600	17	16.	*	5	0800	105	49.	*	9	0000	193	20.	*	12	1600	281	1.
			18			5	0900			*	9				*	12			
	1	1700		16.				106	51.			0100	194	20.			1700	282	1.
	1	1800	19	16.	*	5	1000	107	53.	*	9	0200	195	20.	*	12	1800	283	1.
	1	1900	20	16.	*	5	1100	108	56.	*	9	0300	196	20.	*	12	1900	284	1.
	1	2000	21	16.	*	5	1200	109	58.	*	9	0400	197	20.	*	12	2000	285	1.
	1	2100	22	17.	*	5	1300	110	61.	*	9	0500	198	19.	*	12	2100	286	1.
	1	2200	23	17.	*	5	1400	111	65.	*	9	0600	199	19.	*	12	2200	287	1.
	1	2300	24	17.	*	5	1500	112	69.	*	9	0700	200	19.	*	12	2300	288	1.
	_									*	9				*				
	2	0000	25	17.		5	1600	113	74.		-	0800	201	19.		13	0000	289	1.
	2	0100	26	17.	*	5	1700	114	80.	*	9	0900	202	19.	*	13	0100	290	1.
	2	0200	27	17.	*	5	1800	115	87.	*	9	1000	203	19.	*	13	0200	291	1.
	2	0300	28	17.	*	5	1900	116	96.	*	9	1100	204	19.	*	13	0300	292	1.
	2	0400	29	17.	*	5	2000	117	109.	*	9	1200	205	18.	*	13	0400	293	1.
	2	0500	30	17.	*	5	2100	118	127.	*	9	1300	206	18.	*	13	0500	294	1.
					*					*					*				
	2	0600	31	17.		5	2200	119	157.		9	1400	207	18.		13	0600	295	1.
	2	0700	32	18.	*	5	2300	120	219.	*	9	1500	208	18.	*	13	0700	296	1.
	2	0800	33	18.	*	6	0000	121	850.	*	9	1600	209	18.	*	13	0800	297	1.
	2	0900	34	18.	*	6	0100	122	479.	*	9	1700	210	18.	*	13	0900	298	1.
	2	1000	35	18.	*	6	0200	123	259.	*	9	1800	211	18.	*	13	1000	299	1.
	2	1100	36	18.	*	6	0300	124	172.	*	9	1900	212	17.	*	13	1100	300	1.
	2	1200	37	18.	*	6	0400	125	132.	*	9	2000	213	17.	*	13	1200	301	1.
					*					*					*				
	2	1300	38	18.		6	0500	126	111.		9	2100	214	17.		13	1300	302	1.
	2	1400	39	18.	*	6	0600	127	98.	*	9	2200	215	17.	*	13	1400	303	1.
	2	1500	40	19.	*	6	0700	128	88.	*	9	2300	216	17.	*	13	1500	304	1.
	2	1600	41	19.	*	6	0800	129	81.	*	10	0000	217	17.	*	13	1600	305	1.
	2	1700	42	19.	*	6	0900	130	75.	*	10	0100	218	17.	*	13	1700	306	1.
	2	1800	43	19.	*	6	1000	131	70.	*	10	0200	219	17.	*	13	1800	307	1.
	2		44	19.	*					*					*	13			1.
		1900			*	6	1100	132	65.	*	10	0300	220	17.			1900	308	
	2	2000	45	19.		6	1200	133	62.		10	0400	221	17.	*	13	2000	309	1.
	2	2100	46	20.	*	6	1300	134	59.	*	10	0500	222	16.	*	13	2100	310	1.
	2	2200	47	20.	*	6	1400	135	56.	*	10	0600	223	16.	*	13	2200	311	1.
	2	2300	48	20.	*	6	1500	136	54.	*	10	0700	224	16.	*	13	2300	312	1.
	3	0000	49	20.	*	6	1600	137	51.	*	10	0800	225	16.	*	14	0000	313	1.
	3	0100	50	20.	*	6	1700	138	50.	*	10	0900	226	16.	*	14	0100	314	1.
	3	0200	51	20.	*	6	1800	139	48.	*	10	1000	227	16.	*	14	0200	315	1.
	3	0300	52	21.	*	6	1900	140	46.	*	10	1100	228	16.	*	14	0300	316	1.
	3	0400	53	21.	*	6	2000	141	45.	*	10	1200	229	16.	*	14	0400	317	1.
	3	0500	54	21.	*	6	2100	142	43.	*	10	1300	230	16.	*	14	0500	318	1.
	3	0600	55	21.	*	6	2200	143	42.	*	10	1400	231	16.	*	14	0600	319	1.
	3	0700	56	21.	*	6	2300	144	41.	*	10	1500	232	15.	*	14	0700	320	1.
					*					*					*				
	3	0800	57	21.	-	7	0000	145	40.		10	1600	233	15.		14	0800	321	1.
	3	0900	58	22.	*	7	0100	146	39.	*	10	1700	234	15.	*	14	0900	322	1.
	3	1000	59	22.	*	7	0200	147	38.	*	10	1800	235	15.	*	14	1000	323	1.
	3	1100	60	22.	*	7	0300	148	37.	*	10	1900	236	15.	*	14	1100	324	1.
	3	1200	61	22.	*	7	0400	149	36.	*	10	2000	237	15.	*	14	1200	325	1.

	3	130	0 62	23.	* 7	0500	150	35. *	10 210	0 238	15.	* 14	1300 326	1.
	3	140		23.	* 7	0600	151	35. *	10 220		15.		1400 327	1.
	3	150		23.	* 7	0700	152	34. *	10 230		15.	1-	1500 328	1.
	3	160		23.	* 7	0800	153	33. *	11 000		15.		1600 329	1.
	3	170		24.	* 7 * 7	0900	154	55.	11 010 11 020		4.	1-4	1700 330	1.
	3 3	180 190		24. 24.	* 7	1000 1100	155 156	32. * 32. *	11 020 11 030		1.	4-7	1800 331 1900 332	1. 1.
	3	200		24.	* 7	1200	157	31. *	11 040		1.	1	2000 333	1.
	3	210		25.	* 7	1300	158	30. *	11 050		1.		2100 334	1.
	3	220		25.	* 7	1400	159	30. *	11 060		1.		2200 335	1.
	3	230	0 72	25.	* 7	1500	160	29. *	11 070	248	1.	* 14	2300 336	1.
	4	000	0 73	26.	* 7	1600	161	29. *	11 080	a 249	1.	10	0000 337	1.
	4	010		26.	* 7	1700	162	29. *	11 090		1.	13	0100 338	1.
	4	020		26.	* 7	1800	163	28. *	11 100		1.		0200 339	1.
	4	030		27.	* 7 * 7	1900	164	28. * 27 *	11 110			* 15	0300 340	1.
	4 4	040 050		27. 27.	* 7 * 7	2000 2100	165 166	27. * 27. *	11 120 11 130		1.	10	0400 341 0500 342	1. 1.
	4	060		28.	* 7	2200	167	27. *	11 140		1.	13	0600 343	1.
	4	070		28.	* 7	2300	168	26. *	11 150		1.	13	0700 344	1.
	4	080		29.	* 8	0000	169	26. *	11 160		1.		0800 345	1.
	4	090	0 82	29.	* 8	0100	170	26. *	11 170	258	1.	* 15	0900 346	1.
	4	100	0 83	29.	* 8	0200	171	25. *	11 180	a 259	1.	* 15	1000 347	1.
	4	110		30.	* 8	0300	172	25. *	11 190		1.	13	1100 348	1.
	4	120		30.	* 8	0400	173	25. *	11 200		1.	13	1200 349	1.
	4	130		31.	* 8	0500	174	24. *	11 210		1.	13	1300 350	1.
	4	140		31.	* 8	0600	175	24.	11 220		1.			
	4	150	0 88	32.	* 8	0700	176	24. *	11 230	0 264	1.			
**	*****	*****	******	******		******	*******		*******	*******			******	*****
F	PEAK F	LOW	TIME			MAX	IMUM AVERA	AGE FLOW						
					6-H	R :	24-HR	72-HR	349.00-HR					
۲	(CFS)	(HR)											
	0.5	_	420.00	(CFS			454	70	25					
۲	85	υ.	120.00	/ TNCHEC	354		154.	79.	26.					
				(INCHES (AC-FT			.000 305.	.000 468.	.000 757.					
				(AC-II	, 1/3	•	303.	400.	737.					
				CUMULA	TIVE AREA	= .00	O SO MI							
**	** ***	*** *	** *** **	** *** **	* *** ***	*** *** :	*** *** **	** *** ***	*** *** ***	*** *** *	** *** **:	* *** *** >	*** *** ***	*** *** ***
**	** ***	*** *	** *** **	** *** **	* *** ***	*** *** :	*** *** **	** *** ***	*** *** ***	*** *** *	** *** **:	* *** *** >	*** *** ***	*** *** ***
**	** ***	*** *	** *** **	** *** **	* *** ***	*** *** :	*** *** **	** *** ***	*** *** ***	*** *** *	** *** **:	* *** *** 1	*** *** ***	*** *** ***
**	** ***	*** *	** *** ** ******	** *** ** ****	* *** ***	*** *** :	*** *** **	** *** ***	*** *** ***	*** *** *	** *** **	* *** *** 1	*** *** ***	*** *** ***
**	** *** 43 KK			*	* *** *** Reservoir	*** *** :	*** *** **	** *** ***	*** *** ***	*** *** *	** ***	* *** *** 1	*** *** ***	*** *** ***
**	** *** 43 KK	*	** *** ** ********	*	* *** *** Reservoir	*** ***	*** *** **	** *** ***	*** *** ***	*** *** *	** *** **	* *** *** :	*** *** ***	*** *** ***
**	** *** 43 KK	*		* • * *	* *** *** Reservoir	*** *** :	*** *** **	* *** ***	*** *** ***	*** *** *	** *** **:	* *** *** >	*** *** ***	*** *** ***
**	** *** 43 KK	*	Cove	* * *	* *** *** Reservoir ting throu	*** *** : gh Res'v	*** *** **	** *** ***	*** *** ***	*** *** *	** *** **:	* *** *** 3	*** *** ***	*** *** ***
**	** *** 43 KK	*	Cove	* * * *****	ting throu	*** *** ' gh Res'v	*** *** **	** *** ***	*** *** ***	*** *** *	** *** **	* *** *** >	*** *** ***	*** *** ***
**	** *** 43 KK	*	Cove	* * *	ting throu	*** *** [:] gh Res'v	*** *** **	* *** ***	*** *** ***	*** *** *	** *** **	* *** *** >	*** *** ***	*** *** ***
**		*	Cove ********	* * * * * * *Rou	ting throu ING DATA	*** *** ; gh Res'v	*** *** **	** *** ***	*** *** ***	*** *** *	** *** **	* *** *** ;	*** *** ***	*** *** ***
**	** *** 43 KK 45 RS	*	Cove ********	* * * * * * Rou RAPH ROUT	ting throu ING DATA NG	-	*** *** **	** *** ***	*** *** ***	*** *** *	** *** **	* *** *** 1	*** ***	*** *** ***
**		*	Cove ********	* * * * * * * * * * * * * * * * * * *	ting throu ING DATA NG 1	NUMBER	*** *** ** OF SUBREA		*** *** ***	*** *** *	** *** **:	* *** *** 1	*** *** ***	*** *** ***
***		*	Cove ********	* * * * ROU RAPH ROUT AGE ROUTI NSTPS ITYP	ting throu ING DATA NG 1 ELEV	NUMBER TYPE OI	FINITIAL	CONDITION	*** *** ***	*** *** *	** *** **	* *** *** ;	*** *** ***	*** *** ***
**		*	Cove ********	* * * * Rou RAPH ROUT AGE ROUTI NSTPS ITYP RSVRIC	ting throu ING DATA NG 1 ELEV 5545.50	NUMBER TYPE OI INITIAI	F INITIAL L CONDITIO	CONDITION	*** *** ***	*** *** *	** *** **:	* *** ***	*** *** ***	*** *** ***
***		*	Cove ********	* * * * ROU RAPH ROUT AGE ROUTI NSTPS ITYP	ting throu ING DATA NG 1 ELEV 5545.50	NUMBER TYPE OI INITIAI	F INITIAL L CONDITIO	CONDITION	*** *** ***	*** *** *	** *** **:	* *** *** :	*** ***	*** *** ***
***		*	Cove ******** HYDROGF STORA	* * * * Rou RAPH ROUT AGE ROUTI NSTPS ITYP RSVRIC	ting throu ING DATA NG 1 ELEV 5545.50	NUMBER TYPE OI INITIAI	F INITIAL L CONDITIO	CONDITION ON COEFFICIENT		738.0	** *** **:	* *** *** :	2217.0	*** *** *** 2773.0
***	45 RS	*	Cove ******** HYDROGF STORA	RAPH ROUT AGE ROUTI NSTPS ITYP RSVRIC X	ting throu ING DATA NG 1 ELEV 5545.50	NUMBER TYPE OI INITIAI WORKING	F INITIAL L CONDITIC R AND D C	CONDITION ON COEFFICIENT	453.0	*** *** * 738.0 8000.0	** *** ***	1563.0	2217.0	*** *** *** 2773.0
**	45 RS 46 SV	*	Cove ******** HYDROGF STORA	* * * * * * * * * * * * * * * * * * *	ting throu ING DATA NG 1 ELEV 5545.50 .00 .00	NUMBER TYPE OI INITIAI WORKING	F INITIAL L CONDITIO R AND D C 95.0 5419.0	CONDITION ON COEFFICIENT O 240.0 O 6149.0	453.0 7347.0	0000	** *** **:	1563.0	2217.0	
****	45 RS	*	Cove ******** HYDROGF STORA	* * * * * * * * * * * * * * * * * * *	ting throu ING DATA NG 1 ELEV 5545.50 .00 .0 3542.0	NUMBER TYPE OI INITIAN WORKING 19.0 4423.0	F INITIAL L CONDITION R AND D CO 95.0 5419.0	CONDITION DN COEFFICIENT 0 240.0 6149.0 0 5488.00	453.0 7347.0 5494.00	8000.0 5500.00		* *** *** : 1563.0 5512.00		*** *** *** 2773.0 5524.00
***	45 RS 46 SV	*	Cove ******** HYDROGF STORA	* * * * * * * * * * * * * * * * * * *	ting throu ING DATA NG 1 ELEV 5545.50 .00 .0 3542.0	NUMBER TYPE OI INITIAN WORKING 19.0 4423.0	F INITIAL L CONDITION R AND D CO 95.0 5419.0	CONDITION ON COEFFICIENT O 240.0 O 6149.0	453.0 7347.0 5494.00	8000.0				
**	45 RS 46 SV 48 SE	*	COVE ********* HYDROGF STORA STO	* * * * * * * * * * * * * * * * * * *	ting throu ING DATA NG 1 ELEV 5545.50 .00 .0 3542.0 5470.00 5530.00	NUMBER TYPE OI INITIAN WORKING 19.0 4423.0	F INITIAL L CONDITION R AND D CO 95.0 5419.0	CONDITION DN COEFFICIENT 0 240.0 6149.0 0 5488.00	453.0 7347.0 5494.00	8000.0 5500.00				
**	45 RS 46 SV	*	COVE ********* HYDROGF STORA STO	* * * * Rou RAPH ROUT AGE ROUTI NSTPS ITYP RSVRIC X DRAGE ATION	ting throu ING DATA NG 1 ELEV 5545.50 .00 .0 3542.0 5470.00 5530.00	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00	F INITIAL CONDITION R AND D CONDITION 95.0 5419.0 5482.00 5542.00	CONDITION ON COEFFICIENT O 240.0 0 6149.0 0 5488.00 0 5548.00	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
**	45 RS 46 SV 48 SE	*	COVE ********* HYDROGF STORA STO	* * * * * * * * * * * * * * * * * * *	ting throu ING DATA NG 1 5545.50 .00 .0 3542.0 5470.00 5530.00 LET	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00	F INITIAL CONDITION R AND D CONDITION 95.6 5419.6 5482.06 5542.06	CONDITION ON	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
***	45 RS 46 SV 48 SE	*	COVE ********* HYDROGF STORA STO	* ****** ROU RAPH ROUTI NSTPS ITYP RSVRIC X DRAGE ATION .EVEL OUT ELEVL CAREA	ting throu ING DATA NG 1 ELEV 5545.50 .00 .0 3542.0 5470.00 5530.00 LET 5545.50 4.91	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-5	F INITIAL CONDITION R AND D COMPANY STATEMENT OF THE PROPERTY STATEMENT OF THE PROPERTY OF T	CONDITION ON	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
****	45 RS 46 SV 48 SE	*	COVE ********* HYDROGF STORA STO	* * * * * * * * * * * * * * * * * * *	ting throu ING DATA NG 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 LET 5545.50 4.91	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-'	F INITIAL L CONDITIC R AND D C 95.0 5419.0 5482.00 5542.00 ION AT CEN SECTIONAL	CONDITION IN COEFFICIENT 240.0 6149.0 5488.00 5548.00 ITER OF OUT AREA	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
**	45 RS 46 SV 48 SE	*	COVE ********* HYDROGF STORA STO	* ****** ROU RAPH ROUTI NSTPS ITYP RSVRIC X DRAGE ATION .EVEL OUT ELEVL CAREA	ting throu ING DATA NG 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 LET 5545.50 4.91	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-'	F INITIAL CONDITION R AND D COMPANY STATEMENT OF THE PROPERTY STATEMENT OF THE PROPERTY OF T	CONDITION IN COEFFICIENT 240.0 6149.0 5488.00 5548.00 ITER OF OUT AREA	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
**	45 RS 46 SV 48 SE	* * * *	COVE ********* HYDROGF STORA STO	* ****** ROUT AGE ROUTI NSTPS ITYP RSVRIC X ORAGE ATION LEVEL OUT ELEVL CAREA COQL EXPL	ting throu ING DATA NG 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 LET 5545.50 4.91	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-'	F INITIAL L CONDITIC R AND D C 95.0 5419.0 5482.00 5542.00 ION AT CEN SECTIONAL	CONDITION IN COEFFICIENT 240.0 6149.0 5488.00 5548.00 ITER OF OUT AREA	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
***	45 RS 46 SV 48 SE 50 SL	* * * *	COVE ********* HYDROGF STORA STO ELEVA LOW-L	* ****** ROUT AGE ROUTI NSTPS ITYP RSVRIC X ORAGE ATION LEVEL OUT ELEVL CAREA COQL EXPL	ting throu ING DATA NG 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 LET 5545.50 4.91 .60	NUMBER TYPE OI INITIAL WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFICE EXPONER	F INITIAL L CONDITIC R AND D C 95.0 5419.0 5482.00 5542.00 ION AT CEN SECTIONAL	CONDITION IN COEFFICIENT OF COEFFICI	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
***	45 RS 46 SV 48 SE 50 SL	* * * *	COVE ********* HYDROGF STORA STO ELEVA LOW-L	* * ****** ROUT AGE ROUTI NSTPS ITYP RSVRIC X DRAGE ATION EVEL OUT ELEVL CAREA COQL EXPL	ting throu ING DATA NG 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 LET 5545.50 4.91 .60 .50	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFII EXPONEI	F INITIAL CONDITIC R AND D C 95.6 5419.6 5542.06 5542.06 ION AT CENSECTIONAL CIENT NT OF HEAD	CONDITION IN COEFFICIENT OF 240.0 0 6149.0 0 5488.00 0 5548.00 UTER OF OUT AREA	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
***	45 RS 46 SV 48 SE 50 SL	* * * *	COVE ********* HYDROGF STORA STO ELEVA LOW-L	* * * * * * * * * * * * * * * * * * *	ting throu ING DATA NG 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 LET 5545.50 4.911 .60 .50	NUMBER TYPE OI INITIAL WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFILE EXPONE	F INITIAL L CONDITIC R AND D C 95.6 5419.6 5482.06 5542.06 ION AT CEM SECTIONAL CIENT NT OF HEAD AY CREST E AY WIDTH DEFFICIENT	CONDITION IN COEFFICIENT 240.0 9 6149.0 9 5488.00 5548.00 WITER OF OUT AREA	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
***	45 RS 46 SV 48 SE 50 SL	* * * *	COVE ********* HYDROGF STORA STO ELEVA LOW-L	* ****** ROUT AGE ROUTI NSTPS ITYP RSVRIC X DRAGE ATION LEVEL OUT ELEVL CAREA COQL EXPL LWAY CREL SPWID	ting throu ING DATA NG 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 LET 5545.50 4.911 .60 .50	NUMBER TYPE OI INITIAL WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFILE EXPONE	F INITIAL CONDITIC R AND D C 95.6 5419.6 5542.06 5542.06 ION AT CENSECTIONAL CIENT NT OF HEAD	CONDITION IN COEFFICIENT 240.0 9 6149.0 9 5488.00 5548.00 WITER OF OUT AREA	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
***	45 RS 46 SV 48 SE 50 SL	* * *	COVE ******** HYDROGF STORA STC ELEVA LOW-L	* ****** ROU RAPH ROUTI NSTPS ITYP RSVRIC X DRAGE ATION LEVEL OUT ELEVL CAREA COQL EXPL LWAY CREL SPWID COQW EXPW	ting throu ING DATA NG 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 LET 5545.50 4.911 .60 .50	NUMBER TYPE OI INITIAL WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFILE EXPONE	F INITIAL L CONDITIC R AND D C 95.6 5419.6 5482.06 5542.06 ION AT CEM SECTIONAL CIENT NT OF HEAD AY CREST E AY WIDTH DEFFICIENT	CONDITION IN COEFFICIENT 240.0 9 6149.0 9 5488.00 5548.00 WITER OF OUT AREA	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
**	45 RS 46 SV 48 SE 50 SL	* * *	COVE ******** HYDROGF STORA STC ELEVA LOW-L	* ****** ROUT AGE ROUTI AGE LEVEL OUT ELEVL CAREA COQL EXPL WAY CREL SPWID COQW EXPW OF DAM	ting throu ING DATA NG 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 LET 5545.50 4.91 .60 .50 5549.20 30.00 2.67 1.50	NUMBER TYPE OI INITIAL WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFIC EXPONER SPILLW WEIR CC EXPONER	FINITIAL CONDITIC R AND D C 95.6 5419.6 5482.06 5542.06 ION AT CENS SECTIONAL CIENT VT OF HEAD AY CREST E AY WIDTH DEFFICIENT VT OF HEAD	CONDITION IN COEFFICIENT OF COMMENT OF OUT AREA	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
**	45 RS 46 SV 48 SE 50 SL	* * *	COVE ******** HYDROGF STORA STC ELEVA LOW-L	* * * * * * * * * * * * *	ting throu ING DATA NG 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 LET 5545.50 4.91 .60 .50 5549.20 30.00 2.67 1.50	NUMBER TYPE OI INITIAL WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-S COEFFI EXPONEI SPILLW SPILLW WEIR C EXPONEI ELEVAT:	F INITIAL L CONDITION R AND D C 95.6 5419.6 5482.06 5542.06 ION AT CEN SECTIONAL CIENT NT OF HEAD AY CREST E AY WIDTH NT OF HEAD ION AT TOF	CONDITION IN COEFFICIENT OF COMMENT OF OUT AREA	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
**	45 RS 46 SV 48 SE 50 SL	* * *	COVE ******** HYDROGF STORA STC ELEVA LOW-L	******* ROU RAPH ROUTI NSTPS ITYP RSVRIC X DRAGE ATION LEVEL OUT ELEVL CAREA COQL EXPL LWAY CREL SPWID COQW EXPW DF DAM TOPEL DAMWID	ting throu ING DATA NG 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 LET 5545.50 4.91 .60 .50 30.00 2.67 1.50	NUMBER TYPE 01 INITIAL WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFIC EXPONEI SPILLW WEIR CC EXPONEI ELEVAT: DAM WIII	F INITIAL L CONDITIC R AND D C 95.0 5419.0 5542.00 5542.00 ION AT CENSECTIONAL LIENT NT OF HEAD AY CREST E AY WIDTH DEFFICIENT NT OF HEAD LON AT TOF	CONDITION IN COEFFICIENT 240.0 0 6149.0 0 5548.00 INTER OF OUT AREA	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
***	45 RS 46 SV 48 SE 50 SL	* * *	COVE ******** HYDROGF STORA STC ELEVA LOW-L	* ****** ROUT AGE ROUTI AGE ATION LEVEL OUT ELEVL CAREA COQL EXPL WAY CREL SPWID COQW EXPW DF DAM TOPEL DAMMID COQD	ting throu ING DATA NG 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 LET 5545.50 4.91 .60 .50 5549.20 30.00 2.67 1.50	NUMBER TYPE OI INITIAL WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFIC EXPONER SPILLW WEIR CC EXPONER ELEVAT: DAM WIE WEIR CC	FINITIAL CONDITIC R AND D C 95.6 5419.6 5482.06 5542.06 LON AT CENSECTIONAL CIENT VT OF HEAD AY CREST E AY WIDTH DEFFICIENT VT OF HEAD LON AT TOF DITH LON AT TOF LON	CONDITION IN COEFFICIENT 240.0 9 6149.0 9 5548.00 ITER OF OUT AREA	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				
***	45 RS 46 SV 48 SE 50 SL	* * *	COVE ******** HYDROGF STORA STC ELEVA LOW-L	******* ROU RAPH ROUTI NSTPS ITYP RSVRIC X DRAGE ATION LEVEL OUT ELEVL CAREA COQL EXPL LWAY CREL SPWID COQW EXPW DF DAM TOPEL DAMWID	ting throu ING DATA NG 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 LET 5545.50 4.91 .60 .50 5549.20 30.00 2.67 1.50	NUMBER TYPE OI INITIAL WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFIC EXPONER SPILLW WEIR CC EXPONER ELEVAT: DAM WIE WEIR CC	F INITIAL L CONDITIC R AND D C 95.0 5419.0 5542.00 5542.00 ION AT CENSECTIONAL LIENT NT OF HEAD AY CREST E AY WIDTH DEFFICIENT NT OF HEAD LON AT TOF	CONDITION IN COEFFICIENT 240.0 9 6149.0 9 5548.00 ITER OF OUT AREA	453.0 7347.0 5494.00 5552.00	8000.0 5500.00				

COMPUTED OUTFLOW-ELEVATION DATA

(EXCLUDING FLOW OVER DAM)

OUTFLOW .00 .00 25.78 27.48 29.42 31.65 34.25 37.31 40.98 45.44

ELEVATION	5470.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00	5548.51	5549.20
OUTFLOW	49.37	68.29	113.97	198.20	332.85	529.64	800.37	1156.85	1610.93	2174.46
ELEVATION	5549.32	5549.60	5550.06	5550.68	5551.48	5552.44	5553.58	5554.88	5556.36	5558.00

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA

(INCLUDING FLOW OVER DAM)

STORAGE	.00	19.00	95.00	240.00	453.00	738.00	1105.00	1563.00	2217.00	2773.00
OUTFLOW	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
ELEVATION	5470.00	5476.00	5482.00	5488.00	5494.00	5500.00	5506.00	5512.00	5518.00	5524.00
STORAGE	3542.00	4423.00	5419.00	5844.83	5989.79	6009.51	6033.57	6063.27	6100.64	6148.41
OUTFLOW	.00	.00	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31
ELEVATION	5530.00	5536.00	5542.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00
STORAGE	6301.53	6508.46	6543.56	6628.96	6765.11	6952.15	7190.23	7347.00	7395.04	7518.54
OUTFLOW	40.98	45.44	49.37	68.29	113.97	198.20	332.85	435.48	2138.72	11657.74
ELEVATION	5548.51	5549.20	5549.32	5549.60	5550.06	5550.68	5551.48	5552.00	5552.44	5553.58
STORAGE	7660.53	7821.02	8000.00							
OUTFLOW	27985.71	51484.63	82813.63							
ELEVATION	5554.88	5556.36	5558.00							

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

*****	***************************************																			
DA MOI	N HRMN	ORD	OUTFLOW	STORAGE	STAGE	* * C *	A MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE	*	DA	MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE
1	0000	1	0.	5844.8	5545.5	*	5	2100	118	26.	5992.5	5546.7	*	10		1800	235	34.	6094.7	5547.6
1	0100	2	1.	5845.2	5545.5		5	2200		27.	6002.1	5546.8				1900		34.	6093.2	5547.5
1	0200	3	2.	5846.1	5545.5		5	2300		28.	6015.3	5546.9				2000		34.	6091.6	5547.5
1	0300	4	3.	5847.1	5545.5		6	0000	121	31.	6057.0	5547.2				2100	238	34.	6090.1	5547.5
1	0400	5	4.	5848.0	5545.5	*	6	0100	122	35.	6109.3	5547.7	*	10		2200	239	33.	6088.5	5547.5
1	0500	6	4.	5848.9	5545.5	*	6	0200	123	37.	6136.7	5547.9	*	10		2300	240	33.	6087.0	5547.5
1	0600	7	5.	5849.8	5545.5	*	6	0300	124	37.	6151.5	5548.0	*	11		0000	241	33.	6085.6	5547.5
1	0700	8	5.	5850.7	5545.5	*	6	0400	125	38.	6161.0	5548.0				0100	242	33.	6083.6	5547.5
1	0800	9	6.	5851.5	5545.6		6	0500		38.	6167.9	5548.1				0200		33.	6081.1	5547.4
1	0900	10	6.	5852.3	5545.6		6	0600		38.	6173.4	5548.1				0300		33.	6078.5	5547.4
1	1000	11	6.	5853.0	5545.6		6	0700		38.	6178.0	5548.1				0400		33.	6075.9	5547.4
1	1100	12	6.	5853.8	5545.6		6	0800		38.	6181.8	5548.1				0500		32.	6073.3	5547.4
1	1200	13	7.	5854.6	5545.6		6	0900		38.	6185.0	5548.1				0600		32.	6070.6	5547.4
1	1300 1400	14 15	7.	5855.3 5856.1	5545.6		6 6	1000		38.	6187.8 6190.1	5548.1				0700 0800		32.	6068.1 6065.5	5547.3 5547.3
1 1	1500	16	7. 7.	5856.8	5545.6 5545.6		6	1100 1200		38. 38.	6192.1	5548.1 5548.1				0900		32. 32.	6063.0	5547.3
1	1600	17	8.	5857.5	5545.6		6	1300		38.	6193.9	5548.1				1000		31.	6060.5	5547.3
1	1700	18	8.	5858.3	5545.6		6	1400		38.	6195.5	5548.2				1100		31.	6058.0	5547.3
1	1800	19	8.	5858.9	5545.6		6	1500		39.	6196.8	5548.2				1200		31.	6055.5	5547.2
1	1900	20	8.	5859.6	5545.6		6	1600		39.	6198.0	5548.2				1300		31.	6053.0	5547.2
1	2000	21	8.	5860.2	5545.6		6	1700		39.	6199.0	5548.2				1400		31.	6050.6	5547.2
1	2100	22	9.	5860.9	5545.6	*	6	1800		39.	6199.9	5548.2	*	11		1500	256	31.	6048.1	5547.2
1	2200	23	9.	5861.6	5545.6	*	6	1900	140	39.	6200.6	5548.2	*	11		1600	257	30.	6045.7	5547.2
1	2300	24	9.	5862.2	5545.6	*	6	2000	141	39.	6201.2	5548.2	*	11		1700	258	30.	6043.3	5547.1
2	0000	25	9.	5862.9	5545.6	*	6	2100	142	39.	6201.6	5548.2	*	11		1800	259	30.	6040.9	5547.1
2	0100	26	9.	5863.5	5545.7		6	2200		39.	6201.9	5548.2				1900		30.	6038.5	5547.1
2	0200	27	9.	5864.2	5545.7		6	2300		39.	6202.2	5548.2				2000		30.	6036.1	5547.1
2	0300	28	10.	5864.8	5545.7		7	0000		39.	6202.4	5548.2				2100		29.	6033.7	5547.1
2	0400	29	10.	5865.4	5545.7		7	0100		39.	6202.4	5548.2				2200		29.	6031.4	5547.0
2	0500	30	10.	5866.0	5545.7		7	0200		39.	6202.4	5548.2				2300		29.	6029.1	5547.0
2	0600	31	10.	5866.6	5545.7		7 7	0300		39.	6202.2	5548.2				0000		29.	6026.8	5547.0
2	0700	32	10.	5867.2	5545.7		<i>,</i> 7	0400		39.	6202.1	5548.2				0100		29.	6024.5	5547.0
2 2	0800 0900	33 34	10. 10.	5867.8 5868.5	5545.7 5545.7		, 7	0500 0600		39. 39.	6201.8 6201.5	5548.2 5548.2				0200 0300		29. 28.	6022.2 6020.0	5547.0 5546.9
2	1000	35	11.	5869.1	5545.7		, 7	0700		39.	6201.3	5548.2				0400		28.	6017.7	5546.9
2	1100	36	11.	5869.7			, 7	0800		39.	6200.8	5548.2				0500		28.	6015.5	5546.9
2	1200	37	11.	5870.3	5545.7		<i>.</i> 7	0900		39.	6200.3	5548.2				0600		28.	6013.3	5546.9
2	1300	38	11.	5870.9	5545.7		7	1000		39.	6199.9	5548.2				0700		28.	6011.1	5546.9
2	1400	39	11.	5871.4	5545.7	*	7	1100	156	39.	6199.3	5548.2	*	12		0800	273	27.	6008.9	5546.8
2	1500	40	11.	5872.0	5545.7	*	7	1200	157	39.	6198.7	5548.2	*	12		0900	274	27.	6006.7	5546.8
2	1600	41	11.	5872.7	5545.7	*	7	1300	158	39.	6198.0	5548.2	*	12		1000	275	27.	6004.5	5546.8
2	1700	42	11.	5873.3	5545.7	*	7	1400	159	39.	6197.3	5548.2	*	12		1100	276	27.	6002.4	5546.8
2	1800	43	12.	5873.9	5545.7		7	1500		39.	6196.5	5548.2				1200		27.	6000.2	5546.8
2	1900	44	12.	5874.5	5545.7		7	1600		38.	6195.8	5548.2				1300		27.	5998.1	5546.8
2	2000	45	12.	5875.1	5545.7		7	1700		38.	6195.1	5548.2				1400		26.	5996.0	5546.7
2	2100	46	12.	5875.8	5545.8		7	1800		38.	6194.2	5548.2				1500		26.	5993.9	5546.7
2	2200	47	12.	5876.4			7	1900		38.	6193.3	5548.1				1600		26.	5991.9	5546.7
2	2300	48	12.	5877.1	5545.8		7	2000		38.	6192.4	5548.1				1700		26.	5989.8	5546.7
3	0000 0100	49 50	12. 12.	5877.7 5878.4	5545.8 5545.8		7 7	2100 2200		38. 38.	6191.6 6190.7	5548.1 5548.1				1800 1900		26. 25.	5987.8 5985.7	5546.7 5546.7
3	0200	51	13.	5879.1	5545.8		, 7	2300		38.	6189.7					2000		25.	5983.7	5546.6
3	0300	52	13.	5879.7	5545.8		8	0000		38.	6188.6	5548.1				2100		25.	5981.7	5546.6
3	0400	53	13.	5880.4	5545.8		8	0100		38.	6187.6	5548.1				2200		25.	5979.7	5546.6
3	0500	54	13.	5881.1	5545.8		8	0200		38.	6186.6	5548.1				2300		25.	5977.8	5546.6
3	0600	55	13.	5881.7	5545.8		8	0300		38.	6185.6	5548.1				0000		25.	5975.8	5546.6
3	0700	56	13.		5545.8		8	0400		38.	6184.5	5548.1				0100		24.	5973.9	5546.6
3	0800	57	13.	5883.0	5545.8	*	8	0500	174	38.	6183.4	5548.1	*	13		0200	291	24.	5972.0	5546.5

3	0900 58	13.	5883.7	5545.8 * 8	0600 175	38.	6182.2	5548.1 * 13	0300 292	24.	5970.1	5546.5
3	1000 59	13.	5884.4	5545.8 * 8	0700 176	38.	6181.0	5548.1 * 13	0400 293	24.	5968.2	5546.5
3	1100 60	14.	5885.1	5545.8 * 8	0800 177	38.	6179.9	5548.1 * 13	0500 294	24.	5966.3	5546.5
3	1200 61	14.	5885.8	5545.8 * 8	0900 178	38.	6178.7	5548.1 * 13	0600 295	23.	5964.4	5546.5
3	1300 62	14.	5886.5	5545.8 * 8	1000 179	38.	6177.4	5548.1 * 13	0700 296	23.	5962.6	5546.5
3	1400 63	14.	5887.3	5545.8 * 8	1100 180	38.	6176.2	5548.1 * 13	0800 297	23.	5960.7	5546.5
3	1500 64	14.	5888.1	5545.9 * 8	1200 181	38.	6175.0	5548.1 * 13	0900 298	23.	5958.9	5546.4
3	1600 65	14.	5888.8	5545.9 * 8	1300 182	38.	6173.7	5548.1 * 13	1000 299	23.	5957.1	5546.4
3	1700 66	14.	5889.6	5545.9 * 8	1400 183	38.	6172.4	5548.1 * 13	1100 300	23.	5955.3	5546.4
3	1800 67	14.	5890.3	5545.9 * 8	1500 184	38.	6171.1	5548.1 * 13	1200 301	22.	5953.5	5546.4
3	1900 68	15.	5891.1	5545.9 * 8	1600 185	38.	6169.8	5548.1 * 13	1300 302	22.	5951.8	5546.4
3	2000 69	15.	5891.9	5545.9 * 8	1700 186	38.	6168.5	5548.1 * 13	1400 303	22.	5950.0	5546.4
3	2100 70	15.	5892.7	5545.9 * 8	1800 187	38.	6167.1	5548.1 * 13	1500 304	22.	5948.3	5546.4
3	2200 71	15.	5893.5	5545.9 * 8	1900 188	38.	6165.8	5548.1 * 13	1600 305	22.	5946.6	5546.3
3	2300 72	15.	5894.4	5545.9 * 8	2000 189	38.	6164.5	5548.1 * 13	1700 306	21.	5944.9	5546.3
4	0000 73	15.	5895.2	5545.9 * 8	2100 190	38.	6163.2	5548.0 * 13	1800 307	21.	5943.2	5546.3
4	0100 74	15.	5896.1	5545.9 * 8	2200 191	38.	6161.9	5548.0 * 13	1900 308	21.	5941.5	5546.3
4	0200 75	15.	5897.0	5545.9 * 8	2300 192	38.	6160.4	5548.0 * 13	2000 309	21.	5939.9	5546.3
4	0300 76	16.	5897.9	5545.9 * 9	0000 193	38.	6158.9	5548.0 * 13	2100 310	21.	5938.2	5546.3
4	0400 77	16.	5898.8	5545.9 * 9	0100 194	38.	6157.5	5548.0 * 13	2200 311	21.	5936.6	5546.3
4	0500 78	16.	5899.8	5546.0 * 9	0200 195	38.	6156.0	5548.0 * 13	2300 312	20.	5935.0	5546.2
4	0600 79	16.	5900.7	5546.0 * 9	0300 196	37.	6154.6	5548.0 * 14	0000 313	20.	5933.4	5546.2
4	0700 80	16.	5901.7	5546.0 * 9	0400 197	37.	6153.1	5548.0 * 14	0100 314	20.	5931.8	5546.2
4	0800 81	16.	5902.8	5546.0 * 9	0500 198	37.	6151.6	5548.0 * 14	0200 315	20.	5930.3	5546.2
4	0900 82	16.	5903.8	5546.0 * 9	0600 199	37.	6150.2	5548.0 * 14	0300 316	20.	5928.7	5546.2
4	1000 83	17.	5904.8	5546.0 * 9	0700 200	37.	6148.6	5548.0 * 14	0400 317	19.	5927.2	5546.2
4	1100 84	17.	5905.9	5546.0 * 9	0800 201	37.	6147.2	5548.0 * 14	0500 318	19.	5925.6	5546.2
4	1200 85	17.	5907.0	5546.0 * 9	0900 202	37.	6145.7	5548.0 * 14	0600 319	19.	5924.1	5546.2
4	1300 86	17.	5908.1	5546.0 * 9	1000 203	37.	6144.2	5548.0 * 14	0700 320	19.	5922.7	5546.1
4	1400 87	17.	5909.2	5546.0 * 9	1100 204	37.	6142.7	5547.9 * 14	0800 321	19.	5921.2	5546.1
4	1500 88	17.	5910.4	5546.0 * 9	1200 205	37.	6141.2	5547.9 * 14	0900 322	19.	5919.7	5546.1
4	1600 89	18.	5911.7	5546.0 * 9	1300 206	37.	6139.6	5547.9 * 14	1000 323	18.	5918.3	5546.1
4	1700 90	18.	5912.9	5546.1 * 9	1400 207	37.	6138.1	5547.9 * 14	1100 324	18.	5916.8	5546.1
4	1800 91	18.	5914.2	5546.1 * 9	1500 208	37.	6136.5	5547.9 * 14	1200 325	18.	5915.4	5546.1
4	1900 92	18.	5915.6	5546.1 * 9	1600 209	36.	6135.0	5547.9 * 14	1300 326	18.	5914.0	5546.1
4	2000 93	18.	5917.0	5546.1 * 9	1700 210	36.	6133.4	5547.9 * 14	1400 327	18.	5912.6	5546.1
4	2100 94	18.	5918.4	5546.1 * 9	1800 211	36.	6131.9	5547.9 * 14	1500 328	17.	5911.3	5546.0
4	2200 95	19.	5919.9	5546.1 * 9	1900 212	36.	6130.3	5547.8 * 14	1600 329	17.	5909.9	5546.0
4	2300 96	19.	5921.5	5546.1 * 9	2000 213	36.	6128.7	5547.8 * 14	1700 330	17.	5908.5	5546.0
5	0000 97	19.	5923.1	5546.1 * 9	2100 214	36.	6127.2	5547.8 * 14	1800 331	17.	5907.2	5546.0
5	0100 98	19.	5924.7	5546.2 * 9	2200 215	36.	6125.7	5547.8 * 14	1900 332	17.	5905.9	5546.0
5	0200 99	19.	5926.5	5546.2 * 9	2300 216	36.	6124.1	5547.8 * 14	2000 333	17.	5904.6	5546.0
5	0300 100	20.	5928.4	5546.2 * 10	0000 217	36.	6122.6	5547.8 * 14	2100 334	16.	5903.3	5546.0
5	0400 101	20.	5930.3	5546.2 * 10	0100 218	36.	6121.0	5547.8 * 14	2200 335	16.	5902.0	5546.0
5	0500 102	20.	5932.3	5546.2 * 10	0200 219	35.	6119.5	5547.8 * 14	2300 336	16.	5900.8	5546.0
5	0600 103	20.	5934.4	5546.2 * 10	0300 220	35.	6117.9	5547.7 * 15	0000 337	16.	5899.5	5545.9
5	0700 104	21.	5936.6	5546.3 * 10	0400 221	35.	6116.4	5547.7 * 15	0100 338	16.	5898.3	5545.9
5	0800 105	21.	5938.9	5546.3 * 10	0500 222	35.	6114.8	5547.7 * 15	0200 339	15.	5897.1	5545.9
5	0900 106	21.	5941.3	5546.3 * 10	0600 223	35.	6113.2		0300 340	15.	5895.9	5545.9
5	1000 107	21.	5943.9	5546.3 * 10	0700 224	35.	6111.7	5547.7 * 15	0400 341	15.	5894.7	5545.9
5	1100 108	22.	5946.6	5546.3 * 10	0800 225	35.	6110.1	5547.7 * 15	0500 342	15.	5893.5	5545.9
5	1200 109	22.	5949.5	5546.4 * 10	0900 226	35.	6108.6	5547.7 * 15	0600 343	15.	5892.4	5545.9
5	1300 110	22.	5952.6	5546.4 * 10	1000 227	35.	6107.1	5547.7 * 15	0700 344	15.		5545.9
5	1400 111	23.	5956.0	5546.4 * 10	1100 228	35.	6105.5	5547.6 * 15	0800 345	14.		5545.9
5	1500 112	23.	5959.7	5546.4 * 10	1200 229	34.	6104.0	5547.6 * 15	0900 346	14.	5889.0	5545.9
5	1600 113	23.	5963.6	5546.5 * 10	1300 230	34.	6102.4		1000 347	14.	5888.0	5545.9
5	1700 114	24.	5968.0	5546.5 * 10	1400 231	34.	6100.9	5547.6 * 15	1100 348	14.	5886.9	5545.8
5	1800 115	24.	5973.0	5546.6 * 10	1500 232	34.	6099.4	5547.6 * 15	1200 349	14.	5885.8	5545.8
5	1900 116	25.	5978.5	5546.6 * 10	1600 233	34.	6097.8	5547.6 * 15	1300 350	14.	5884.8	5545.8
5	2000 117	25.	5984.9	5546.7 * 10	1700 234	34.	6096.2	5547.6 *				
				*				*				

PEAK OUTFLOW IS 39. AT TIME 144.00 HOURS

1

	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
				6-HR	24-HR	72-HR	349.00-HR
+	(CFS)	(HR)					
			(CFS)				
+	39.	144.00		39.	39.	38.	25.
			(INCHES)	.000	.000	.000	.000
			(AC-FT)	19.	77.	228.	718.
Р	EAK STORAGE	TIME			MAXIMUM AVER	AGE STORAGE	
				6-HR	24-HR	72-HR	349.00-HR
+	(AC-FT)	(HR)					
	6202.	144.00		6202.	6200.	6186.	6010.
	PEAK STAGE	TIME			MAXIMUM AVE	PAGE STAGE	
	FLAK STAGE	TIME		6-HR	24-HR	72-HR	349.00-HR
+	(FEET)	(HR)		O TIIK	24 1110	72 III	343.00 TIK
•	5548.18	144.00		5548.18	5548.17	5548.13	5546.82
	3340.10	1		3343.10	3343.17	55-0.15	3340.02
			CUMULATI	/E AREA =	.00 SQ MI		

OPERATION	STATION	AREA PLA	N	RATIO 1 1.00	OS APPLIED TO PREC	IPITATION
HYDROGRAPH AT +	Cove	.00 1	FLOW TIME	850. 120.00		
ROUTED TO						
+	Cove	.00 1		39.		
			TIME	144.00		
		*	* PEAK STAG	ES IN FEET **	*	
		1	STAGE	5548.18		
			TIME	144.00		
1					REACH ANALYSIS FOR	
		(PEAKS SHO	WN ARE FOR	INTERNAL TIME	E STEP USED DURING	G BREACH FORMATION)
PLAN 1 .			INIT	IAL VALUE	SPILLWAY CREST	TOP OF DAM
		ELEVATI	ON 5:	545.50	5549.20	5552.00
		STORAGE		5845.	6508.	7347.

	STORAGE OUTFLOW	5545 58	45. 0.	5549.20 6508. 45.		552.00 7347. 435.	
RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	5548.18	.00	6202.	39.	.00	144.00	.00

^{***} NORMAL END OF HEC-1 ***

Storm Event 13. Local Auxiliary Spillway Hydrograph

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

PAGE 1

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

HEC-1 INPUT

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE ID.....1....2....3....4....5....6....7....8....9....10 HYDROLOGY STUDY for COVE RESERVOIR 1 TD Located in KANE COUNTY, UTAH 2 ID ID TD AUG 2020 5 ID ID PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 TD 8 ID 10 11 ID ID FAX: (435) 628-6553 12 Local ASH 13 ID 14 JR PREC 18 0 15 ΙT 0 0 100 16 IO 17 IN 18 18 KK R1 19 20 KM Runoff from Basin 1 ВА 0.503 PB PC 21 4.09 22 0.020 0.046 0.070 0.095 0.130 0.180 0.300 0.520 0.650 0 23 PC 0.700 0.745 0.785 0.820 0.850 0.905 0.930 0.955 0.980 0.880 24 PC 1.000 25 15 a 72.8 26 0.51 UD 27 KK RB1 28 KM Route B1 29 RD .045 .050 4928 TRAP 20 20 30 KK B2 Runoff from Basin 2 31 KM 32 ВА 0.436 LS 72.5 33 34 0.52 UD 35 KK 36 37 KM BA Runoff from Basin 3 0.279 38 LS 39 UD 0.39 HEC-1 INPUT PAGE 2

1

1

LINE ID....1....2....3.....4....5....6....7....8....9....10

```
40
41
42
                KK
KM
HC
                      C1
Combine RB1, B2, B3
                KK
KM
RD
  43
                       RC1
 44
45
                      Route RC1
7255 .060
                                        .030
                                                             TRAP
                                                                                 20
                                                                        20
  46
                 KK
 47
48
49
                KM
BA
LS
                       Runoff from Basin 4
                       0.453
                                 73.3
                        0.48
  50
                 UD
                KK
KM
BA
LS
  51
52
53
54
55
                      Runoff from Basin 5
                                 74.1
                        0
0.63
                 UD
  56
                 KK
                KM
HC
*
  57
58
                       Combine RC1, B4, B5
                      RC2
Route C2
2380 .039
  59
60
                 KK
KM
  61
                 RD
                                                             TRAP
                                                                        40
                                                                                  2
                KM
BA
LS
 63
64
65
                       Runoff from Basin 6
                       0.150
                                 84.3
                        0.19
                UD
*
  66
 67
68
69
70
71
                 KK
KM
                       Runoff from Basin 7
                BA
LS
                      0.327
                                75.7
                UD
*
                        0.46
  72
                 KK
                KM
HC
*
  73
74
                       Combine RC2, B6, B7
                          3
                                                   HEC-1 INPUT
                                                                                                                    PAGE 3
LINE
                 ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
  75
                 KK
                       RC3
  76
77
                KM
RD
                       Route C3
                                       .030
                      11323 .023
                                                            TRAP
                                                                                 20
                                                                        40
  78
79
80
                 KK
KM
                       В8
                       Runoff from Basin 8
                BA
LS
                       1.012
                                 84.0
  81
                        0
0.67
                 UD
                 KK
                KM
BA
                      Runoff from Basin 9
 84
85
                      0.242
  86
87
                LS
UD
*
                       0.26
                                 85.5
 88
89
                 KK
                       B10
                 KM
                       Runoff from Basin 10
                 ВА
                       0.129
  91
92
                                 86.7
                LS
UD
                        0
0.18
  93
                 KK
                KM
HC
*
                       Combine B9, B10
  95
  96
                 KK
                       RC4
                 KM
  97
                       Route C4
                                .037
                                          .030
                                                             TRAP
                                                                        40
                                                                                 20
```

```
99
                               B11
            100
                               Runoff from Basin 11
            101
                          ВА
                               0.279
                          LS
            102
                                        84.8
            103
                          UD
                                0.39
            104
                          KK
                               Combine RC3, B8, RC4, B11
            105
                          KM
                          HC
            106
            107
                          KK
                               B12
            108
                          KM
                               Runoff from Basin 12
            109
                          ВΔ
                               0.127
                          LS
                                        81.2
            110
            111
                          UD
                                0.40
                                                        HEC-1 INPUT
                                                                                                                 PAGE 4
                          {\tt ID}.\dots..1\dots..2\dots..3\dots..4\dots..5\dots..6\dots..7\dots..8\dots..9\dots..10
           LINE
            112
                               Call
                          KK
                               Combine C5, B12
            113
                          KM
            114
                          HC
*
                          KK
KM
            115
                               Cove Reservoir
                               Routing through Res'v
            116
            117
                          RS
                                       ELEV
                                             5545.5
                          SV
SV
            118
                                   a
                                         19
                                                  95
                                                         240
                                                                 453
                                                                         738
                                                                                1105
                                                                                         1563
                                                                                                 2217
                                                                                                         2773
                                3542
                                        4423
                                                5419
                                                        6149
                                                                 7347
            119
                                                                         8000
            120
                          SE
                                5470
                                        5476
                                                 5482
                                                         5488
                                                                 5494
                                                                                                 5518
                                                                                                         5524
                          SE
SL
SS
            121
                                5530
                                        5536
                                                5542
                                                        5548
                                                                 5552
                                                                         5558
                              5545.5
            122
                                       4.909
                                                 0.6
                                                         0.5
                              5549.2
                                                 2.67
            124
                          ST
*
                              5552.0
                                        1892
                                                 2.9
                                                         1.5
FLOOD HYDROGRAPH PACKAGE (HEC-1)
                                                                                                   U.S. ARMY CORPS OF ENGINEERS
                                                                                                   HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
                JUN 1998
              VERSION 4.1
                                                                                                      DAVIS, CALIFORNIA 95616
    RUN DATE 06AUG20 TIME 02:58:03
                                                                                                         (916) 756-1104
 **************
                                                                                              ************
                            HYDROLOGY STUDY for COVE RESERVOIR
                            Located in KANE COUNTY, UTAH
                            AUG 2020
                            PREPARED BY ALPHA ENGINEERING
                            43 SOUTH 100 EAST, SUITE 100
ST. GEORGE, UTAH 84770
TEL: (435) 628-6500
FAX: (435) 628-6553
                            Local ASH
   16 IO
                  OUTPUT CONTROL VARIABLES
                                        0 PRINT CONTROL
                        IPRNT
```

```
IPLOT
                                    0 PLOT CONTROL
                                   0. HYDROGRAPH PLOT SCALE
                   QSCAL
            HYDROGRAPH TIME DATA
IT
                   NMIN
                                  18 MINUTES IN COMPUTATION INTERVAL
                                   0 STARTING DATE
00 STARTING TIME
                   IDATE
                   ITIME
                                 0000
                                 100
                                       NUMBER OF HYDROGRAPH ORDINATES
                     NQ
                  NDDATE
                                      ENDING DATE
ENDING TIME
                                    0
                  NDTIME
                                 0542
                                   19 CENTURY MARK
              COMPUTATION INTERVAL
                                          .30 HOURS
                    TOTAL TIME BASE
                                       29.70 HOURS
     ENGLISH UNITS
          DRAINAGE AREA
                                  SQUARE MILES
          PRECIPITATION DEPTH
                                 INCHES
FEET
          LENGTH, ELEVATION
          FLOW
STORAGE VOLUME
                                  CUBIC FEET PER SECOND
```

ACRE-FEET

SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION

NPLAN

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION
RATIOS OF PRECIPITATION
1.00

*** ***

*********** * * Call * * * * *

Combine C5, B12

114 HC HYDROGRAPH COMBINATION

ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION Call SUM OF 2 HYDROGRAPHS PLAN 1, RATIO = 1.00

*****	****	****	*****	******	****	****	*******	****	*******	***	****	*****	*****	*******	****	*****	******	****	******
					*					*					*				
DA	MON HI	RMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA	MON HRMI	N ORD	FLOW	*	DA N	MON HRMN	ORD	FLOW
					*					*					*				
1	00	000	1	0.	*	1	0730	26	180.	*	1	150	51	0.	*	1	2230	76	0.
1	00	018	2	0.	*	1	0748	27	112.	*	1	151	3 52	0.	*	1	2248	77	0.
1	00	036	3	0.	*	1	0806	28	73.	*	1	153	5 53	0.	*	1	2306	78	0.
1	00	054	4	0.	*	1	0824	29	47.	*	1	155	1 54	0.	*	1	2324	79	0.
1	0:	112	5	0.	*	1	0842	30	28.	*	1	161	2 55	0.	*	1	2342	80	0.
1	0:	130	6	6.	*	1	0900	31	16.	*	1	163	56	0.	*	2	0000	81	0.
1	0:	148	7	39.	*	1	0918	32	9.	*	1	164	3 57	0.	*	2	0018	82	0.
1	0	206	8	194.	*	1	0936	33	5.	*	1	170	5 58	0.	*	2	0036	83	0.
1	0	224	9	687.	*	1	0954	34	3.	*	1	172	1 59	0.	*	2	0054	84	0.
1	0:	242	10	1365.	*	1	1012	35	1.	*	1	174	2 60	0.	*	2	0112	85	0.
1	0	300	11	2027.	*	1	1030	36	1.	*	1	180	61	0.	*	2	0130	86	0.
1	0	318	12	2180.	*	1	1048	37	0.	*	1	181	62	0.	*	2	0148	87	0.
1	0	336	13	1955.	*	1	1106	38	0.	*	1	183	63	0.	*	2	0206	88	0.
1	0	354	14	1683.	*	1	1124	39	0.	*	1	185	1 64	0.	*	2	0224	89	0.
1	04	412	15	1441.	*	1	1142	40	0.	*	1	191	2 65	0.	*	2	0242	90	0.
1	04	430	16	1248.	*	1	1200	41	0.	*	1	193	66	0.	*	2	0300	91	0.
1	04	448	17	1107.	*	1	1218	42	0.	*	1	194	67	0.	*	2	0318	92	0.
1	0	506	18	1001.	*	1	1236	43	0.	*	1	200	68	0.	*	2	0336	93	0.
1	0	524	19	924.	*	1	1254	44	0.	*	1	202	1 69	0.	*	2	0354	94	0.
1	0	542	20	874.	*	1	1312	45	0.	*	1	204	70	0.	*	2	0412	95	0.
1	0	600	21	833.	*	1	1330	46	0.	*	1	210	71	0.	*	2	0430	96	0.
1	0	618	22	748.	*	1	1348	47	0.	*	1	211	3 72	0.	*	2	0448	97	0.
1	0	636	23	589.	*	1	1406	48	0.	*	1	213	5 73	0.	*	2	0506	98	0.
1	0	654	24	423.	*	1	1424	49	0.	*	1	215	1 74	0.	*	2	0524	99	0.
1	0	712	25	283.	*	1	1442	50	0.	*	1	221	2 75	0.	*	2	0542	100	0.
					-					-					-				

MAXIMUM AVERAGE FLOW PEAK FLOW TIME 29.70-HR 6-HR 24-HR 72-HR (CFS) (HR) (CFS) 991. 251. 203. 203. 2180. 3.30 (INCHES) 1.943 491. 1.969 1.969 1.969 (AC-FT) 498. 498. 498.

CUMULATIVE AREA = 4.74 SQ MI

*** ***

*

115 KK * Cove * Reservoir

Routing through Res'v

HYDROGRAPH ROUTING DATA

117 RS	S	TORAGE ROUT NSTPS ITYP RSVRIC X	1 ELEV 5545.50	TYPE OF INITIAL	OF SUBREACH INITIAL CO CONDITION R AND D COE	NDITION						
118 SV		STORAGE	.0 3542.0	19.0 4423.0	95.0 5419.0	240.0 6149.0	453.0 7347.0	738.0 8000.0	1105.0	1563.0	2217.0	2773.0
120 SE	Е	LEVATION	5470.00 5530.00	5476.00 5536.00	5482.00 5542.00	5488.00 5548.00	5494.00 5552.00	5500.00 5558.00	5506.00	5512.00	5518.00	5524.00
122 SL	L	OW-LEVEL OU ELEVL CAREA COQL EXPL		CROSS-SE COEFFICE	ON AT CENTE ECTIONAL AR EENT OF HEAD		Τ					
123 SS	S	PILLWAY CREL SPWID COQW EXPW	5549.20 30.00 2.67 1.50	SPILLWAY WEIR COE	/ CREST ELE / WIDTH EFFICIENT T OF HEAD	VATION						
124 ST	Ti	OP OF DAM TOPEL DAMWID COQD EXPD	5552.00 1892.00 2.90 1.50	DAM WIDT WEIR COE	ON AT TOP O TH EFFICIENT T OF HEAD	F DAM						

				(OMPUTED OU			А				
	OUTFLO	اما د	.00	25.78	•	G FLOW OVE 29.42		5 34.2	5 37.31	40.98	3 45.44	
	ELEVATIO											
	OUTFLO ELEVATIO			113.97 5550.06								
				COMPL	JTED STORAG	E-OUTFLOW-	ELEVATION	DATA				
					(INCLUDIN	G FLOW OVE	R DAM)					
	STORAG OUTFLO ELEVATIO	W .6	19.00 30 .00 30 5476.00	95.06 .06 5482.06	.00	.00	.0	0.0	0 .00	.00	.00	
	STORAG OUTFLO ELEVATIO	W .6	.00	5419.00 .00 5542.00	.00		27.4	8 29.4	2 31.65	34.25	37.31	
	STORAG OUTFLO ELEVATIO	W 40.9	98 45.44	6543.56 49.37 5549.32	68.29	113.97	198.2	0 332.8	5 435.48	2138.72	2 11657.74	
	STORAG OUTFLO ELEVATIO	W 27985.7	71 51484.63	82813.63	3							
*****	******	******	*******	******	******	******	******	******	******	******	*******	******
					HYDROGRAPH	AT STATIO						
*****	******	******	******	******				******	******	******	******	******
DA MON	HRMN ORD	OUTFLOW ST	ΓORAGE STA	* GE * DA MO	ON HRMN ORD	OUTFLOW	STORAGE	STAGE *	DA MON HRMN	ORD OUT	FLOW STORAG	E STAGE
1 1	0000 1 0018 2		5844.8 5545 5844.8 5545		1012 35 1030 36			5548.6 * 5548.6 *		69 70		1 5548.5 1 5548.4
1	0036 3	0.	5844.8 5545	.5 * 1	1048 37	41.	6316.9	5548.6 *	1 2100	71	41. 6282.	1 5548.4
1 1	0054 4 0112 5		5844.8 5545 5844.8 5545		1106 38 1124 39			5548.6 * 5548.6 *		72 73		1 5548.4 0 5548.4
1 1	0130 6 0148 7		5844.9 5545 5845.4 5545		1142 40 1200 41			5548.6 * 5548.5 *				0 5548.4 0 5548.4
1	0206 8	4.	5848.3 5545	.5 * 1	1218 42	41.	6311.8	5548.5 *	1 2230	76	40. 6277.	0 5548.4
1 1	0224 9 0242 10		5859.1 5545 5884.3 5545		1236 43 1254 44			5548.5 * 5548.5 *				9 5548.4 9 5548.4
1	0300 11	19.	5925.9 5546	.2 * 1	1312 45	41.	6308.7	5548.5 *	1 2324	79	40. 6273.	9 5548.4
1 1	0318 12 0336 13		5977.5 5546 5028.2 5547		1330 46 1348 47			5548.5 * 5548.5 *		80 81		9 5548.4 8 5548.4
1	0354 14	32. 6	5072.5 5547	.4 * 1	1406 48	41.	6305.6	5548.5 *	2 0018	82	40. 6270.	8 5548.4
1 1	0412 15 0430 16		5110.4 5547 5142.7 5547		1424 49 1442 50			5548.5 * 5548.5 *				8 5548.4 8 5548.4
1	0448 17	38. 6	5170.9 5548	.1 * 1	1500 51	41.	6302.6	5548.5 *	2 0112	85	40. 6267.	7 5548.4
1 1	0506 18 0524 19	39. 6	5196.1 5548 5219.0 5548	.2 * 1	1518 52 1536 53	41.	6300.5	5548.5 * 5548.5 *	2 0148	87	40. 6265.	7 5548.4 7 5548.4
1	0542 20	40.	5240.4 5548	.3 * 1	1554 54	41.	6299.5	5548.5 *	2 0206	88	40. 6264.	7 5548.4

1	0600	21	40.	6260.6	5548.4 *	1	1612	55	41.	6298.5	5548.5 *	2	0224	89	40.	6263.7	5548.4
1	0618	22	40.	6279.2	5548.4 *	1	1630	56	41.	6297.4	5548.5 *	2	0242	90	40.	6262.6	5548.4
1	0636	23	41.	6294.7	5548.5 *	1	1648	57	41.	6296.4	5548.5 *	2	0300	91	40.	6261.6	5548.4
1	0654	24	41.	6306.2	5548.5 *	1	1706	58	41.	6295.4	5548.5 *	2	0318	92	40.	6260.6	5548.4
1	0712	25	41.	6314.0	5548.6 *	1	1724	59	41.	6294.4	5548.5 *	2	0336	93	40.	6259.6	5548.4
1	0730	26	41.	6318.6	5548.6 *	1	1742	60	41.	6293.3	5548.5 *	2	0354	94	40.	6258.5	5548.4
1	0748	27	41.	6321.3	5548.6 *	1	1800	61	41.	6292.3	5548.5 *	2	0412	95	40.	6257.5	5548.4
1	0806	28	41.	6322.6	5548.6 *	1	1818	62	41.	6291.3	5548.5 *	2	0430	96	40.	6256.5	5548.4
1	0824	29	41.	6323.0	5548.6 *	1	1836	63	41.	6290.3	5548.5 *	2	0448	97	40.	6255.5	5548.4
1	0842	30	41.	6322.9	5548.6 *	1	1854	64	41.	6289.2	5548.5 *	2	0506	98	40.	6254.4	5548.4
1	0900	31	41.	6322.4	5548.6 *	1	1912	65	41.	6288.2	5548.5 *	2	0524	99	40.	6253.4	5548.3
1	0918	32	41.	6321.7	5548.6 *	1	1930	66	41.	6287.2	5548.5 *	2	0542	100	40.	6252.4	5548.3
1	0936	33	41.	6320.8	5548.6 *	1	1948	67	41.	6286.2	5548.5 *						
1	0954	34	41.	6320.0	5548.6 *	1	2006	68	41.	6285.1	5548.5 *						
					*						*						

PEAK OUTFLOW IS 41. AT TIME 8.40 HOURS

	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
				6-HR	24-HR	72-HR	29.70-HR
+	(CFS)	(HR)					
			(CFS)				
+	41.	8.40		41.	41.	36.	36.
			(INCHES)	.081	.319	.353	.353
			(AC-FT)	20.	81.	89.	89.
P	EAK STORAGE	TIME			MAXIMUM AVER	AGE STORAGE	
•	LAK STORAGE	11111		6-HR	24-HR	72-HR	29.70-HR
+	(AC-FT)	(HR)		0	2	,	23170 1
	6323.	8.40		6317.	6290.	6230.	6230.
	PEAK STAGE	TIME			MAXIMUM AVE	RAGE STAGE	
				6-HR	24-HR	72-HR	29.70-HR
+	(FEET)	(HR)					
	5548.58	8.40		5548.56	5548.47	5548.10	5548.10
			CUMUL ATT	/F ADEA -	4 74 CO MT		

CUMULATIVE AREA = 4.74 SQ MI

1

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN		RATIOS APPLIED TO PRECIPITATION RATIO 1 1.00
HYDROGRAPH AT +	B1	.50	1	FLOW TIME	221. 3.00
ROUTED TO +	RB1	.50	1	FLOW TIME	215. 3.30
HYDROGRAPH AT +	В2	.44	1	FLOW TIME	187. 3.00
HYDROGRAPH AT +	В3	.28	1	FLOW TIME	116. 3.00
3 COMBINED AT +	C1	1.22	1	FLOW TIME	493. 3.00
ROUTED TO +	RC1	1.22	1	FLOW TIME	478. 3.30
HYDROGRAPH AT +	В4	.45	1	FLOW TIME	209. 3.00
HYDROGRAPH AT +	В5	.81	1	FLOW TIME	334. 3.00
3 COMBINED AT +	C2	2.48	1	FLOW TIME	983. 3.30
ROUTED TO +	RC2	2.48	1	FLOW TIME	977. 3.30

HYDROGRAPH AT

+	ı	В6	.15	1 FLOW TIME								
HYDROGRAPI +		B7	.33	1 FLOW TIME								
3 COMBINI +		C3	2.95	1 FLOW TIME								
ROUTED TO +		RC3	2.95	1 FLOW TIME								
HYDROGRAPI +		B8	1.01	1 FLOW TIME								
HYDROGRAPI +		В9	.24	1 FLOW TIME								
HYDROGRAPI +		B10	.13	1 FLOW TIME								
2 COMBINI +		C4	.37	1 FLOW TIME								
ROUTED TO		RC4	.37	1 FLOW TIME								
HYDROGRAPI +		B11	.28	1 FLOW TIME								
4 COMBINI +		C5	4.61	1 FLOW TIME	2118.							
HYDROGRAPI +		B12	.13	1 FLOW TIME	90.							
2 COMBINI +		Call	4.74	1 FLOW	2180.							
ROUTED TO		Cove	4.74	1 FLOW	41.							
					STAGES IN FEET E 5548.58	**						
1				SUMM	ARY OF KINEMAT (FLOW IS DIREC							
	ISTAQ	ELEMENT	DT	PEAK	TIME TO PEAK	VOLUME	DT	COMPUTATION PEAK		VOLUME		
			(MIN)	(CFS) (MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
	FOR PLAN RB1	= 1 RATI MANE	0= .00 3.60	218.4	7 194.40	1.58	18.00	214.54	198.00	1.58		
CONTINUITY	Y SUMMARY	(AC-FT) -	INFLOW=	.4234E+02	EXCESS= .0000	E+00 OUTF	LOW= .4236	6E+02 BASIN	STORAGE=	.4004E-02 PERCENT	ERROR=	1
	FOR PLAN RC1	= 1 RATI MANE	0= .00 3.60	494.09	9 190.80	1.54	18.00	478.26	198.00	1.53		
CONTINUIT	Y SUMMARY	(AC-FT) -	INFLOW=	.1002E+03	EXCESS= .0000	E+00 OUTF	LOW= .100	2E+03 BASIN	STORAGE=	.2965E-02 PERCENT	ERROR=	.0
	FOR PLAN RC2	= 1 RATI MANE	0= .00 2.55	978.4	8 199.17	1.59	18.00	977.20	198.00	1.60		
CONTINUITY	Y SUMMARY	(AC-FT) -	INFLOW=	.2103E+03	EXCESS= .0000	E+00 OUTF	LOW= .2103	3E+03 BASIN	STORAGE=	.2799E-02 PERCENT	ERROR=	.0
	FOR PLAN RC3	= 1 RATI MANE		1186.64	4 208.80	1.66	18.00	1135.13	198.00	1.66		

CONTINUITY SUMMARY (AC-FT) - INFLOW= .2617E+03 EXCESS= .0000E+00 OUTFLOW= .2619E+03 BASIN STORAGE= .9925E-02 PERCENT ERROR= .1

FOR PLAN = 1 RATIO= .00 RC4 MANE 5.40 361.92 167.40 2.62 18.00 354.00 162.00 2.62

CONTINUITY SUMMARY (AC-FT) - INFLOW= .5187E+02 EXCESS= .0000E+00 OUTFLOW= .5189E+02 BASIN STORAGE= .2315E-02 PERCENT ERROR= .0

SUMMARY OF DAM OVERTOPPING/BREACH ANALYSIS FOR STATION Cove (PEAKS SHOWN ARE FOR INTERNAL TIME STEP USED DURING BREACH FORMATION)

PLAN	1	ELEVATION	INITIAL 5545	.50	SPILLWAY CR 5549.20		OF DAM 552.00	
		STORAGE OUTFLOW	58	45. 0.	6508. 45.		7347. 435.	
	RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
	1.00	5548.58	.00	6323.	41.	.00	8.40	.00

^{***} NORMAL END OF HEC-1 ***

Storm Event 14. General Auxiliary Spillway Hydrograph

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

DAVIS, CALIFORNIA 95616

Χ	Х	XXXXXX	XXX	XXX		Х
Χ	Х	X	Χ	Х		XX
Χ	Х	X	Χ			Х
XXXX	(XXX	XXXX	Χ		XXXXX	Χ
Χ	Χ	X	Χ			Х
Χ	Х	X	Χ	Х		Х
Χ	Х	XXXXXX	XXXXX			XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

					HEC-1	INPUT						PAGE 1	
LINE	ID.	1.	2	3	4	5	6	7	8.	9	10		
1	ID	HYDROLO	OGY STUDY	for COV	'E RESERV	OIR							
2	ID		d in KANE										
3	ID			-									
4	ID	AUG 202	20										
5	ID	7.00 201											
6	ID	DDEDAD	D BY ALP	UA ENGTA	EEDTNG								
7	ID		TH 100 EA										
8	ID		ORGE, UTA		,								
9	ID		135) 628-										
10	ID	FAX: (4	135) 628-	6553									
11	ID												
12	ID	Genera.	L ASH (NE	H)									
13	ID *												
14	JR	PREC	1.0										
15	IT	12	0	0	200								
16	IO	0											
17	IN *	12											
18	QI	0	0	0	0	0	0	0	0	0	0		
19	QI	0	0	0	0	0	0	0	0	0	0		
20	QI	0	0	0	0	0	0		0	0	0		
								0					
21	QI	0	0	2	11	35	83	155	249	357	473		
22	QI	589	701	807	907	999	1084	1163	1234	1300	1359		
23	QI	1414	1464	1510	1552	1590	1626	1658	1689	1716	1742		
24	QI	1766	1764	1708	1564	1350	1117	898	713	581	489		
25	QI	423	374	339	314	296	283	274	267	263	259		
26	QI	257	255	254	253	253	253	253	253	254	254		
27	QI	254	253	251	244	236	226	218	210	205	201		
28	QI	199	197	196	195	194	194	194	193	193	193		
29	QΙ	193	193	193	193	193	194	194	194	194	194		
30	QΊ	194	191	182	163	136	107	80	57	41	29		
31	QΊ	21	15	11	8	6	4	3	2	1	1		
32	QI *	1			-				_	_	_		
33	KK	Cove Re	eservoir										
34	KM	Routing	g through	Res'v									
35	RS	1 `		5545.5									
36	SV	0	19	95	240	453	738	1105	1563	2217	2773		
37	SV	3542	4423	5419	6149	7347	8000						
38	SE	5470	5476	5482	5488	5494	5500	5506	5512	5518	5524		
39	SE	5530	5536	5542	5548	5552	5558	3300	3312	3310	3324		
40		5545.5	4.909	0.6	0.5	3332	3330						
41	SS	5549.2	30										
42	ST	5552.0	1892	2.67 2.9	1.5 1.5								
43	* ZZ												
********		******	****								******	*******	**
*			*							*			*
* FLOOD HYDROGRAPH PA * JUN :	ACKAGE 1998	(HEC-1)) * *									RPS OF ENGINEERS NGINEERING CENTER	*
* VERSION 4			*						:	*		COND STREET	,
*			*							* _		TEORNIA 05616	5

HYDROLOGY STUDY for COVE RESERVOIR Located in KANE COUNTY, UTAH

AUG 2020

PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 FAX: (435) 628-6553

General ASH (NEH)

16 IO OUTPUT CONTROL VARIABLES

IPRNT 0 PRINT CONTROL
IPLOT 0 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

IT HYDROGRAPH TIME DATA

NMIN 12 MINUTES IN COMPUTATION INTERVAL

IDATE 1 0 STARTING DATE
ITIME 0000 STARTING TIME

NQ 200 NUMBER OF HYDROGRAPH ORDINATES

NDDATE 2 0 ENDING DATE
NDTIME 1548 ENDING TIME
ICENT 19 CENTURY MARK

COMPUTATION INTERVAL .20 HOURS TOTAL TIME BASE 39.80 HOURS

ENGLISH UNITS

DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH INCHES

LENGTH, ELEVATION FEET

FLOW CUBIC FEET PER SECOND

STORAGE VOLUME ACRE-FEET

SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION
RATIOS OF PRECIPITATION

1.00

1.00

17 IN TIME DATA FOR INPUT TIME SERIES

JXMIN 12 TIME INTERVAL IN MINUTES
JXDATE 1 0 STARTING DATE

JXTIME 1 0 STARTING DATE

JXTIME 0 STARTING TIME

JXIIME 0 STARTING TIME

SUBBASIN RUNOFF DATA

0 BA SUBBASIN CHARACTERISTICS

TAREA .00 SUBBASIN AREA

HYDROGRAPH AT STATION Cove DA MON HRMN ORD FLOW 0000 1000 101 0600 0012 0. 1012 52 1464. 1 2012 102 197. 0612 152 1. 1510. 0024 1024 53 2024 103 196. 0624 153 0. 1. 2036 0636 0036 1036 54 1552. 104 195. 1048 1100 55 56 105 106 0048 0. 1590. 2048 194. 2 0648 155 0100 2100 194. 0700 156 6 1626. 0. 1112 1658. 107 0712 0124 8 0. 1124 1136 58 1689. 2124 108 193. 2 0724 158 59 1716. 109 0736 0136 2136 193. 159 0. 0148 1148 1742. 2148 0748 1 0200 11 0. 1200 61 1766. 2200 111 193. 2 0800 161 0212 1764. 1212 0812 162 12 0. 62 2212 112 193. 1. 0224 1224 1708. 2224 0824 2 1 0236 14 α. 1236 64 1564. 2236 114 193. 0836 164 1. 0248 15 65 1350. 2248 115 0848 165 1248 193. 0. 1 1. 0300 16 1300 0312 17 1312 898. 2312 117 194. 0912 167

1	0324	18	0.	*	1	1324	68	713.	*	1	2324	118	194.	*	2	0924	168	1.
1	0336	19	0.	*	1	1336	69	581.	*	1	2336	119	194.	*	2	0936	169	1.
1	0348	20	0.	*	1	1348	70	489.	*	1	2348	120	194.	*	2	0948	170	1.
1	0400	21	0.	*	1	1400	71	423.	*	2	0000	121	194.	*	2	1000	171	1.
1	0412	22	0.	*	1	1412	72	374.	*	2	0012	122	191.	*	2	1012	172	1.
1	0424	23	0.	*	1	1424	73	339.	*	2	0024	123	182.	*	2	1024	173	1.
1	0436	24	0.	*	1	1436	74	314.	*	2	0036	124	163.	*	2	1036	174	1.
1	0448	25	0.	*	1	1448	75	296.	*	2	0048	125	136.	*	2	1048	175	1.
1	0500	26	0.	*	1	1500	76	283.	*	2	0100	126	107.	*	2	1100	176	1.
1	0512	27	0.	*	1	1512	77	274.	*	2	0112	127	80.	*	2	1112	177	1.
1	0524	28	0.	*	1	1524	78	267.	*	2	0124	128	57.	*	2	1124	178	1.
1	0536	29	0.	*	1	1536	79	263.	*	2	0136	129	41.	*	2	1136	179	1.
1	0548	30	0.	*	1	1548	80	259.	*	2	0148	130	29.	*	2	1148	180	1.
1	0600	31	0.	*	1	1600	81	257.	*	2	0200	131	21.	*	2	1200	181	1.
1	0612	32	0.	*	1	1612	82	255.	*	2	0212	132	15.	*	2	1212	182	1.
1	0624	33	2.	*	1	1624	83	254.	*	2	0224	133	11.	*	2	1224	183	1.
1	0636	34	11.	*	1	1636	84	253.	*	2	0236	134	8.	*	2	1236	184	1.
1	0648	35	35.	*	1	1648	85	253.	*	2	0248	135	6.	*	2	1248	185	1.
1	0700	36	83.	*	1	1700	86	253.	*	2	0300	136	4.	*	2	1300	186	1.
1	0712	37	155.	*	1	1712	87	253.	*	2	0312	137	3.	*	2	1312	187	1.
1	0724	38	249.	*	1	1724	88	253.	*	2	0324	138	2.	*	2	1324	188	1.
1	0736	39	357.	*	1	1736	89	254.	*	2	0336	139	1.	*	2	1336	189	1.
1	0748	40	473.	*	1	1748	90	254.	*	2	0348	140	1.	*	2	1348	190	1.
1	0800	41	589.	*	1	1800	91	254.	*	2	0400	141	1.	*	2	1400	191	1.
1	0812	42	701.	*	1	1812	92	253.	*	2	0412	142	1.	*	2	1412	192	1.
1	0824	43	807.	*	1	1824	93	251.	*	2	0424	143	1.	*	2	1424	193	1.
1	0836	44	907.	*	1	1836	94	244.	*	2	0436	144	1.	*	2	1436	194	1.
1	0848	45	999.	*	1	1848	95	236.	*	2	0448	145	1.	*	2	1448	195	1.
1	0900	46	1084.	*	1	1900	96	226.	*	2	0500	146	1.	*	2	1500	196	1.
1	0912	47	1163.	*	1	1912	97	218.	*	2	0512	147	1.	*	2	1512	197	1.
1	0924	48	1234.	*	1	1924	98	210.	*	2	0524	148	1.	*	2	1524	198	1.
1	0936	49	1300.	*	1	1936	99	205.	*	2	0536	149	1.	*	2	1536	199	1.
1	0948	50	1359.	*	1	1948	100	201.	*	2	0548	150	1.	*	2	1548	200	1.
				*					*					*				

F	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	39.80-HR
	` '	` ,	(CFS)				
+	1766.	12.00		1268.	437.	264.	264.
			(INCHES)	.000	.000	.000	.000
			(AC-FT)	629.	868.	868.	868.

CUMULATIVE AREA = .00 SQ MI

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

•	*****	*****	****	*****	*	*****	*****	*****	*****	*	*****	*****	*****	*****	*	*****	*****	*****	*****
	DA MON	HRMN	ORD	FLOW	*	DA I	MON HRMN	ORD	FLOW	*	DA MOI	N HRMN	ORD	FLOW	*	DA MO	ON HRMN	ORD	FLOW
					*					*					*				
	1	0000	1	0.	*	1	1000	51	1414.	*	1	2000	101	199.	*	2	0600	151	1.
	1	0012	2	0.	*	1	1012	52	1464.	*	1	2012	102	197.	*	2	0612	152	1.
	1	0024	3	0.	*	1	1024	53	1510.	*	1	2024	103	196.	*	2	0624	153	1.
	1	0036	4	0.	*	1	1036	54	1552.	*	1	2036	104	195.	*	2	0636	154	1.
	1	0048	5	0.	*	1	1048	55	1590.	*	1	2048	105	194.	*	2	0648	155	1.
	1	0100	6	0.	*	1	1100	56	1626.	*	1	2100	106	194.	*	2	0700	156	1.
	1	0112	7	0.	*	1	1112	57	1658.	*	1	2112	107	194.	*	2	0712		1.
	1	0124	8	0.	*	1	1124	58	1689.	*	1	2124	108	193.	*	2	0724	158	1.
	1	0136	9	0.	*	1	1136	59	1716.	*	1	2136	109	193.	*	2	0736	159	1.
	1	0148	10	0.	*	1	1148	60	1742.	*	1	2148	110	193.	*	2	0748	160	1.
	1	0200	11	0.	*	1	1200	61	1766.	*	1	2200	111	193.	*	2	0800	161	1.
	1	0212	12	0.	*	1	1212	62	1764.	*	1	2212	112	193.	*	2	0812	162	1.
	1	0224	13	0.	*	1	1224	63	1708.	*	1	2224	113	193.	*	2	0824	163	1.
	1	0236	14	0.	*	1	1236	64	1564.	*	1	2236	114	193.	*	2	0836	164	1.
	1	0248	15	0.	*	1	1248	65	1350.	*	1	2248	115	193.	*	2	0848	165	1.
	1	0300	16	0.	*	1	1300	66	1117.	*	1	2300	116	194.	*	2	0900	166	1.
	1	0312	17	0.	*	1	1312	67	898.	*	1	2312	117	194.	*	2	0912	167	1.
	1	0324	18	0.	*	1	1324	68	713.	*	1	2324	118	194.	*	2	0924	168	1.
	1	0336	19	0.	*	1	1336	69	581.	*	1	2336	119	194.	*	2	0936	169	1.
	1	0348	20	0.	*	1	1348	70	489.	*	1	2348	120	194.	*	2	0948	170	1.
	1	0400	21	0.	*	1	1400	71	423.	*	2	0000	121	194.	*	2	1000	171	1.
	1	0412	22	0.	*	1	1412	72	374.	*	2	0012	122	191.	*	2	1012	172	1.
	1	0424	23	0.	*	1	1424	73	339.	*	2	0024	123	182.	*	2	1024	173	1.
	1	0436	24	0.	*	1	1436	74	314.	*	2	0036	124	163.	*	2	1036	174	1.
	1	0448	25	0.	*	1	1448	75	296.	*	2	0048	125	136.	*	2	1048	175	1.
	1	0500	26	0.	*	1	1500	76	283.	*	2	0100	126	107.	*	2	1100	176	1.
	1	0512	27	0.	*	1	1512	77	274.	*	2	0112	127	80.	*	2	1112	177	1.
	1	0524	28	0.	*	1	1524	78	267.	*	2	0124	128	57.	*	2	1124	178	1.
	1	0536	29	0.	*	1	1536	79	263.	*	2	0136	129	41.	*	2	1136	179	1.
	1	0548	30	0.	*	1	1548	80	259.	*	2	0148	130	29.	*	2	1148	180	1.
	1	0600	31	0.	*	1	1600	81	257.	*	2	0200	131	21.	*	2	1200	181	1.
	1	0612	32	0.	*	1	1612	82	255.	*	2	0212	132	15.	*	2	1212	182	1.
	1	0624	33	2.	*	1	1624	83	254.	*	2	0224	133	11.	*	2	1224	183	1.
	1	0636	34	11.	*	1	1636	84	253.	*	2	0236	134	8.	*	2	1236	184	1.
	1	0648	35	35.	*	1	1648	85	253.	*	2	0248	135	6.	*	2	1248	185	1.
	1	0700	36	83.	*	1	1700	86	253.	*	2	0300	136	4.	*	2	1300	186	1.

1	0712	37	155.	* 1	171	2 87	253.	*	2 0	312	137	3.	*	2	1312	197	1.
1	0712	38	249.	* 1	172		253.	*		324	138	2.	*	2		188	1.
1	0736	39	357.	* 1	173		254.	*		336	139	1.	*	2		189	1.
1	0748	40	473.	* 1	174		254.	*		348	140	1.	*	2		190	1.
1	0800	41	589.	* 1	180	0 91	254.	*	2 0	400	141	1.	*	2	1400	191	1.
1	0812	42	701.	* 1	181		253.	*		412	142	1.	*	2		192	1.
1	0824	43	807.	* 1	182		251.	*		424	143	1.	*	2		193	1.
1	0836	44	907.	* 1 * 1	183		244.	*		436	144	1.	*	2		194	1.
1 1	0848 0900	45	999. 1084.	-	184 190		236. 226.	*		1448 1500	145 146	1. 1.	*	2 2		195 196	1.
1	0912	46 47	1163.	* 1	190		218.	*		1512	146	1.	*		1512		1. 1.
1	0912	48	1234.	* 1	192		210.	*		524	148	1.	*	2		198	1.
1	0936	49	1300.	* 1	193		205.	*		536	149	1.	*			199	1.
1	0948	50	1359.	* 1	194		201.	*		548	150	1.	*	2		200	1.
				*				*					*				
****	*****	*****	*******	******	******	******	******	*****	******	****	******	******	****	******	*****	****	*******
AK FL	OW	TIME		_			VERAGE FI										
/CEC\		(IID)		6-	-HR	24-HR	72-	-HR	39.80-H	IR							
(CFS)		(HR)	(CFS)	,													
1766	1	2.00	(CF3)	, 126	58	437.	26	54.	264								
1700		2.00	(INCHES)		900	.000		300	.00								
			(AC-FT)		29.	868.		58.	868								
			CUMULAT	TIVE AREA	Α =	.00 SQ M	I										
***	*** ***	*** **	* *** ***	* *** ***	* *** **	* *** **	* *** **	* *** *	*** *** *	** *	** *** *	** *** *	** *	** *** *	*** ***	***	*** *** **
	***	******															
	*	****	*														
3 KK	*	Cove	*	Reservoi	ir												
) KK	*	COVE	*	Nesel VO	rı.												
	***	*****	****														
			Rout	ing thro	ough Res	'v											
		INDBOCE	APH ROUT	ING DATA													
		חוטטאטוח															
		nybkodr		57.17.													
5 RS			GE ROUTIN														
5 RS					1 NUMB	ER OF SU	BREACHES										
5 RS			NGE ROUTIN NSTPS ITYP	NG ELE	EV TYPE	OF INIT	IAL COND	ITION									
5 RS			AGE ROUTIN NSTPS ITYP RSVRIC	NG ELE 5545.9	EV TYPE 50 INIT	OF INIT	IAL CONDI										
5 RS			NGE ROUTIN NSTPS ITYP	NG ELE 5545.9	EV TYPE 50 INIT	OF INIT	IAL COND										
		STORA	NSTPS ITYP RSVRIC X	ELE 5545.5	EV TYPE 50 INIT 00 WORKI	OF INIT IAL COND NG R AND	IAL CONDI	ICIENT	4	0	720.5	4405	0	1562.0	222	7.0	277. 0
		STORA	AGE ROUTIN NSTPS ITYP RSVRIC	ELE 5545.5 .0	EV TYPE 50 INIT 00 WORKI 19	OF INIT IAL COND NG R AND	IAL CONDITION D COEFFI	ICIENT 240.0	453.		738.0	1105.	0	1563.0	221	7.0	2773.0
		STORA	NSTPS ITYP RSVRIC X	ELE 5545.5	EV TYPE 50 INIT 00 WORKI	OF INIT IAL COND NG R AND	IAL CONDITION D COEFFI	ICIENT	453. 7347.		738.0 8000.0	1105.	0	1563.0	221	7.0	2773.0
35 RS 36 SV		STORA	AGE ROUTIN NSTPS ITYP RSVRIC X	ELE 5545.5 .0	EV TYPE 50 INIT 00 WORKI 19	OF INIT IAL COND NG R AND .0 54	IAL CONDI ITION D COEFFI 95.0 19.0	ICIENT 240.0		0		1105.		1563.0 5512.00	221 5518		2773.0 5524.00

5530.00 5536.00 5542.00 5548.00 5552.00 5558.00 LOW-LEVEL OUTLET 40 SL 5545.50 ELEVATION AT CENTER OF OUTLET
4.91 CROSS-SECTIONAL AREA
.60 COEFFICIENT
.50 EXPONENT OF HEAD ELEVL CAREA COQL EXPL 41 SS SPILLWAY 5549.20 SPILLWAY CREST ELEVATION 30.00 SPILLWAY WIDTH 2.67 WEIR COEFFICIENT 1.50 EXPONENT OF HEAD CREL SPWID COQW EXPW 42 ST TOP OF DAM 5552.00 ELEVATION AT TOP OF DAM 1892.00 DAM WIDTH 2.90 WEIR COEFFICIENT 1.50 EXPONENT OF HEAD TOPEL DAMWID COQD EXPD

COMPUTED OUTFLOW-ELEVATION DATA

(EXCLUDING FLOW OVER DAM)

OUTFLOW	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31	40.98	45.44
ELEVATION	5470.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00	5548.51	5549.20
OUTFLOW	49.37	68.29	113.97	198.20	332.85	529.64	800.37	1156.85	1610.93	2174.46

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA

(INCLUDING FLOW OVER DAM)

STORAGE	.00	19.00	95.00	240.00	453.00	738.00	1105.00	1563.00	2217.00	2773.00
OUTFLOW	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
ELEVATION	5470.00	5476.00	5482.00	5488.00	5494.00	5500.00	5506.00	5512.00	5518.00	5524.00

STORAGE OUTFLOW	3542.00 .00	4423.00	5419.00 .00	5844.83 .00	5989.79 25.78	6009.51 27.48	6033.57 29.42	6063.27 31.65	6100.64 34.25	6148.41 37.31
ELEVATION	5530.00	5536.00	5542.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00
STORAGE	6301.53	6508.46	6543.56	6628.96	6765.11	6952.15	7190.23	7347.00	7395.04	7518.54
OUTFLOW	40.98	45.44	49.37	68.29	113.97	198.20	332.85	435.48	2138.72	11657.74
ELEVATION	5548.51	5549.20	5549.32	5549.60	5550.06	5550.68	5551.48	5552.00	5552.44	5553.58
STORAGE	7660.53	7821.02	8000.00							
OUTFLOW	27985.71	51484.63	82813.63							
ELEVATION	5554.88	5556.36	5558.00							

NAM HERW ORD OUTFLOW STORAGE STAGE DA PRON HERW ORD OUTFLOW	***************************************																				
1 0022 2 0 . 5844.8 565.5 * 1 1336 69 45. 6467.5 5569.1 * 2 0312 137 69 . 6631.9 5549.6 1 0036 4 0 . 5844.8 565.5 * 1 1348 79 45. 647.5 5549.1 * 2 0314 138 69 . 6631.9 5549.6 1 0036 4 0 . 5844.8 565.5 * 1 1409 71 7 45. 6482.3 5569.1 * 2 0314 138 69 . 6630.9 5549.6 1 0102 7 0 . 5844.8 565.5 * 1 1402 7 4 5. 6482.3 5569.1 * 2 0314 138 69 . 6630.9 5549.6 1 0102 7 0 . 5844.8 565.5 * 1 1402 7 4 5. 6482.3 5569.2 * 2 0348 138 69 . 6632.7 \$549.6 1 0102 7 0 . 5844.8 565.5 * 1 1402 7 4 5. 6497.9 5549.2 * 2 0442 143 67 . 6625.3 5549.6 1 0102 7 0 . 5844.8 565.5 * 1 1402 7 4 5. 6497.9 5549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 7 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 7 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6 . 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6 . 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6 . 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 71 0102 112 112 112 112 112 112 112 112 1	DA MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE	*	DA MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE	*	DA	MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE
1 0022 2 0 . 5844.8 565.5 * 1 1336 69 45. 6467.5 5569.1 * 2 0312 137 69 . 6631.9 5549.6 1 0036 4 0 . 5844.8 565.5 * 1 1348 79 45. 647.5 5549.1 * 2 0314 138 69 . 6631.9 5549.6 1 0036 4 0 . 5844.8 565.5 * 1 1409 71 7 45. 6482.3 5569.1 * 2 0314 138 69 . 6630.9 5549.6 1 0102 7 0 . 5844.8 565.5 * 1 1402 7 4 5. 6482.3 5569.1 * 2 0314 138 69 . 6630.9 5549.6 1 0102 7 0 . 5844.8 565.5 * 1 1402 7 4 5. 6482.3 5569.2 * 2 0348 138 69 . 6632.7 \$549.6 1 0102 7 0 . 5844.8 565.5 * 1 1402 7 4 5. 6497.9 5549.2 * 2 0442 143 67 . 6625.3 5549.6 1 0102 7 0 . 5844.8 565.5 * 1 1402 7 4 5. 6497.9 5549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 7 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 7 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6. 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6 . 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6 . 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 77 4 6 . 6519.1 \$549.2 * 2 0442 143 67 . 6623.1 \$549.6 1 0102 112 12 0 . 5844.8 5645.5 * 1 1512 71 0102 112 112 112 112 112 112 112 112 1							*							*							
1 0034 3 0. 5844.8 5645.5 * 1 1409 71 45. 6475.6 5549.1 * 2 0324 138 69. 6639.9 5549.6 1 0048 5 0 . 5844.8 5645.5 * 1 1402 71 45. 6482.1 5549.1 * 2 0316 139 68. 6632.8 7549.6 1 0408 5 0 . 5844.8 5645.5 * 1 1412 77 45. 6482.1 5549.1 * 2 0316 139 68. 6632.8 7549.6 1 0412 72 0 . 5844.8 5645.5 * 1 1406 71 45. 6482.1 5549.1 * 2 0316 139 68. 6632.8 7549.6 1 0412 72 0 . 5844.8 5645.5 * 1 1406 74 45. 6449.7 5549.2 * 2 0442 142 67. 6624.1 5549.1 * 1 0316 9 0 . 5844.8 5645.5 * 1 1526 76 45. 6569.3 5649.2 * 2 0442 142 67. 6624.1 5549.1 * 1 0316 9 0 . 5844.8 5645.5 * 1 1526 77 46. 6519.1 * 5749.2 * 2 0442 142 67. 6624.1 5549.1 * 1 0326 11 0 . 5844.8 5645.5 * 1 1526 77 46. 6519.1 * 5749.2 * 2 0442 142 67. 6624.1 5549.1 * 1 0 0 0 0 1 0 . 5844.8 5645.5 * 1 1526 77 46. 6519.1 * 5749.2 * 2 0442 142 67. 6624.1 5549.6 * 1 0 0 0 0 1 0 . 5844.8 5645.5 * 1 1526 79 46. 6519.1 * 5749.2 * 2 0442 142 67. 6624.1 5549.6 * 1 0 0 0 0 1 0 . 5844.8 5645.5 * 1 1526 79 46. 6519.1 * 5749.2 * 2 0442 142 67. 6624.1 5549.6 * 1 0 0 0 0 1 0 . 5844.8 5645.5 * 1 1526 79 46. 6519.1 * 5749.2 * 2 0442 142 67. 6624.1 5549.6 * 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_							=													
1 0936 4 0 . 5844.8 545.5 * 1 1412 72 45. 6482.3 5549.1 * 2 9324 138 69, 6622.8 5549.6 1 0 1006 5 0 . 5844.8 545.5 * 1 1412 72 45. 6483.1 5549.1 * 2 9336 139 68. 6622.8 5549.6 1 0 1006 5 0 . 5844.8 545.5 * 1 1435 74 45. 6497.3 5549.1 * 2 9338 139 68. 6622.7 5549.6 1 0 1012 7 0 . 5844.8 545.5 * 1 1435 74 45. 6497.3 5549.2 * 2 0408 141 68. 6625.7 5549.6 1 1 0 1012 7 0 . 5844.8 545.5 * 1 1536 77 45. 6497.9 5549.2 * 2 0408 141 68. 6625.7 5549.6 1 1 0 1012 7 0 . 5844.8 545.5 * 1 1536 77 45. 6497.9 549.2 * 2 0442 143 67. 6623.1 5549.6 1 1 0 1012 1 0 . 5844.8 545.5 * 1 1536 77 46. 6510.1 5549.2 * 2 0436 144 67. 6622.1 5549.6 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0								1							2						
1 0048 5 0. 5844.8 545.5 * 1 1412 72 45. 6482.1 5569.1 * 2 0348 140 68. 6627. 5589.6 1 1 0112 7 0. 5844.8 5845.5 * 1 1412 72 45. 6497.9 5589.2 * 2 0348 140 68. 6627.5 589.6 1 1 0112 7 0 0 5844.8 5845.5 * 1 1416 74 75 75 75 75 75 75 75 75 75 75 75 75 75			4					1					5549.1	*	2						
1 0112 7 0 0, 5844,8 5545,5 ° 1 1436 74 45, 6497,9 5549,2 ° 2 040141 68, 6626,3 5549,6 1 0136 9 0, 5844,8 5545,5 ° 1 1436 75 45, 6596,3 5549,2 ° 2 040143 67, 6626,2 5549,6 1 0136 9 0, 5844,8 5545,5 ° 1 1524 78 46, 6516,3 5549,2 ° 2 042143 67, 6624,1 5549,6 1 0136 9 0 0 0, 5844,8 5545,5 ° 1 1524 78 46, 6517,4 5549,2 ° 2 042143 67, 6624,1 5549,6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0048	5	0.	5844.8	5545.5	*	1	1412	72	45.	6488.1	5549.1	*	2		0336	139	68.	6628.7	5549.6
1 0124 8 0 . 5844.8 5545.5 ° 1 1498 75 45. 6382.2 5549.2 ° 2 0421 142 67. 6625.2 5549.1 1 0148 19 0 . 5844.8 5545.5 ° 1 1504 76 45. 6582.3 5549.2 ° 2 0421 142 67. 6625.1 5549.6 1 0 0209 11 0 . 5844.8 5545.5 ° 1 1512 77 6 46. 6518.1 5549.2 ° 2 0424 144 66. 6622.1 5549.6 1 0 0209 11 0 . 5844.8 5545.5 ° 1 1512 77 6 46. 6518.1 5549.2 ° 2 0445 144 66. 6622.1 5549.6 1 0 0209 11 0 0. 5844.8 5545.5 ° 1 1524 78 46. 6518.1 5549.2 ° 2 0445 144 66. 6622.1 5549.6 1 0 0209 11 0 0. 5844.8 5545.5 ° 1 1524 78 46. 6518.1 5549.2 ° 2 0445 144 66. 6622.1 5549.6 1 0 0209 10 0 0. 5844.8 5545.5 ° 1 1612 82 47. 6527.9 5549.3 ° 2 0532 147 66. 6618.0 5549.6 ° 1 0 020 10 0 0. 5844.8 5545.5 ° 1 1612 82 47. 6527.9 5549.3 ° 2 0532 149 66. 6618.0 5549.6 ° 1 0 020 10 0 0. 5844.8 5545.5 ° 1 1612 82 47. 6527.9 5549.3 ° 2 0609 151 05. 6614.9 5549.6 ° 1 0 020 10 0 0. 5844.8 5545.5 ° 1 1612 82 47. 6527.9 5549.3 ° 2 0609 151 0 05. 6618.0 5549.6 ° 1 0 020 10 0 0. 5844.8 5545.5 ° 1 1612 82 47. 6527.9 5549.3 ° 2 0609 151 0 05. 6615.9 5549.6 ° 1 0 020 10 0 0. 5844.8 5545.5 ° 1 1612 82 47. 6527.9 5549.3 ° 2 0609 151 0 05. 6615.9 5549.6 ° 1 0 020 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0								1					5549.1	*	_						
1 0136 9 0, 5844,8 5545,5 ° 1 1500 76 45, 6566,3 5549,2 ° 2 0421 43 67, 6624,1 5549,6 1 0424 13 0 0, 5844,8 5545,5 ° 1 15124 78 46, 6513,7 5549,2 ° 2 0436 144 67, 6623,1 5549,6 1 0421 13 0, 5844,8 5545,5 ° 1 1524 78 46, 6513,7 5549,2 ° 2 0436 144 67, 6623,1 5549,6 6 1 0421 13 0, 5844,8 5545,5 ° 1 1524 78 46, 6513,7 5549,2 ° 2 0436 144 67, 6623,1 5549,6 1 1 0421 13 0, 5844,8 5545,5 ° 1 1600 81 47, 6524,4 5549,3 ° 2 0446 145 66, 6622,1 5549,6 1 0424 13 0, 5844,8 5545,5 ° 1 1600 81 47, 6524,4 5549,3 ° 2 0446 146, 66, 6622,1 5549,6 1 0424 13 0, 5844,8 5545,5 ° 1 1624 83 48, 6531,3 5549,3 ° 2 0544 150 6, 6613,0 5549, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								1							_						
1 0,148 19 0 , 5844,8 5545,5 * 1 1512 77 46, 6519.1 5549,2 * 2 0,445 144 67, 6623.1 5549,6 1 0,147 154 154 154 154 154 154 154 154 154 154	_							1							_						
1 0229 11 0, 5844,8 5545,5 ° 1 1534 78 46, 6531,7 5549,2 ° 2 0448 145 66, 6622,1 5549,6 1 0224 13 0, 5844,8 5545,5 ° 1 1548 80 46, 6520,9 5549,2 ° 2 0512 147 66, 6620,8 5549,6 1 0234 14 0, 5844,8 5545,5 ° 1 1548 80 46, 6520,9 5549,2 ° 2 0512 147 66, 6620,8 5549,6 1 0234 14 0, 5844,8 5545,5 ° 1 1612 82 47, 6524,5 5549,3 ° 2 0512 147 66, 6620,8 5549,6 1 024 148 86,								1													
1 0212 12 0. 5844.8 5545.5 ° 1 1536 79 46. 6517.4 5549.2 ° 2 0812 147 66. 662.0 5549.6 1 0242 13 0. 5844.8 5545.5 ° 1 1548 80 46. 652.0 5549.6 ° 2. 2 0812 147 66. 662.0 5549.6 ° 1 0242 13 0. 5844.8 5545.5 ° 1 1600 81 47. 6524.0 5549.3 ° 2 0854 148 66. 6619.0 5549.6 ° 1 0300 16 0. 5844.8 5545.5 ° 1 1600 81 47. 6524.0 5549.3 ° 2 0856 149 65. 6619.0 5549.6 ° 1 0300 17 0 0. 5844.8 5545.5 ° 1 1600 81 47. 6524.0 5549.3 ° 2 0800 151 55. 6617.0 5549.6 ° 1 0312 17 0 0. 5844.8 5545.5 ° 1 1600 81 48 48. 6531.3 5549.3 ° 2 0800 151 55. 6617.0 5549.6 ° 1 0312 17 0 0. 5844.8 5545.5 ° 1 1709 86 6 49. 6534.6 5549.3 ° 2 0800 151 55. 6617.0 5549.6 ° 1 0336 0 0. 5844.8 5545.5 ° 1 1724 88 59. 6534.6 5549.3 ° 2 0800 151 15 55. 6617.0 5549.6 ° 1 0402 22 0. 5844.8 5545.5 ° 1 1724 88 59. 6534.7 5549.3 ° 2 0804 151 15 64. 6611.9 5549.5 ° 1 0402 22 0. 5844.8 5545.5 ° 1 1724 88 59. 6534.7 5549.3 ° 2 0868 155 64. 6611.9 5549.5 ° 1 0402 22 0. 5844.8 5545.5 ° 1 1748 90 51. 6554.8 5549.3 ° 2 0804 151 63. 6608.8 5549.5 ° 1 0402 24 0. 5844.8 5545.5 ° 1 1748 90 51. 6554.8 5549.4 ° 2 0712 157 63. 6609.8 5549.5 ° 1 0402 24 0. 5844.8 5545.5 ° 1 1748 90 51. 6554.8 5549.4 ° 2 0712 157 63. 6609.8 5549.5 ° 1 0402 24 0. 5844.8 5545.5 ° 1 1748 90 51. 6554.8 5549.4 ° 2 0712 157 63. 6609.8 5549.5 ° 1 0402 24 0. 5844.8 5545.5 ° 1 11812 92 52. 6561.5 5549.4 ° 2 0712 157 63. 6609.8 5549.5 ° 1 0402 27 0 0. 5844.8 5545.5 ° 1 11812 92 52. 6561.5 5549.4 ° 2 0714 158 63. 6609.8 5549.5 ° 1 0502 0 0. 5844.8 5545.5 ° 1 11812 92 52. 6561.5 5549.4 ° 2 0714 158 63. 6609.8 5549.5 ° 1 0502 0 0. 5844.8 5545.5 ° 1 1812 92 52. 6561.5 5549.4 ° 2 072 159 63. 6609.8 5549.5 ° 1 0502 0 0. 5844.8 5545.5 ° 1 1812 92 ° 2 0. 5844.8 5545.5 ° 1 1812 92 ° 2 0. 5844.8 5545.5 ° 1 1812 92 ° 2 0. 5844.8 5545.5 ° 1 1812 92 ° 2 0. 5844.8 5545.5 ° 1 1812 92 ° 2 0. 5844.8 5545.5 ° 1 1812 92 ° 2 0. 5844.8 5545.5 ° 1 1812 92 ° 2 0. 5844.8 5545.5 ° 1 1812 92 ° 2 0. 5844.8 5545.5 ° 1 1812 92 ° 2 0. 5844.8 5545.5 ° 1 1812 92 ° 2 0. 5844.8 5545.5 ° 1 1812 92 ° 2 0. 5844.8 5545.5 ° 1 1812 92 ° 2 0. 58								1							_						
1								-							_						
1	1	0224	13	0.	5844.8			1	1548	80	46.	6520.9			2		0512	147	66.	6620.0	5549.6
1 0380 16 0 . 5844.8 5545.5 * 1 1624 83 48. 6531.3 5549.3 * 2 0848 1556.6 661.9 5549.6 1 0316 19 0 . 5844.8 5545.5 * 1 1668 85 49. 6534.6 5549.3 * 2 0861215 65. 6611.9 5549.6 1 0316 19 0 . 5844.8 5545.5 * 1 1708 86 49. 6534.6 5549.3 * 2 0861215 65. 6614.9 5549.6 1 0316 19 0 . 5844.8 5545.5 * 1 1772 87 50. 6544.7 5549.3 * 2 08621153 64. 6611.9 5549.5 1 0400 21 0 . 5844.8 5545.5 * 1 1772 87 50. 6544.7 5549.3 * 2 08631155 64. 6611.9 5549.5 1 0400 21 0 . 5844.8 5545.5 * 1 1774 88 50 . 6548.1 5549.3 * 2 08631155 64. 6611.9 5549.5 1 0400 21 0 . 5844.8 5545.5 * 1 1774 88 50 . 5548.8 549.3 * 2 08701157 63. 6611.9 5549.5 1 0400 21 0 . 5844.8 5545.5 * 1 17736 89 51. 6551.5 5549.3 * 2 0700 156 63. 6612.8 5549.5 1 0400 21 0 . 5844.8 5545.5 * 1 17736 89 51. 6551.5 5549.3 * 2 0700 156 63. 6612.8 5549.5 1 0400 21 0 . 5844.8 5545.5 * 1 1800 21 5 . 5548.8 589.4 * 2 0772 157 63. 6609.8 5549.5 1 0400 21 0 . 5844.8 5545.5 * 1 1800 21 5 . 5548.8 589.4 * 2 0772 157 63. 6609.8 5549.5 1 0 . 5844.8 5545.5 * 1 1800 21 5 . 5548.8 589.4 * 2 0772 157 63. 6609.8 5549.5 1 0 . 5844.8 5545.5 * 1 1800 21 5 . 5549.3 * 2 0 . 5944.8 5545.5 * 1 1800 21 5 . 5549.5 * 5549.4 * 2 0872 157 63. 6607.8 5549.5 1 0 . 5944.8 5545.5 * 1 1800 21 5 . 5549.5 * 5549.4 * 2 0872 150 63. 6607.8 5549.5 * 1 0 . 5549.5	1	0236	14	0.				1	1600	81	47.	6524.4			2		0524	148	66.		
1 0312 17 0. 5844.8 5545.5 * 1 1636 84 48. 6534.6 5549.3 * 2 0 6602 152 65. 6614.9 5549.6 1 0336 19 0. 5844.8 5545.5 * 1 1708 86 49. 6534.0 5549.3 * 2 0 6624 152 65. 6614.9 5549.6 1 0348 20 0. 5844.8 5545.5 * 1 1712 87 56. 6544.7 5549.3 * 2 0 6624 152 65. 6614.9 5549.6 1 0412 22 0. 5844.8 5545.5 * 1 1724 88 50. 6544.7 5549.3 * 2 0 6636 154 64. 6611.9 5549.5 1 0412 22 0. 5844.8 5545.5 * 1 1724 88 50. 6544.7 5549.3 * 2 0 6636 154 64. 6611.9 5549.5 1 0412 22 0. 5844.8 5545.5 * 1 1736 89 51. 6551.5 5549.3 * 2 0 6648 1556.5 64. 6611.9 5549.5 1 0412 23 0. 5844.8 5545.5 * 1 1748 90 51. 6551.5 5549.3 * 2 0 0700 156 63. 6608.8 5549.5 1 0436 24 0. 5844.8 5545.5 * 1 1812 92 52. 6558.2 5549.4 * 2 0721 157 63. 6608.8 5549.5 1 0500 26 0. 5844.8 5545.5 * 1 1812 92 52. 6558.2 5549.4 * 2 0721 157 63. 6608.8 5549.5 1 0500 26 0. 5844.8 5545.5 * 1 1812 92 52. 6558.2 5549.4 * 2 0721 156 63. 6608.7 5549.5 1 0500 26 0. 5844.8 5545.5 * 1 1812 92 52. 6558.2 5549.4 * 2 0736 159 63. 6608.7 5549.5 1 0502 27 0. 5844.8 5545.5 * 1 1812 93 53. 6554.9 5549.4 * 2 0736 159 63. 6606.7 5549.5 1 0502 27 0. 5844.8 5545.5 * 1 1812 93 53. 6554.9 5549.4 * 2 0800 161 62. 6606.7 5549.5 1 0502 27 0. 5844.8 5545.5 * 1 1812 93 53. 6554.9 5549.4 * 2 0800 161 62. 6606.7 5549.5 1 0502 27 0. 5844.8 5545.5 * 1 1826 94 54. 6571.2 5549.4 * 2 0800 161 62. 6604.7 5549.5 1 0502 27 0. 5844.8 5545.5 * 1 1900 96 55. 6574.9 5549.4 * 2 0800 161 62. 6604.7 5549.5 1 0502 27 0. 5844.8 5545.5 * 1 1900 96 55. 6574.9 5549.4 * 2 0800 161 62. 6604.7 5549.5 1 0502 27 0. 5844.8 5545.5 * 1 1900 96 55. 6574.9 5549.4 * 2 0800 161 62. 6604.7 5549.5 1 0502 27 0. 5844.8 5545.5 * 1 1900 96 55. 6574.9 5549.4 * 2 0800 161 62. 6604.7 5549.5 1 0502 27 0. 5844.8 5545.5 * 1 1900 96 55. 6574.9 5549.4 * 2 0800 161 62. 6604.7 5549.5 1 0502 27 0. 5844.8 5545.5 * 1 1900 96 55. 6574.9 5549.4 * 2 0800 161 62. 6604.7 5549.5 1 0502 27 0. 5844.8 5545.5 * 1 1900 96 55. 6574.9 5549.4 * 2 0800 161 62. 6604.7 5549.5 1 0502 27 0. 5844.8 5545.5 * 1 1900 96 55. 6574.9 5549.4 * 2 0800 161 62. 6604.7 5549.5 1 050	_			٠.				-							_						
1 8324 18 0, 5844.8 5545.5 * 1 1648 85 49, 6538.6 5549.3 * 2 6612 152 65, 6614.9 5549.6 1 8348 20 0. 5844.8 5545.5 * 1 1708 86 49, 6514.7 5549.3 * 2 6624 153 64, 6613.9 5549.6 1 8408 21 0. 5844.8 5545.5 * 1 1712 87 50. 6544.7 5549.3 * 2 6636 154 64. 6612.9 5549.5 1 6412 22 0. 5844.8 5545.5 * 1 1724 88 50. 6548.1 5549.3 * 2 6636 154 64. 6612.9 5549.5 1 6412 22 0. 5844.8 5545.5 * 1 1748 89 51. 6551.5 5549.3 * 2 6702 156 63. 6612.8 5549.5 1 6412 23 0. 5844.8 5545.5 * 1 1748 89 51. 6551.5 5549.3 * 2 6702 157 63. 6609.8 5549.5 1 648 25 0. 5844.8 5545.5 * 1 1809 91 52. 6558.2 5549.4 * 2 6724 158 63. 6608.8 5549.5 1 648 25 0. 5844.8 5545.5 * 1 1809 91 52. 6558.2 5549.4 * 2 6724 158 63. 6608.8 5549.5 1 6554.9 549.5 * 2 6724 158 63. 6608.8 5549.5 * 1 1824 93 53. 6564.9 5549.4 * 2 6748 160 62. 6666.7 5549.1 * 1 6564.9 549.4 * 2 6748 160 62. 6666.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6666.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6666.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6666.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6666.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6666.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6666.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6666.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6666.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6666.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6666.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6666.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6666.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6668.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6668.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6668.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6668.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6668.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6668.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6668.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6668.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6668.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6668.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6668.7 5549.5 * 1 674.9 549.4 * 2 6748 160 62. 6668.7 5549.5 * 1 6749.4 * 1 6748 160 62. 6668.7 5549.5 * 1 6749.4 * 1 6748								-							_						
1 8336 19 0, \$844.8 \$545.5 * 1 1708 86 49, \$6541.4 \$549.3 * 2 8624 133 64, \$6613.9 \$549.5 \$ 1 848 20 0, \$844.8 \$545.5 * 1 1724 87 \$50. \$6547.5 \$549.3 * 2 80636 154 64. \$6612.9 \$549.5 \$ 1 8412 22 0, \$844.8 \$545.5 * 1 1724 87 \$50. \$6547.5 \$549.3 * 2 80648 155 64. \$6611.9 \$549.5 \$ 1 8412 22 0, \$844.8 \$545.5 * 1 1748 89 0 51. \$651.5 \$549.3 * 2 80748 155 63. \$6618.8 \$549.5 \$ 1 8436 24 0, \$844.8 \$545.5 * 1 1748 89 0 51. \$6554.8 \$549.4 * 2 80712 157 63. \$669.8 \$549.5 \$ 1 8436 24 0, \$844.8 \$545.5 * 1 1880 91 52. \$658.2 \$549.4 * 2 80712 157 63. \$669.8 \$549.5 \$ 1 8436 24 0, \$844.8 \$545.5 * 1 1812 92 52. \$658.2 \$549.4 * 2 80724 158 63. \$669.8 \$549.5 \$ 1 8592 66 0, \$844.8 \$545.5 * 1 1812 92 52. \$658.5 \$549.4 * 2 80734 159 63. \$669.8 \$549.5 \$ 1 8592 67 8 844.8 \$545.5 * 1 1812 92 52. \$658.5 \$549.4 * 2 80734 159 63. \$669.8 \$549.5 \$ 1 8512 27 8, \$844.8 \$545.5 * 1 1812 93 53. \$654.9 \$549.4 * 2 8080 161 62. \$6667.8 \$549.5 \$ 1 8512 27 8, \$844.8 \$545.5 * 1 1818 95 45 4. \$658.1 \$549.4 * 2 8080 161 62. \$6665.7 \$549.5 \$ 1 8513 80 8, \$844.8 \$545.5 * 1 1812 99 55. \$6574.1 \$549.4 * 2 8080 161 62. \$6665.7 \$549.5 \$ 1 8513 80 8, \$844.8 \$545.5 * 1 1812 99 55. \$6574.1 \$549.4 * 2 8080 161 62. \$6667.7 \$549.5 \$ 1 8548 80 8, \$844.8 \$545.5 * 1 1812 99 55. \$6574.1 \$549.4 * 2 8081 163 62. \$6693.7 \$549.5 \$ 1 8548 80 8, \$844.8 \$545.5 * 1 1812 99 55. \$6574.1 \$549.4 * 2 8081 163 62. \$6693.7 \$549.5 \$ 1 8548 80 8, \$844.8 \$545.5 * 1 1809 99 55. \$6574.1 \$549.4 * 2 8081 163 62. \$6693.7 \$549.5 \$ 1 8548 80 8, \$844.8 \$545.5 * 1 1809 99 55. \$6574.5 \$549.4 * 2 8081 163 62. \$6693.7 \$549.5 \$ 1 8548 80 8. \$844.8 \$545.5 * 1 1809 99 55. \$6574.5 \$549.4 * 2 8081 163 62. \$6693.7 \$549.5 \$ 1 8548 80 80 8. \$844.8 \$545.5 * 1 1809 99 55. \$6579.5 \$549.4 * 2 8081 163 62. \$6693.7 \$549.5 \$ 1 8548 80 80 8. \$844.8 \$545.5 * 1 1809 99 55. \$6579.5 \$549.4 * 2 8081 163 62. \$6693.7 \$549.5 \$ 1 8548 80 80 8. \$844.8 \$545.5 * 1 1809 99 55. \$6579.5 \$549.4 * 2 8081 163 62. \$6693.7 \$549.5 \$ 1 8548 80 80 8. \$844.8 \$545.5 * 1 1809 99 55. \$6579.5 \$549.5 * 2 8081 164 65. \$669.5 \$ 1 8548 80 80 80 8								-							_						
1 0848 20 0, 5844.8 5545.5 * 1 1724 88 50, 5544.7 5549.3 * 2 0636 154 64, 6611.9 5549.5 * 1 0402 21 0, 5844.8 5545.5 * 1 1724 88 50, 5548.1 5549.3 * 2 0708 156 63, 6612.8 5549.5 * 1 0412 22 0, 5844.8 5545.5 * 1 1748 90 51, 6551.5 5549.3 * 2 0708 156 63, 6612.8 5549.5 * 1 0412 22 0, 5844.8 5545.5 * 1 1808 91 52, 6558.2 5549.4 * 2 0772 158 63, 6608.8 5549.5 * 1 0448 25 0, 5844.8 5545.5 * 1 1808 91 52, 6558.2 5549.4 * 2 0772 158 63, 6608.8 5549.5 * 1 0508 26 0, 5844.8 5545.5 * 1 1824 93 53, 6564.9 5549.4 * 2 0773 159 63, 6607.8 5549.5 * 1 0512 27 0, 5844.8 5545.5 * 1 1824 93 53, 6564.9 5549.4 * 2 0773 159 63, 6607.8 5549.5 * 1 0512 27 0, 5844.8 5545.5 * 1 1826 93 53, 6564.9 5549.4 * 2 0748 160 62, 6606.7 5549.5 * 1 0512 27 0, 5844.8 5545.5 * 1 1826 93 53, 6564.9 5549.4 * 2 0812 162 62, 6608.7 5549.5 * 1 0512 27 0, 5844.8 5545.5 * 1 1900 96 55, 6574.1 5549.4 * 2 0812 162 62, 6608.7 5549.5 * 1 0512 27 0, 5844.8 5545.5 * 1 1900 96 55, 6574.1 5549.4 * 2 0812 162 62, 6604.7 5549.5 * 1 0602 29 0, 5844.8 5545.5 * 1 1912 97 56, 6576.9 5549.4 * 2 0812 162 62, 6604.7 5549.5 * 1 0604 31 0, 5844.8 5545.5 * 1 1912 97 56, 6576.9 5549.4 * 2 0812 162 62, 6604.7 5549.5 * 1 0602 31 0, 5844.8 5545.5 * 1 1924 98 50, 6576.9 5549.4 * 2 0812 162 62, 6608.7 5549.5 * 1 0602 33 0, 5844.8 5545.5 * 1 1924 98 50, 6576.9 5549.4 * 2 0890 166 61, 6602.6 5549.5 * 1 0622 32 0, 5844.8 5545.5 * 1 1924 98 50, 6576.9 5549.4 * 2 0890 166 61, 6602.6 5549.5 * 1 0622 33 0, 5844.8 5545.5 * 1 1924 98 50, 6597.5 5549.5 * 2 0892 166 61, 6600.6 5549.5 * 1 0623 33 0, 5844.8 5545.5 * 1 1924 98 50, 6597.5 5549.5 * 2 0892 166 61, 6600.6 5549.5 * 1 0623 33 0, 5844.8 5545.5 * 1 1208 160 50.5 * 1 0623 34 11. 5845.5 * 1 1208 160 50.5 * 1 0623 34 11. 5845.5 * 1 1208 160 50.5 * 1 0623 34 11. 5845.5 * 1 1208 160 50.5 * 1 0623 34 11. 5845.5 * 1 1208 160 50.5 * 1 0623 34 11. 5845.5 * 1 1208 160 50.5 * 1 0623 34 11. 5845.5 * 1 1208 160 50.5 * 1 0623 54 10.5 * 1 0624 33 0, 5844.8 5545.5 * 1 1208 160 50.5 * 1 0624 33 0, 5845.5 * 1 1208 160 50.5 * 1 0624 34 10.5 * 1 0624 34 10								-							_						
1 0400 21 0, 5844.8 5545.5 * 1 1726 88 50, 6548.1 5549.3 * 2 0648 155 64, 6611.9 5549.5 \$ 549.1 * 2 1 0412 22 0, 5844.8 5545.5 * 1 1736 89 0 51, 6551.6 5549.3 * 2 0702 157 63, 6609.8 5549.5 \$ 549.1 * 2 0712 157 63, 6609.8 5549.5 * 1 04048 25 0, 5844.8 5545.5 * 1 1809 91 52, 6558.2 5549.4 * 2 0712 157 63, 6609.8 5549.5 * 1 0509 26 0, 5844.8 5545.5 * 1 1812 92 52, 6558.2 5549.4 * 2 0736 159 63, 6608.8 5549.5 * 1 0509 26 0, 5844.8 5545.5 * 1 1812 92 52, 6558.2 5549.4 * 2 0736 159 63, 6607.8 5549.5 * 1 0512 27 0, 5844.8 5545.5 * 1 1826 93 454. 5549.5 * 2 0809 161 62, 6606.7 5549.5 * 1 0512 27 0, 5844.8 5545.5 * 1 1826 93 454. 5549.4 * 2 0880 161 62, 6606.7 5549.5 * 1 0536 29 0, 5844.8 5545.5 * 1 1848 95 54. 6571.2 5549.4 * 2 0880 161 62, 6608.7 5549.5 * 1 0536 29 0, 5844.8 5545.5 * 1 1900 96 55, 6574.1 5549.4 * 2 0882 163 62, 6608.7 5549.5 * 1 0600 31 0, 5844.8 5545.5 * 1 1924 98 56, 6579.5 5549.4 * 2 0882 163 62, 6608.7 5549.5 * 1 0600 31 0, 5844.8 5545.5 * 1 1924 98 56, 6579.5 5549.4 * 2 0888 165 61, 6602.6 5549.5 * 1 0600 31 0, 5844.8 5545.5 * 1 1936 99 57, 6582.6 \$ 5549.5 * 2 0902 167 61, 6602.6 5549.5 * 1 0624 33 0, 5844.8 5545.5 * 1 1936 99 57, 6582.5 \$ 5549.5 * 2 0902 167 61, 6602.6 \$ 5549.5 * 1 0624 33 0, 5844.8 5545.5 * 1 1936 99 57, 6582.5 \$ 5549.5 * 2 0902 167 61, 6602.6 \$ 5549.5 * 1 0624 33 0, 5844.8 5545.5 * 1 1936 99 57, 6582.5 \$ 5549.5 * 2 0902 167 61, 6602.6 \$ 5549.5 * 1 0624 33 0, 5844.8 5545.5 * 1 1936 99 57, 6582.5 \$ 5549.5 * 2 0902 167 61, 6602.6 \$ 5549.5 * 1 0624 33 0, 5844.8 5545.5 * 1 1936 99 57, 6582.5 \$ 5549.5 * 2 0902 167 61, 6602.6 \$ 5549.5 * 1 0624 33 0, 5844.8 5545.5 * 1 1936 99 57, 6582.5 \$ 5549.5 * 2 0902 167 61, 6602.6 \$ 5549.5 * 1 0624 33 0, 5844.8 5545.5 * 1 1204 162 58.6 \$ 5589.5 * 5549.5 * 2 0902 168 66, 5595.5 \$ 5549.5 * 1 0704 38 5 5 5845.5 * 1 1204 162 58.6 \$ 5589.5 * 5549.5 * 2 0902 168 66, 5595.5 \$ 5549.5 * 1 0704 38 5 5 5549.5 * 2 0902 168 66, 5595.5 \$ 5549.5 * 1 0704 38 5 5 5549.5 * 2 0902 168 66, 5595.5 \$ 5549.5 * 1 0704 58 500 58 500 58 500 58 500 58 500 58 500 58 500 58								=							_						
1 0412 22								1													
1 0436 24 9. 5844.8 5545.5 * 1 1880 91 52. 6558.2 5549.4 * 2 0724 158 63. 6608.8 5549.5 1 0848 25 9. 5844.8 5545.5 * 1 1824 93 53. 6564.9 5549.4 * 2 0736 159 63. 6607.8 5549.5 1 0812 27 9. 5844.8 5545.5 * 1 1824 93 53. 6564.9 5549.4 * 2 0880 161 62. 6606.7 5549.5 1 0812 27 9. 5844.8 5545.5 * 1 1824 93 53. 6564.9 5549.4 * 2 0880 161 62. 6606.7 5549.5 1 0812 27 9. 5844.8 5545.5 * 1 1826 94 54. 6566.1 5549.4 * 2 0880 161 62. 6607.7 5549.5 1 0836 29 9. 5844.8 5545.5 * 1 1900 96 55. 6574.1 5549.4 * 2 0824 163 62. 6607.7 5549.5 1 0838 30 9. 5844.8 5545.5 * 1 1912 97 56. 6576.9 5549.4 * 2 0824 163 62. 6607.7 5549.5 1 08048 30 9. 5844.8 5545.5 * 1 1912 97 56. 6576.9 5549.4 * 2 0884 165 61. 660.6 5549.5 1 0802 31 9. 5844.8 5545.5 * 1 1932 97 57 6582.0 5549.4 * 2 0884 165 61. 660.6 5549.5 1 0802 32 9. 5844.8 5545.5 * 1 1936 99 57. 6582.0 5549.4 * 2 0890 166 61. 660.6 5549.5 1 0802 33 9. 5844.8 5545.5 * 1 1936 99 57. 6582.0 5549.4 * 2 0890 166 61. 6606.6 5549.5 1 0802 33 9. 5844.8 5545.5 * 1 2080 181 58. 5859.5 * 5549.4 * 2 0891 167 61. 6608.6 5549.5 1 0808 34 1. 5845.8 5545.5 * 1 2080 181 58. 5859.5 * 5549.5 * 2 0891 167 61. 6508.6 5549.5 1 0848 35 1. 5845.5 * 1 2080 181 58. 5859.5 * 5549.5 * 2 0891 167 61. 6608.6 5549.5 1 0848 35 1. 5845.5 * 1 2080 181 58. 5889.5 * 5549.5 * 2 0893 160 60. 6507.5 * 5549.5 * 1 0808 35 1. 5845.5 * 1 2080 181 58. 6586.8 5549.5 * 2 0893 160 60. 6507.5 * 5549.5 * 1 0712 37 4. \$888.2 \$5545.5 * 1 2081 180 59. 5593.7 * 5549.5 * 2 0893 160 60. 6507.5 * 5549.5 * 1 0712 37 4. \$888.2 \$545.5 * 1 2081 180 59. 5593.7 * 5549.5 * 2 1080 171 60. 6505.5 * 5549.5 * 1 0712 37 4. \$888.2 \$545.5 * 1 2081 180 59. 5593.7 * 5549.5 * 2 1080 171 60. 6505.5 * 5549.5 * 1 0712 37 4. \$888.2 \$545.5 * 1 2081 180 59. 5593.7 * 5549.5 * 2 1080 171 60. 6505.5 * 5549.5 * 1 0712 37 4. \$888.2 \$545.5 * 1 2081 180 59. 5593.7 * 5549.5 * 2 1080 171 60. 6505.5 * 5549.5 * 1 0712 37 4. \$888.2 \$545.5 * 1 2081 180 60. 6505.7 * 5549.5 * 1 0712 37 4. \$888.2 \$545.5 * 1 2081 180 60. 6505.7 * 5549.5 * 1 0712 37 4. \$888.2 \$545.5 * 1 2081 180 6								1							2						
1 8048 25	1	0424	23	0.				1	1748	90	51.	6554.8	5549.4	*	2		0712	157	63.	6609.8	5549.5
1 0500 26 0 . 5844.8 5545.5 * 1 1824 93 53. 6564.9 5549.4 * 2 0800 61 62. 6606.7 5549.5 1 0512 27 0 . 5844.8 5545.5 * 1 1836 94 54. 6566.1 5549.4 * 2 0800 61 62. 6605.7 5549.5 1 0536 29 0. 5844.8 5545.5 * 1 1948 95 54. 6571.2 5549.4 * 2 0821 162 62. 6604.7 5549.5 1 0536 29 0. 5844.8 5545.5 * 1 1949 96 55. 6574.1 5549.4 * 2 0824 163 62. 6603.7 5549.5 1 0636 29 0. 5844.8 5545.5 * 1 1912 97 56. 6576.9 5549.4 * 2 0826 164 61. 6602.6 5549.5 1 0600 31 0. 5844.8 5545.5 * 1 1912 97 56. 6576.9 5549.4 * 2 0826 164 61. 6602.6 5549.5 1 0612 32 0. 5844.8 5545.5 * 1 1936 99 57. 6582.0 5549.4 * 2 0900 166 61. 6600.6 5549.5 1 0624 33 0. 5844.8 5545.5 * 1 1936 99 57. 6582.0 5549.5 * 2 0901 166 61. 6600.6 5549.5 1 0636 34 1. 5845.9 5545.5 * 1 2000 101 58. 6588.8 5549.5 * 2 0912 167 61. 6599.6 5549.5 1 0636 34 1. 5845.3 5545.5 * 1 2000 101 58. 6588.8 5549.5 * 2 0936 169 60. 6598.5 5549.5 1 0700 36 3. 5846.3 5545.5 * 1 2024 103 59. 6591.5 5549.5 * 2 0936 169 60. 6598.5 5549.5 1 0702 36 3. 5846.3 5545.5 * 1 2024 103 59. 6591.5 5549.5 * 2 0936 169 60. 6596.5 5549.5 1 0712 37 4. 5848.2 5545.5 * 1 2034 103 59. 6591.5 5549.5 * 2 0936 169 60. 6596.5 5549.5 1 0712 37 4. 5848.2 5545.5 * 1 2034 103 59. 6591.5 5549.5 * 2 0936 169 60. 6596.5 5549.5 1 0724 38 5. 5851.4 5545.6 * 1 2048 105 60. 6595.9 5549.5 * 2 1000 171 60. 6596.5 5549.5 1 0724 38 5. 5851.4 5545.6 * 1 2048 105 60. 6595.9 5549.5 * 2 1000 171 60. 6596.5 5549.5 1 0724 38 5. 5851.4 5545.6 * 1 2048 105 60. 6595.9 5549.5 * 2 1024 173 59. 6593.4 5549.5 1 0724 38 5. 5851.4 5545.6 * 1 2048 105 60. 6595.9 5549.5 * 2 1024 173 59. 6593.4 5549.5 1 0724 38 5. 5851.4 5545.6 * 1 2048 105 60. 6595.9 5549.5 * 2 1024 173 59. 6593.4 5549.5 1 0724 38 5. 5851.4 5545.6 * 1 2048 105 60. 6595.9 5549.5 * 2 1024 173 59. 6593.4 5549.5 1 0724 38 5. 5851.4 5545.6 * 1 2048 105 60. 6595.9 5549.5 * 2 1024 173 59. 6593.4 5549.5 1 0724 38 5. 5851.4 5545.6 * 1 2048 105 60. 6595.9 5549.5 * 2 1024 173 59. 6593.4 5549.5 1 0724 38 5. 5851.4 5545.6 * 1 2048 105 60. 6595.9 5549.5 * 2 1048 175 59. 6593.4 5549.5 1 0724	_							=							_						
1 0512 27 0. 5844.8 5545.5 1 1848 95 54. 6568.1 5549.4 2 0880 161 62. 6608.7 5549.5 1 0536 29 0. 5844.8 5545.5 1 1940 96 55. 6574.1 5549.4 2 0824 163 62. 6608.7 5549.5 1 0548 30 0. 5844.8 5545.5 1 1912 97 56. 6574.1 5549.4 2 0824 163 62. 6608.7 5549.5 1 0600 31 0. 5844.8 5545.5 1 1912 97 56. 6574.9 5549.4 2 0836 164 61. 6602.6 5549.5 1 0600 31 0. 5844.8 5545.5 1 1912 99 57. 6584.5 549.4 2 0836 164 61. 6602.6 5549.5 1 0612 32 0. 5844.8 5545.5 1 1936 99 57. 6582.0 5549.4 2 0838 165 61. 6601.6 5549.5 1 0612 32 0. 5844.8 5545.5 1 1936 99 57. 6582.0 5549.4 2 0838 165 61. 6601.6 5549.5 1 0612 32 0. 5844.8 5545.5 1 1936 99 57. 6582.0 5549.4 2 0838 165 61. 6601.6 5549.5 1 0614 33 0. 5844.8 5545.5 1 1936 99 57. 6582.0 5549.4 2 0838 165 61. 6601.6 5549.5 1 0614 33 0. 5844.8 5545.5 1 1936 99 57. 6584.5 5549.5 2 0912 167 61. 6599.6 5549.5 1 0636 34 1. 5845.3 5545.5 1 2000 181 58. 6586.8 5549.5 2 0932 168 60. 6597.5 5549.5 1 0648 35 1. 5845.3 5545.5 1 2001 181 202 58. 6586.8 5549.5 2 0932 168 60. 6597.5 5549.5 1 0712 37 4. 5848.2 5545.5 1 2036 184 59. 6591.5 5549.5 2 09348 170 60. 6595.5 5549.5 1 0736 39 7. 5851.4 5545.6 1 2004 180 59. 6591.5 5549.5 2 1000 171 60. 6595.5 5549.5 1 0736 39 7. 5851.4 5545.6 1 2100 106 60. 6598.1 5549.5 2 1002 171 60. 6591.5 5549.5 1 0800 41 11. 5871.7 5545.7 1 2124 108 61. 6600.3 5549.5 2 1041 173 59. 6591.4 5549.5 1 0800 41 11. 5871.7 5545.7 1 2124 108 61. 6600.3 5549.5 2 1041 173 59. 6591.4 5549.5 1 0800 44 11. 5871.7 5545.7 1 2124 108 61. 6600.3 5549.5 2 1104 173 59. 6591.4 5549.5 1 0800 40 11. 5871.5 5545.7 1 2124 108 61. 6600.3 5549.5 2 1104 173 59. 6591.4 5549.5 1 0800 40 11. 60. 5549.5 5549.5 1 0800 40 11. 60. 5549.5 5549.5 1 0800 40 11. 60. 5549.5 5549.5 1 0800 40 11. 60. 5549.5 5549.5 1 0800 40 11. 60. 5549.5 5549.5 1 0800 40 11. 60. 5549.5 5549.5 1 0800 40 11. 60. 5549.5 5549.5 1 0800 40 11. 60. 5549.5 5549.5 1 0800 40 11. 60. 5549.5 5549.5 1 0800 40 11. 60. 5549.5 5549.5 1 0800 40 11. 60. 5549.5 5549.5 1 0800 40 11. 60. 5549.5 5549.5 1 0800 40 11. 60. 5549.5 5549.5 1 0800 40 11. 60.								-													
1 0554 28 0. 5844.8 5545.5 * 1 1848 95 54. 6571.2 5549.4 * 2 0812 162 62. 6604.7 5549.5 * 1 0548 30 0. 5844.8 5545.5 * 1 1910 97 56. 6574.1 5549.4 * 2 0836 164 61. 6602.6 5549.5 * 1 0609 31 0. 5844.8 5545.5 * 1 1912 97 56. 6574.1 5549.4 * 2 0836 164 61. 6602.6 5549.5 * 1 0609 31 0. 5844.8 5545.5 * 1 1912 97 56. 6579.5 5549.4 * 2 0836 164 61. 6602.6 5549.5 * 1 0612 32 0. 5844.8 5545.5 * 1 1936 99 57. 6582.0 5549.4 * 2 0900 166 61. 6600.6 5549.5 * 1 0634 33 0. 5844.8 5545.5 * 1 1934 109 57. 6582.0 5549.4 * 2 0900 166 61. 6600.6 5549.5 * 1 0634 33 1. 5845.3 5545.5 * 1 2000 101 58. 6582.0 5549.5 * 2 0912 167 61. 6599.6 5549.5 * 1 0648 35 1. 5845.3 5545.5 * 1 2012 102 58. 6589.2 5549.5 * 2 0934 168 60. 6599.5 5549.5 * 1 0700 36 3. 5846.3 5545.5 * 1 2012 102 58. 6589.2 5549.5 * 2 0934 168 60. 6595.5 5549.5 * 1 0712 37 4. 5848.2 5545.5 * 1 2036 104 59. 6591.5 5549.5 * 2 0934 106 60. 6596.5 5549.5 * 1 0712 37 4. 5848.2 5545.5 * 1 2036 104 59. 6591.5 5549.5 * 2 1000 171 60. 6595.5 5549.5 * 1 0712 37 4. 5848.2 5545.6 * 1 2048 105 60. 6595.9 5549.5 * 2 1000 171 60. 6595.5 5549.5 * 1 0736 39 7. 5856.4 5545.6 * 1 2100 106 60. 6595.9 5549.5 * 2 1012 172 59. 6594.4 5549.5 * 1 0734 84 0. 9 5863.1 5545.6 * 1 2100 106 60. 6595.5 5549.5 * 2 1024 173 59. 6593.4 5549.5 * 1 0748 40 9. 5863.1 5545.6 * 1 2100 106 60. 6596.5 5549.5 * 2 1024 173 59. 6593.4 5549.5 * 1 0804 41 11. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1048 175 59. 6591.4 5549.5 * 1 0804 41 11. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1048 175 59. 6591.4 5549.5 * 1 0804 41 11. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1048 175 59. 6591.4 5549.5 * 1 0804 41 11. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1104 176 59. 6599.4 5549.5 * 1 0804 41 11. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1104 175 59. 6591.4 5549.5 * 1 0804 41 11. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1104 176 59. 6599.4 5549.5 * 1 0804 41 11. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1104 176 59. 6599.4 5549.5 * 1 0804 41 11. 5871.7 5545.7 * 1 2124 108	_							=													
1 0536 29 0. 5844.8 5545.5 * 1 1990 96 55. 6574.1 5549.4 * 2 0824 163 62. 6693.7 5549.5 1 0690 31 0. 5844.8 5545.5 * 1 1912 77 56. 6576.9 5549.4 * 2 0848 165 61. 6692.6 5549.5 1 0612 32 0. 5844.8 5545.5 * 1 1936 99 57. 6582.0 5549.4 * 2 0848 165 61. 6691.6 5549.5 1 0612 32 0. 5844.8 5545.5 * 1 1936 99 57. 6582.0 5549.4 * 2 0990 166 61. 6691.6 5549.5 1 0612 32 0. 5844.8 5545.5 * 1 1936 99 57. 6582.0 5549.5 * 2 0912 167 61. 6599.6 5549.5 1 0636 34 1. 5845.0 5545.5 * 1 2090 101 58. 6586.8 5549.5 * 2 0912 167 61. 6599.6 5549.5 1 0648 35 1. 5845.3 5545.5 * 1 2021 102 58. 6586.8 5549.5 * 2 0934 168 60. 6598.5 5549.5 1 0700 36 3. 5846.3 5545.5 * 1 2024 103 59. 6591.5 5549.5 * 2 0948 170 60. 6595.5 5549.5 1 0712 37 4. 5848.2 5545.5 * 1 2024 103 59. 6591.5 5549.5 * 2 0948 170 60. 6595.5 5549.5 1 0712 37 4. 5848.2 5545.5 * 1 2024 103 59. 6591.5 5549.5 * 2 1000 171 60. 6595.5 5549.5 1 0724 38 5. 5851.4 5545.6 * 1 2024 103 59. 6591.5 5549.5 * 2 1000 171 60. 6595.5 5549.5 1 0724 38 5. 5851.4 5545.6 * 1 2024 104 59. 6593.7 5549.5 * 2 1000 171 60. 6595.5 5549.5 1 0748 40 9. 5863.1 5545.6 * 1 2024 104 66 60. 6598.1 5549.5 * 2 1024 173 59. 6594.4 5549.5 1 0748 40 9. 5863.1 5545.6 * 1 2104 106 60. 6598.1 5549.5 * 2 1042 173 59. 6594.4 5549.5 1 0824 43 15. 5894.4 5545.6 * 1 2124 106 60. 6692.5 5549.5 * 2 1042 173 59. 6594.4 5549.5 1 0824 43 15. 5894.4 5545.6 * 1 2124 106 60. 6602.5 5549.5 * 2 1048 175 59. 6594.4 5549.5 1 0824 43 15. 5894.4 5545.6 * 1 2124 106 60. 6602.5 5549.5 * 2 1048 175 59. 6594.4 5549.5 1 0824 43 15. 5894.4 5545.8 * 1 2136 109 62. 6604.7 5549.5 * 2 1048 175 59. 6594.4 5549.5 1 0824 43 15. 5894.4 5545.8 * 1 2136 109 62. 6604.7 5549.5 * 2 1144 175 59. 6594.4 5549.5 1 0824 43 15. 5894.4 5545.8 * 1 2136 109 62. 6604.7 5549.5 * 2 1144 175 59. 6594.5 5549.5 1 0824 43 15. 5894.4 5546.8 * 1 2236 114 63. 6604.7 5549.5 * 2 1144 18 18 66. 6604.7 5549.5 * 2 1144 18 10 64. 6604.6 5549.5 * 2 1144 18 10 64. 6604.6 5549.5 * 2 1144 18 10 64. 6604.6 5549.5 * 2 1144 18 10 64. 6604.6 5549.5 * 2 1144 18 10 64. 6604.6 5549.5 * 2 1								-													
1 06548 36 0 . \$844.8 5545.5 * 1 1912 97 56. 6576.9 5549.4 * 2 0836 164 61. 6602.6 5549.5 1 0600 31 0 . \$844.8 5545.5 * 1 1912 98 56. 6579.5 5549.4 * 2 0890 166 61. 6601.6 5549.5 1 0612 32 0 . \$844.8 5545.5 * 1 1914 190 57. 6584.5 5549.5 * 2 0891 166 61. 6600.6 5549.5 1 0636 34 1. 5845.0 5545.5 * 1 2000 181 58. 6586.8 5549.5 * 2 0912 167 61. 6599.6 5549.5 1 0648 35 1. 5845.3 5545.5 * 1 2012 102 58. 6586.8 5549.5 * 2 0934 168 60. 6598.5 5549.5 1 0700 36 3. 5846.3 5545.5 * 1 2024 103 59. 6591.5 5549.5 * 2 0934 169 60. 6597.5 5549.5 1 0712 37 4. 5848.2 5545.5 * 1 2024 103 59. 6591.5 5549.5 * 2 0938 170 60. 6595.5 5549.5 1 0712 37 4. 5848.2 5545.5 * 1 2024 103 59. 6591.5 5549.5 * 2 0938 170 60. 6595.5 5549.5 1 0712 37 4. 5848.2 5545.6 * 1 2024 103 59. 6593.7 5549.5 * 2 1000 171 60. 6595.5 5549.5 1 0736 39 7. 5856.4 5545.6 * 1 2024 103 60. 6595.9 5549.5 * 2 1002 171 60. 6595.5 5549.5 1 0734 38 5. 5851.4 5545.6 * 1 2024 103 60. 6695.9 5549.5 * 2 1024 173 59. 6593.4 5549.5 1 0734 80 9. 5863.1 5545.6 * 1 2012 107 60. 6595.9 5549.5 * 2 1024 173 59. 6593.4 5549.5 1 0734 80 9. 5863.1 5545.6 * 1 2012 107 61. 6600.3 5549.5 * 2 1024 173 59. 6593.4 5549.5 1 0804 11 1. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1024 173 59. 6591.4 5549.5 1 0804 11 1. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1024 173 59. 6591.4 5549.5 1 0804 11 1. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1024 173 59. 6591.4 5549.5 1 0804 11 1. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1024 173 59. 6591.4 5549.5 1 0804 11 1. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1024 173 59. 6591.4 5549.5 * 1 0804 11 1. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1024 173 59. 6591.4 5549.5 * 1 0804 11 1. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1124 177 58. 6585.5 5549.5 * 1 0804 11 1. 5871.7 5545.6 * 1 2120 110 61. 6602.5 5549.5 * 2 1124 177 58. 6585.5 5549.5 * 1 0804 11 1. 5871.7 5545.6 * 1 2024 110 61. 6602.5 5549.5 * 2 1124 177 58. 6588.5 5549.5 * 1 0804 11 100 100 100 100 100 100 100 100 10	_							-							_						
1 0660 31 0. \$844.8 5545.5 * 1 1934 98 56. 6579.5 5549.4 * 2 0848 165 61. 6601.6 5549.5 1 0612 32 0. \$844.8 5545.5 * 1 1936 99 57. 6582.0 5549.4 * 2 0890 166 61. 6600.6 5549.5 1 0636 34 1. \$845.0 \$545.5 * 1 1948 100 57. 6582.0 \$549.5 * 2 08912 167 61. 6599.6 \$549.5 1 0648 35 1. \$845.8 \$545.5 * 1 2000 101 58. 6586.8 \$549.5 * 2 0892 168 60. 6598.5 \$549.5 1 0700 36 3. \$846.3 \$545.5 * 1 2024 103 59. 6591.5 \$549.5 * 2 08936 169 60. 6597.5 \$549.5 1 0712 37 4. \$584.5 \$545.5 * 1 2024 103 59. 6591.5 \$549.5 * 2 0894 170 60. 6595.5 \$549.5 1 0712 37 4. \$584.5 \$545.6 * 1 2024 103 59. 6591.5 \$549.5 * 2 0894 170 60. 6595.5 \$549.5 1 0714 38 5. \$545.5 * 1 2036 104 59. 6593.7 \$549.5 * 2 1000 171 60. 6595.5 \$549.5 1 0714 38 5. \$581.4 \$5545.6 * 1 2100 106 60. 6598.1 \$549.5 * 2 1012 172 59. 6594.4 \$549.5 1 0714 38 6. \$549.5 * 1 210 106 60. 6598.1 \$549.5 * 2 1012 172 59. 6594.4 \$549.5 1 0714 30 9. \$863.1 \$545.6 * 1 2100 106 60. 6598.1 \$549.5 * 2 1012 172 59. 6594.4 \$549.5 1 0800 411 1. \$871.7 \$545.7 * 1 2124 108 61. 6602.5 \$549.5 * 2 1036 174 59. 6592.4 \$549.5 1 0800 41 11. \$871.7 \$545.7 * 1 2124 108 61. 6602.5 \$549.5 * 2 1048 175 59. 6591.4 \$549.5 1 0800 41 11. \$871.7 \$545.7 * 1 2124 108 61. 6602.5 \$549.5 * 2 1100 176 59. 6590.4 \$549.5 1 0804 43 15. \$589.4 \$545.6 * 1 2100 111 63. 6609.1 \$549.5 * 2 1112 177 \$8. 6588.6 \$549.5 \$1 0804 43 15. \$598.4 \$545.6 * 1 2120 111 63. 6609.1 \$549.5 * 2 1112 177 \$8. 6588.6 \$549.5 \$1 0804 43 15. \$984.6 \$545.6 * 1 2200 111 63. 6609.1 \$549.5 * 2 1112 177 \$8. 6588.6 \$549.5 \$1 0804 43 15. \$984.6 \$545.6 * 1 2200 111 63. 6609.1 \$549.5 * 2 1124 178 \$8. 6586.8 \$549.5 \$1 0804 44 17. \$998.3 \$546.6 * 1 2200 111 63. 6609.1 \$549.5 * 2 1124 178 \$8. 6586.8 \$549.5 \$1 0804 43 \$15.0 \$100								-													
1 06612 32 0	1			0.				1							2						
1	1	0612	32	0.	5844.8	5545.5	*	1	1936	99	57.	6582.0			2		0900	166	61.	6600.6	5549.5
1 0648 35 1. 5845.3 5545.5 * 1 2012 102 58. 6589.2 5549.5 * 2 0936 169 60. 6597.5 5549.5 1 0708 36 3. 5846.3 5545.5 * 1 2024 103 59 6591.5 5549.5 * 2 0948 170 60. 6596.5 5549.5 1 0712 37 4. 5848.2 5545.5 * 1 2036 104 59 6593.7 5549.5 * 2 1000 171 60. 6595.5 5549.5 1 0712 37 4. 5848.2 5545.5 * 1 2036 104 59 6593.7 5549.5 * 2 1000 171 60. 6595.5 5549.5 1 0736 39 7. 5856.4 * 5154.6 * 1 200 106 60. 6595.9 5549.5 * 2 1021 172 59 6594.4 5549.5 * 1 0736 39 7. 5856.4 * 5154.6 * 1 2100 106 60. 6598.1 5549.5 * 2 1021 172 59 6594.4 5549.5 * 1 0748 40 9. 5863.1 5545.6 * 1 2102 106 106 60. 6598.1 5549.5 * 2 1024 173 59. 6594.4 5549.5 * 1 0800 41 11. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1048 175 59. 6594.4 5549.5 * 1 0812 42 13. 5882.1 5545.8 * 1 2126 109 66. 6602.5 5549.5 * 2 1048 175 59. 6591.4 5549.5 * 1 0812 42 13. 5882.1 5545.8 * 1 2126 109 61. 6602.5 5549.5 * 2 1100 176 59. 6594.4 5549.5 * 1 0836 44 17. 5983.3 5546.0 * 1 2200 111 63. 6600.9 5549.5 * 2 1112 177 58. 6589.5 \$549.5 * 1 0836 44 17. 5983.3 5546.0 * 1 2200 111 63. 6600.9 5549.5 * 2 1112 177 58. 6588.6 5589.5 * 1 0900 46 21. 5940.6 5546.3 * 1 2224 113 64. 6611.3 5549.5 * 2 1112 178 58. 6588.6 5589.5 * 1 0900 46 21. 5940.6 5546.3 * 1 2224 113 64. 6611.3 5549.5 * 2 1112 178 58. 6588.6 5589.5 * 1 0900 46 21. 5940.6 5546.3 * 1 2224 113 64. 6611.3 5549.5 * 2 1118 179 58. 6588.6 5589.5 * 1 0900 46 27. 5948.8 5546.8 * 1 2200 116 65. 6617.7 5549.6 * 2 1128 180 58. 6586.8 5549.5 * 1 0900 46 27. 5948.8 5546.8 * 1 2200 116 65. 6617.7 5549.6 * 2 1224 188 57. 6585.1 5549.5 * 1 0900 49 27. 5998.8 5546.8 * 1 2300 116 66. 6617.7 5549.6 * 2 1224 188 57. 6585.1 5549.5 * 1 0900 49 27. 5998.8 5546.8 * 1 2300 116 66. 6617.7 5549.6 * 2 1224 188 57. 6585.1 5549.5 * 1 0900 49 27. 5998.8 5546.8 * 1 2300 116 66. 6617.7 5549.6 * 2 1224 188 57. 6585.1 5549.5 * 1 0900 40 21. 600.0 * 100.0								=						*	_						
1 0700 36 3. \$846.3 \$545.5 * 1 2024 103 59. \$6591.5 \$549.5 * 2 0948 170 \$60. \$6596.5 \$549.5 \$1 0712 37 4. \$848.2 \$545.5 * 1 2036 104 59. \$6593.7 \$5549.5 * 2 1000 171 69. \$6595.5 \$549.5 \$1 0724 38 \$5. \$851.4 \$545.6 * 1 2048 105 60. \$6595.9 \$549.5 * 2 1012 172 \$9. \$6594.4 \$549.5 \$1 0736 39 7. \$856.4 \$545.6 * 1 2100 106 60. \$6595.9 \$549.5 * 2 1024 173 59. \$6593.4 \$5549.5 \$1 0738 40 9. \$5863.1 \$545.6 * 1 2112 107 61. \$6608.3 \$549.5 * 2 1024 173 59. \$6593.4 \$5549.5 \$1 08800 41 11. \$871.7 \$545.7 * 1 2124 108 61. \$6608.3 \$549.5 * 2 1036 174 59. \$6591.4 \$5549.5 \$1 0812 42 13. \$882.1 \$545.8 * 1 2136 109 62. \$6604.7 \$549.5 * 2 1100 176 59. \$6590.4 \$5549.5 \$1 0832 43 15. \$894.4 \$545.9 * 1 2148 110 63. \$6606.9 \$5549.5 * 2 1100 176 59. \$6590.4 \$5549.5 \$1 0836 44 17. \$5908.3 \$546.0 * 1 2220 111 63. \$6609.1 \$549.5 * 2 1112 177 \$8. \$689.5 \$549.5 \$1 0838 45 19. \$592.7 \$546.1 * 1 2212 112 64. \$6611.3 \$549.5 * 2 1124 178 58. \$6586.6 \$5549.5 \$1 0900 46 21. \$5940.6 \$5546.3 * 1 2224 113 64. \$6613.5 \$5549.5 * 2 11148 180 \$8. \$6586.8 \$5549.5 \$1 0912 47 23. \$5958.8 \$546.4 * 1 2236 114 65. \$6615.7 \$5549.6 * 2 1124 188 58. \$6586.8 \$5549.5 \$1 0912 47 23. \$5958.8 \$546.8 * 1 2236 114 65. \$6615.7 \$5549.6 * 2 1124 183 57. \$6581.5 \$549.5 \$1 0936 49 27. \$5998.8 \$546.8 * 1 2300 116 66. \$6615.7 \$549.6 * 2 1124 183 57. \$6581.5 \$549.5 \$1 0936 49 27. \$5998.8 \$546.8 * 1 2300 116 66. \$6615.7 \$549.6 * 2 1124 183 57. \$6581.5 \$549.5 \$1 0938 50 28. \$6020.3 \$546.9 * 1 2312 117 \$66. \$6617.7 \$549.6 * 2 1124 183 57. \$6581.5 \$549.5 \$1 1000 51 30. \$6042.7 \$547.1 * 1 2324 118 67. \$6623.8 \$5549.6 * 2 1124 183 57. \$6581.5 \$549.5 \$1 1000 51 30. \$6042.7 \$547.1 * 1 2324 118 67. \$6623.8 \$549.6 * 2 1124 183 57. \$6581.5 \$549.5 \$1 1000 51 30. \$6042.7 \$547.1 * 1 2324 118 67. \$6623.8 \$549.6 * 2 1124 183 57. \$6581.5 \$549.5 \$1 1100 56 38. \$6104.7 \$5547.7 * 2 0001 212 69. \$6630.0 \$549.6 * 2 1300 186 57. \$6581.6 \$5549.4 \$1 1000 51 30. \$6042.7 \$547.1 * 1 2324 118 67. \$6623.8 \$5549.6 * 2 1348 199 \$6. \$6577.2 \$5549.4 \$1 1122 57 38. \$6104.0 \$5548.8 * 2 0012 122 69. \$6630.0 \$549.6								-													
1 0712 37								=					3343.3		_						
1 0724 38 5. 5851.4 5545.6 * 1 2048 105 60. 6595.9 5549.5 * 2 1012 172 59. 6594.4 5549.5 1 0736 39 7. 5856.4 5545.6 * 1 2100 106 60. 6598.1 5549.5 * 2 1024 173 59. 6593.4 5549.5 1 0748 40 9. 5863.1 5545.6 * 1 2112 107 61. 6600.3 5549.5 * 2 1036 174 59. 6592.4 5549.5 1 0800 41 11. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1048 175 59. 6591.4 5549.5 1 0812 42 13. 5882.1 5545.8 * 1 2124 108 61. 6602.5 5549.5 * 2 1048 175 59. 6591.4 5549.5 1 0812 42 13. 5882.1 5545.8 * 1 2136 109 62. 6604.7 5549.5 * 2 1100 176 59. 6590.4 5549.5 1 0836 44 17. 5908.3 5546.0 * 1 2200 111 63. 6609.1 5549.5 * 2 1112 177 58. 6589.5 5549.5 1 0836 44 17. 5908.3 5546.0 * 1 2200 111 63. 6609.1 5549.5 * 2 1112 177 58. 6588.6 5549.5 1 0838 45 19. 5923.7 5546.1 * 1 2212 112 64. 6611.3 5549.5 * 2 1136 179 58. 6587.7 5549.5 1 0900 46 21. 5940.6 5546.3 * 1 2224 113 64. 6613.5 5549.6 * 2 1148 180 58. 6586.8 5549.5 1 0912 47 23. 5958.8 5546.6 * 1 2226 114 65. 6615.7 5549.6 * 2 1120 181 58. 6586.8 5549.5 1 0912 47 23. 5958.8 5546.6 * 1 2248 115 65. 6617.7 5549.6 * 2 1224 183 57. 6585.1 5549.5 1 0936 49 27. 5998.8 5546.6 * 1 2248 115 65. 6617.7 5549.6 * 2 1224 183 57. 6584.2 5549.5 1 0936 49 27. 5998.8 5546.6 * 1 2248 115 65. 6617.7 5549.6 * 2 1224 183 57. 6584.2 5549.5 1 0948 50 28. 6020.3 5546.6 * 1 2321 17 66. 6621.8 5549.6 * 2 1224 183 57. 6584.2 5549.5 1 1040 51 30. 6042.7 5547.1 * 1 2324 118 67. 6623.8 5549.6 * 2 1224 183 57. 6581.2 5549.4 1 1012 52 32. 6066.0 5547.3 * 1 2348 120 68. 6627.9 5549.6 * 2 1324 188 56. 6579.8 5549.4 1 1042 53 34. 6099.1 5547.5 * 1 2348 120 68. 6627.9 5549.6 * 2 1324 188 56. 6579.8 5549.4 1 1048 55 37. 6140.0 5547.9 * 2 0000 121 69. 6633.0 5549.6 * 2 1324 188 56. 6577.9 5549.4 1 1048 55 37. 6140.0 5547.9 * 2 0001 12 69. 6633.0 5549.6 * 2 1324 189 56. 6578.9 5549.4 1 1048 59 30. 600.0 5547.3 * 1 2348 120 68. 6637.9 5549.6 * 2 1324 189 56. 6577.2 5549.4 1 1124 58 39. 6192.5 5548.4 * 2 0012 127 71. 6638.0 5549.6 * 2 1348 199 56. 6577.2 5549.4 1 1124 58 39. 6192.5 5548.4 * 2 0012 127 71. 6638.0 5549.6 * 2 1344 199								=					22.2.2								
1 0736 39 7. 5856.4 5545.6 * 1 2100 106 60. 6598.1 5549.5 * 2 1024 173 59. 6593.4 5549.5 1 0748 40 9. 5863.1 5545.6 * 1 2112 107 61. 6600.3 5549.5 * 2 1036 174 59. 6592.4 5549.5 1 0800 41 11. 5871.7 5545.7 * 1 2124 108 61. 6602.5 5549.5 * 2 1048 175 59. 6591.4 5549.5 1 0812 42 13. 5882.1 5545.8 * 1 2136 109 62. 6604.7 5549.5 * 2 1100 176 59. 6590.4 5549.5 1 0824 43 15. 5894.4 5545.9 * 1 2148 110 63. 6606.9 5549.5 * 2 1100 176 59. 6590.4 5549.5 1 0836 44 17. 5908.3 5546.0 * 1 2200 111 63. 6609.1 5549.5 * 2 1112 177 58. 6588.6 5584.5 549.5 1 0836 44 17. 5908.3 5546.0 * 1 2200 111 63. 6609.1 5549.5 * 2 1124 178 58. 6588.6 5549.5 1 0836 44 17. 5908.3 5546.0 * 1 2200 111 63. 6609.1 5549.5 * 2 1124 178 58. 6587.7 5549.5 1 0838 45 19. 5923.7 5546.1 * 1 2212 112 64. 6611.3 5549.5 * 2 1136 179 58. 6587.7 5549.5 1 0904 46 21. 5940.6 5546.3 * 1 2224 113 64. 6613.5 5549.6 * 2 1148 180 58. 6587.7 5549.5 1 0912 47 23. 5958.8 5546.4 * 1 2236 114 65. 6615.7 5549.6 * 2 1120 181 58. 6586.0 5549.5 1 0914 48 25. 5978.3 5546.6 * 1 2248 115 65. 6617.7 5549.6 * 2 1210 181 58. 6586.0 5549.5 1 0936 49 27. 5998.8 5546.6 * 1 2248 115 65. 6617.7 5549.6 * 2 1212 182 57. 6584.2 5549.5 1 0936 49 27. 5998.8 5546.8 * 1 2300 116 66. 6621.8 5549.6 * 2 1212 183 57. 6584.2 5549.5 1 0908 51 30. 6642.7 5547.1 * 1 2312 117 66. 6621.8 5549.6 * 2 1224 183 57. 6584.2 5549.5 1 1000 51 30. 6642.7 5547.1 * 1 2324 118 67. 6625.9 5549.6 * 2 1248 185 57. 6584.2 5549.5 1 1000 51 30. 6602.7 5547.3 * 1 2336 119 67. 6625.9 5549.6 * 2 1324 188 56. 6579.8 5549.4 1 1012 52 32. 6666.0 5547.3 * 1 2336 119 67. 6625.9 5549.6 * 2 1324 188 56. 6578.9 5549.4 1 1024 53 34. 6699.1 5547.9 * 2 0001 212 69. 6632.0 5549.6 * 2 1336 189 56. 6578.9 5549.4 1 1124 58 39. 6616.0 5547.9 * 2 0001 212 69. 6632.0 5549.6 * 2 1336 189 56. 6578.9 5549.4 1 1124 58 39. 6616.0 5547.9 * 2 0001 212 69. 6632.0 5549.6 * 2 1336 189 56. 6578.9 5549.4 1 1124 58 39. 6616.0 5547.9 * 2 0001 212 69. 6632.0 5549.6 * 2 1348 199 56. 6578.9 5549.4 1 1124 58 39. 660.0 5547.9 * 2 0001 212 69. 6632.0 5549.6 * 2								-							_						
1 0748 40 9. 5863.1 5545.6 1 2112 107 61. 6600.3 5549.5 2 1048 175 59. 6592.4 5549.5 1 0812 42 13. 5882.1 5545.8 * 1 2136 6604.7 5549.5 * 2 1100 176 59. 6592.4 5549.5 1 0824 43 15. 5894.4 5545.9 * 1 2148 110 63. 6606.9 5549.5 * 2 1112 177 58. 6589.5 5549.5 1 0836 44 17. 5908.3 5546.6 * 1 2210 11 63. 6606.9 5549.5 * 2 1112 177 58. 6589.5 5549.5 1 0848 45 19.5 24.1 130 64. 6613.5 5549.6 * 2 1144 180 8. 6586.8	_							-						*							
1 0812 42 13. 5881.1 5545.8 * 1 2136 109 62. 6604.7 5549.5 * 2 1100 176 59. 6590.4 5549.5 1 0824 43 15. 5894.4 5545.9 * 1 2148 110 63. 6606.9 5549.5 * 2 1112 177 58. 6580.5 5549.5 1 0836 44 17. 5908.3 5546.0 * 1 2200 111 63. 6606.9 5549.5 * 2 1112 177 58. 6580.5 5549.5 1 0848 45 19. 5923.7 5546.1 * 1 2212 112 64. 6611.3 5549.5 * 2 1136 179 58. 6587.7 5549.5 1 0900 46 21. 5940.6 5546.3 * 1 2224 113 64. 6613.5 5549.6 * 2 1148 180 58. 6586.8 5549.5 1 0912 47 23. 5958.8 5546.4 * 1 2236 114 65. 6615.7 5549.6 * 2 1148 180 58. 6586.8 5549.5 1 0912 47 23. 5958.8 5546.6 * 1 2248 115 65. 6615.7 5549.6 * 2 1121 182 57. 6585.1 5549.5 1 0936 49 27. 5998.8 5546.8 * 1 2300 116 66. 6619.7 5549.6 * 2 1212 182 57. 6585.1 5549.5 1 0948 50 28. 6020.3 5546.9 * 1 2312 117 66. 6621.8 5549.6 * 2 1224 183 57. 6584.2 5549.5 1 1000 51 30. 66042.7 5547.3 * 1 2336 119 67. 6623.8 5549.6 * 2 1248 185 57. 6582.5 5549.4 1 1012 52 32. 6066.0 5547.3 * 1 2336 119 67. 6623.8 5549.6 * 2 1324 188 57. 6581.5 5549.4 1 1024 53 34. 6090.1 5547.5 * 1 2348 120 68. 6627.9 5549.6 * 2 1324 188 56. 6579.8 5549.4 1 1036 54 35. 6114.7 5547.7 * 2 0000 121 69. 6630.0 5549.6 * 2 1324 188 56. 6579.8 5549.4 1 1048 55 37. 6140.0 5547.9 * 2 0012 122 69. 6632.0 5549.6 * 2 1324 188 56. 6578.9 5549.4 1 1048 55 37. 6140.0 5547.9 * 2 0012 122 69. 6632.0 5549.6 * 2 1348 190 56. 6578.9 5549.4 1 112 57 38. 6192.4 5548.1 * 2 0024 123 70. 6633.9 5549.6 * 2 1348 190 56. 6578.9 5549.4 1 112 57 38. 6192.4 5548.1 * 2 0034 125 71. 6637.0 5549.6 * 2 1442 193 55. 6576.3 5549.4 1 1126 58 39. 6219.5 5548.2 * 2 0048 125 71. 6637.0 5549.6 * 2 1424 193 55. 6576.3 5549.4 1 1136 59 40. 6247.0 5548.8 * 2 0101 127 71. 6638.3 5549.6 * 2 1424 193 55. 6576.3 5549.4 1 1126 58 39. 6219.5 5548.2 * 2 0048 125 71. 6637.0 5549.6 * 2 1424 193 55. 6576.3 5549.4 1 1126 68 44. 6303.3 5548.5 * 2 0124 128 71. 6638.3 5549.6 * 2 1424 193 55. 6576.3 5549.4 1 1126 68 43. 6386.1 5548.8 * 2 0124 128 71. 6638.3 5549.6 * 2 1424 193 55. 6576.3 5549.4 1 1226 64 43. 6386.1 5548.8 * 2 0124 128 71. 6638.0 5549.6 * 2 1424								1						*	2						
1 0824 43 15. 5894.4 5545.9 * 1 2148 110 63. 6606.9 5549.5 * 2 1112 177 58. 6589.5 5549.5 1 0836 44 17. 5908.3 5546.0 * 1 2200 111 63. 6609.1 5549.5 * 2 1126 178 58. 6588.6 6588.6 5549.5 1 0900 46 21. 5940.6 5546.3 * 1 2212 112 64. 6613.5 5549.6 * 2 1148 180 58. 6586.8 5549.5 1 0912 47 23. 5958.8 5546.6 * 1 22248 115 65. 6617.7 5549.6 * 2 1200 181 58. 6586.8 5549.5 1 0936 49 27. 5998.8 5546.6 * 1 2248 115 65. 6617.7 5549.6 * 2 1221 182 57. 6586.1 5549.5 1 0936 49 27. 5998.8 5546.8 * 1 2300 116 66. 6617.7 5549.6 * 2 1224	1	0800	41	11.	5871.7	5545.7	*	1	2124	108	61.	6602.5	5549.5	*	2		1048	175	59.	6591.4	5549.5
1 0836 44 17. 5908.3 5546.0 * 1 2200 111 63. 6609.1 5549.5 * 2 1124 178 58. 6588.6 5549.5 1 0900 46 21. 5940.6 5546.3 * 1 2212 113 5549.5 * 2 1136 179 58. 6587.7 5549.5 1 0900 46 21. 5940.6 \$546.3 * 1 2224 113 64. 6615.7 5549.6 * 2 1200 181 58. 6586.8 5549.5 1 0912 47 23. 5958.8 5546.6 * 1 2248 115 65. 6615.7 5549.6 * 2 1212 182 57. 6585.1 5549.5 1 0936 49 27. 5998.8 5546.8 1 2300 116 66. 6611.7 5549.6 * 2 1221 183 57. 6581.5 5549.5 1 0936	_							-							-						
1 0848 45 19 5923.7 5546.1 * 1 2212 112 64 6611.3 5549.6 * 2 1136 179 58 6587.7 5549.5 1 0900 46 21 5946.6 5546.3 * 1 2224 113 64 6613.5 5549.6 * 2 1148 180 58 6586.8 5549.5 1 0924 48 25 5978.3 5546.6 * 1 2248 115 65 6617.7 5549.6 * 2 1221 182 57 6585.1 5549.5 1 0936 49 27 5998.8 5546.8 * 1 2300 116 66 6619.7 5549.6 * 2 1224 183 57 6585.1 5549.5 1 0948 50 28 66020.3 5546.8 * 1 2312 117 66 6621.8 5549.6 * 2 1224 188 57 6582.5 5549.5 1 1000 51 30 6042.7 5547.1 * 1 2324 118 67 6623.8 5549.6 * 2 1248 185								-							_						
1 0900 46 21. 5940.6 5546.3 * 1 2224 113 64. 6613.5 5549.6 * 2 1148 180 58. 6586.8 5549.5 1 0912 47 23. 5958.8 5546.6 * 1 2236 114 65. 6615.7 5549.6 * 2 1200 181 58. 6586.0 5549.5 1 0924 48 25. 5978.3 5546.6 * 1 2248 115 65. 6617.7 5549.6 * 2 1224 183 57. 6584.2 5549.5 1 0936 49 27. 5998.8 5546.8 * 1 2312 117 66. 6621.8 5549.6 * 2 1224 183 57. 6584.2 5549.5 1 1094 51 30. 6042.7 5547.1 * 1 2312 117 66. 6621.8 5549.6 * 2 1236 185 549.4 1 1012 52 32. 6066.0 5547.3 * 1 2316 19 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>2242.2</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								-					2242.2		_						
1 0912 47 23. 5958.8 5546.4 * 1 2236 114 65. 6615.7 5549.6 * 2 1200 181 58. 6586.0 5549.5 1 0936 49 27. 5998.8 5546.8 * 1 2300 116 66. 6615.7 5549.6 * 2 1224 183 57. 6585.1 5549.5 1 936 49 27. 5998.8 5546.8 * 1 2300 166. 6619.7 5549.6 * 2 1224 183 57. 6584.2 5549.5 1 1 1000 51 30. 6042.7 5547.1 * 1 2324 118 67. 6623.8 5549.6 * 2 1248 185 57. 6582.5 5549.4 1 1024 53 34. 6090.1 5547.5 * 1 2336 119 67. 6625.9 5549.6								-							_						
1 0924 48 25. 5978.3 5546.6 * 1 2248 115 65. 6617.7 5549.6 * 2 1212 182 57. 6585.1 5549.5 1 0936 49 27. 5998.8 5546.8 * 1 2300 116 66. 6619.7 5549.6 * 2 1224 183 57. 6584.2 5549.5 1 1090 51 30. 6042.7 5547.1 * 1 2324 118 67. 6623.8 5549.6 * 2 1248 185 57. 6582.5 5549.4 1 1012 52 32. 6066.0 5547.3 * 1 2336 119 67. 6625.9 5549.6 * 2 1300 186 57. 6581.6 5549.4 1 1024 33 34. 6090.1 5547.7 * 2 0000 121 69.								-							_						
1 0936 49 27. 5998.8 5546.8 * 1 2300 116 66. 6619.7 5549.6 * 2 1224 183 57. 6584.2 5549.5 5 1 0948 50 28. 6020.3 5546.9 * 1 2312 117 66. 6621.8 5549.6 * 2 1236 184 57. 6583.3 5549.6 * 2 1248 185 57. 6582.5 5549.4 1 1012 52 32. 6066.0 5547.3 * 1 2336 119 67. 6625.9 5549.6 * 2 1300 186 57. 6581.6 5549.4 1 1024 53 34. 6090.1 5547.7 * 2 0000 121 69. 6632.0 5549.6 * 2 1312 188 56. 6579.8 5549.4 1 1048 55 37. 6140.0 5547.9 <td></td> <td></td> <td>.,</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			.,					-							_						
1 1000 51 30. 6042.7 5547.1 * 1 2324 118 67. 6623.8 5549.6 * 2 1248 185 57. 6582.5 5549.4 1 1012 52 32. 6066.0 5547.3 * 1 2336 119 67. 6625.9 5549.6 * 2 1300 186 57. 6581.5 5549.4 1 1024 53 34. 6090.1 5547.5 * 1 2348 120 68. 6627.9 5549.6 * 2 1321 187 56. 6580.7 5549.4 1 1036 54 35. 6114.7 5547.7 * 2 0000 121 69. 6630.0 5549.6 * 2 1324 188 56. 6579.8 5549.4 1 1100 56 38. 6166.0 5548.1 * 2 0024 123 70. 6633.9 5549.6 * 2 1336 189 56. 6578.1 5549.4 1 1100 56 38. 6192.4 5548.1 * 2 0036 124 70. 6635.7 5549.6 * 2 1400 191 56. 6577.2 5549.4 1 1124 58 39. 6219.5 5548.	1			27.	5998.8	5546.8	*	1				6619.7	5549.6	*	-				57.	6584.2	5549.5
1 1012 52 32. 6066.0 5547.3 * 1 2336 19 67. 6625.9 5549.6 * 2 1300 186 57. 6581.6 5549.4 1 1024 53 34. 6090.1 5547.7 * 2 2000 12 68. 6627.9 5549.6 * 2 1312 187 56. 6580.7 5549.4 1 1036 54 35. 6114.7 5547.9 * 2 00012 122 69. 6632.0 5549.6 * 2 1336 189 56. 6578.9 5549.4 1 1100 56 38. 6166.0 5548.1 * 2 0024 123 70. 6632.0 5549.6 * 2 1336 189 56. 6578.9 5549.4 1 1102 57 38. 6192.4 5548.1 * 2 0024 123 70. 6633.9 5549.6 * 2 1348 190 56. 6578.1 5549.4	1		50					1			66.				2		1236	184			
1 1024 53 34. 6090.1 5547.5 * 1 2348 120 68. 6627.9 5549.6 * 2 1312 187 56. 6580.7 5549.4 1 1036 54 35. 6114.7 5547.7 * 2 0000 121 69. 6630.0 5549.6 * 2 1324 188 56. 6578.9 5549.4 1 1100 56 38. 6166.0 5548.1 * 2 0024 123 70. 6633.9 5549.6 * 2 1348 190 56. 6578.1 5549.4 1 1112 57 38. 6192.4 5548.1 * 2 0036 124 70. 6633.9 5549.6 * 2 1348 190 56. 6578.1 5549.4 1 1112 58 39. 6219.5 5548.2 * 2 0036 124 70. 6637.0 5549.6 * 2 1400 191 56. 6577.2 5549.4 1 1136 59 40. 6247.0 5548.3 *	_							1							_						
1 1036 54 35. 6114.7 5547.7 * 2 0000 121 69. 6630.0 5549.6 * 2 1324 188 56. 6579.8 5549.4 1 1048 55 37. 6140.0 5547.9 * 2 0012 122 69. 6632.0 5549.6 * 2 1336 189 56. 6578.9 5549.4 1 1102 56 38. 6192.4 5548.1 * 2 0024 123 70. 6633.9 5549.6 * 2 1348 190 56. 6578.1 5549.4 1 1112 57 38. 6192.4 5548.1 * 2 0036 124 70. 6635.7 5549.6 * 2 1400 191 56. 6577.2 5549.4 1 1126 58 39. 6219.5 5548.2 * 2 0048 125 71. 6637.0 5549.6 * 2 1412 192 55. 6576.3 5549.4								1													
1 1048 55 37. 6140.0 5547.9 * 2 0012 122 69. 6632.0 5549.6 * 2 1336 189 56. 6578.9 5549.4 1 1100 56 38. 6166.0 5548.1 * 2 0024 123 70. 6635.7 5549.6 * 2 1348 190 56. 6578.9 5549.4 1 1112 57 38. 6192.4 5548.1 * 2 0036 124 70. 6635.7 5549.6 * 2 1400 191 56. 6577.2 5549.4 1 1124 58 39. 6219.5 5548.2 * 2 0048 125 71. 6637.0 5549.6 * 2 1412 192 55. 6576.3 5549.4 1 1136 59 40. 6247.0 5548.3 * 2 0120 71. 6637.9 5549.6 * 2 1424 193 55. 6575.4 5549.4								-							_						
1 1100 56 38. 6166.0 5548.1 * 2 0024 123 70. 6633.9 5549.6 * 2 1348 190 56. 6578.1 5549.4 1 1112 57 38. 6192.4 5548.2 * 2 0036 124 70. 6637.0 5549.6 * 2 1400 191 56. 6577.2 5549.4 1 1124 58 39. 6219.5 5548.2 * 2 0048 125 71. 6637.0 5549.6 * 2 1421 192 55. 6576.3 5549.4 1 1136 59 40. 6247.0 5548.3 * 2 0100 126 71. 6637.9 5549.6 * 2 1424 193 55. 6575.4 5549.4 1 1148 60 40. 6274.9 5548.5 * 2 0112 127 71. 6638.3 5549.6 * 2 1436 194 55. 6573.7 5549.4 1 1200 61 41. 6303.3 5548.5 *								-							_						
1 1112 57 38. 6192.4 5548.1 2 0036 124 70. 6635.7 5549.6 2 1400 191 56. 6577.2 5549.4 1 1124 58 39. 6219.5 5548.2 2 0048 125 71. 6637.9 5549.6 2 1412 192 55. 6576.3 5549.4 1 1136 59 40. 6247.0 5548.3 2 0100 126 71. 6637.9 5549.6 2 1424 193 55. 6576.6 5549.4 1 1148 60 40. 6274.9 5548.4 2 0112 127 71. 6638.3 5549.6 2 1436 194 55. 6574.6 5549.4 1 1200 61 41. 6331.8 5548.5 2 0124 128 71. 6638.3 5549.6 2 1448 195 55. 6573.7 5549.4 1 1212 63 42. 6331.8 5548.6 2 0136<								-							_						
1 1124 58 39. 6219.5 5548.2 2 0048 125 71. 6637.0 5549.6 2 1412 192 55. 6576.3 5549.4 1 1136 59 40. 6247.0 5548.3 2 0100 126 71. 6637.9 5549.6 2 1424 193 55. 6576.3 5549.4 1 1148 60 40. 6274.9 5548.4 2 0112 127 71. 6638.3 5549.6 2 1436 194 55. 6576.4 5549.4 1 1200 61 41. 6303.3 5548.5 2 0124 128 71. 6638.3 5549.6 2 1448 195 55. 6573.7 5549.4 1 1212 62 42. 6331.8 5548.6 2 0136 129 71. 6638.0 5549.6 2 1500 196 55. 6572.8 5549.4 1 1224 63 42. 6359.7 5548.8 2 0148<	1					5548.1	*	2					5549.6	*	2						
1 1148 60 40 6274.9 5548.4 * 2 9112 127 71 6638.3 5549.6 * 2 1436 194 55 6574.6 5549.4 1 1200 61 41 6393.3 5548.5 * 2 9124 128 71 6638.3 5549.6 * 2 1448 195 55 6573.7 5549.4 1 1212 62 42 6331.8 5548.6 * 2 9136 129 71 6638.0 5549.6 * 2 1500 196 55 6572.8 5549.4 1 1224 63 42 6359.7 5548.7 * 2 9148 130 71 6637.4 5549.6 * 2 1524 197 55 6571.9 5549.4 1 1236 64 43 6386.1 5548.8 * 2 9200 131 70 6635.8 5549.6 * 2 1524 198 54 6571.9 5549.4 1 1248 65 43 6499.5 5548.9 * 2 9212 13 70 6635.8 5549.6	_							-							-						
1 1200 61 41 6303.3 5548.5 * 2 0124 128 71 6638.3 5549.6 * 2 1448 195 55 6573.7 5549.4 1 1212 62 42 6331.8 5548.6 * 2 0136 129 71 6638.0 5549.6 * 2 1500 196 55 6572.8 5549.4 1 1224 63 42 6359.7 5548.7 * 2 0148 130 71 6637.4 5549.6 * 2 1512 197 55 6571.9 5549.4 1 1236 64 43 6386.1 5548.8 * 2 0200 131 70 6635.8 5549.6 * 2 1536 199 54 6571.0 5549.4 1 1300 66 44 6429.0 5548.9 * 2 0224 133 70 6635.0 5549.6 * 2 1536 199 54 6570.2 5549.4 1 1300 66 44 6429.0 5548.9 * 2 0224 133 70 6635.0 5549.6 * 2 1538 20 54 6569.3 5549.4								_							_						
1 1212 62 42 6331.8 5548.6 * 2 0136 129 71 6638.0 5549.6 * 2 1500 196 55 6572.8 5549.4 1 1224 63 42 6359.7 5548.8 * 2 0148 130 71 6637.4 5549.6 * 2 1512 197 55 6571.9 5549.4 1 1236 64 43 6386.1 5548.8 * 2 0200 131 70 6636.7 5549.6 * 2 1524 198 54 6571.0 5549.4 1 1248 65 43 6409.5 5548.9 * 2 0212 132 70 6635.8 5549.6 * 2 1536 199 54 6570.2 5549.4 1 1300 66 44 6429.0 5548.9 * 2 0224 133 70 6635.0 5549.6 * 2 1538 200 54 6569.3 5549.4								-					5549.6	*	_						
1 1224 63 42 6359.7 5548.7 2 0148 130 71 6637.4 5549.6 2 1512 197 55 6571.9 5549.4 1 1236 64 43 6386.1 5548.8 2 0200 131 70 6635.7 5549.6 2 1524 198 54 6571.0 5549.4 1 1248 65 43 6499.5 5548.9 2 0212 132 70 6635.8 5549.6 2 1536 199 54 6570.2 5549.4 1 1300 66 44 6429.0 5548.9 2 0224 133 70 6635.8 5549.6 2 1548 200 54 6569.3 5549.4						5548.5	*						5549.6	*							
1 1236 64 43. 6386.1 5548.8 * 2 0200 131 70. 6635.7 5549.6 * 2 1524 198 54. 6571.0 5549.4 1 1248 65 43. 6469.5 5548.9 * 2 0212 132 70. 6635.8 5549.6 * 2 1536 199 54. 6570.2 5549.4 1 1300 66 44. 6429.0 5548.9 * 2 0224 133 70. 6635.0 5549.6 * 2 1548 200 54. 6569.3 5549.4								-					5549.6 5540 £	*	_						
1 1248 65 43 6409.5 5548.9 * 2 0212 132 70 6635.8 5549.6 * 2 1536 199 54 6570.2 5549.4 1 1300 66 44 6429.0 5548.9 * 2 0224 133 70 6635.0 5549.6 * 2 1548 200 54 6569.3 5549.4													5549.6	*							
1 1300 66 44. 6429.0 5548.9 * 2 0224 133 70. 6635.0 5549.6 * 2 1548 200 54. 6569.3 5549.4								-							_						
1 1312 67 44. 6445.0 5549.0 * 2 0236 134 70. 6633.9 5549.6 * *	1					5548.9		2	0224	133	70.		5549.6	*	2						
	1	1312	67	44.	6445.0	5549.0	*	2	0236	134	70.	6633.9	5549.6	*							

PEAK OUTFLOW IS 71. AT TIME 25.20 HOURS

PEAK FLOW	TIME	MAXIMUM AVERAGE FLOW								
			6-HR	24-HR	72-HR	39.80-HR				
+ (CFS)	(HR)									
		(CFS)								
+ 71.	25.20		69.	61.	44.	44.				
		(INCHES)	.000	.000	.000	.000				
		(AC-FT)	34.	121.	145.	145.				
PEAK STORAGE	TIME			MAXIMUM AVERA	AGE STORAGE					
			6-HR	24-HR	72-HR	39.80-HR				
+ (AC-FT)	(HR)									
6638.	25.20		6631.	6598.	6379.	6379.				
PEAK STAGE	TIME			MAXIMUM AVE	RAGE STAGE					
			6-HR	24-HR	72-HR	39.80-HR				
+ (FEET)	(HR)									
5549.63	25.20		5549.61	5549.50	5548.41	5548.41				
		CUMULATIVE	AREA =	.00 SQ MI						

1

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN		RATIO 1 1.00		LIED 1	O PRECIP	ITATION
HYDROGRAPH AT +	Cove	.00	1	FLOW TIME	1766. 12.00				
ROUTED TO +	Cove	.00	1	FLOW TIME	71. 25.20				
			**	PEAK STAG	ES IN FEE	ET **			
			1	STAGE	5549.63	-			
1						0 NG/BREACH TIME STEF			

Cove ORMATION)

PLAN 1		INTITAL	. VALUE	SPILLWAY CR	EST 10P	OF DAM	
	ELEVATION	5545	5.50	5549.20	5	5552.00	
	STORAGE	58	345.	6508.		7347.	
	OUTFLOW		0.	45.		435.	
RAT	TIO MAXIMUM	MAXIMUM	MAXIMUM	MAXIMUM	DURATION	TIME OF	TIME OF
C	F RESERVOIR	DEPTH	STORAGE	OUTFLOW	OVER TOP	MAX OUTFLOW	FAILURE
PN	IF W.S.ELEV	OVER DAM	AC-FT	CFS	HOURS	HOURS	HOURS
1.6	0 5549.63	. 99	6638	71 .	. 00	25.20	. 00

^{***} NORMAL END OF HEC-1 ***

Storm Event 15. Local Freeboard Hydrograph

* U.S. ARMY CORPS OF ENGINEERS
* HYDROLOGIC ENGINEERING CENTER
* 609 SECOND STREET
* DAVIS, CALIFORNIA 95616
* (916) 756-1104
*

PAGE 1

 X
 X
 XXXXXXX
 XXXXXX
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 X

 X
 X
 X
 X
 <t

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

HEC-1 INPUT

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE ID.....1....2....3....4....5....6....7....8....9....10 HYDROLOGY STUDY for COVE RESERVOIR 1 TD Located in KANE COUNTY, UTAH 2 ID ID TD AUG 2020 5 ID ID PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 TD 8 ID 10 11 ID ID FAX: (435) 628-6553 12 Local FBH 13 ID 14 JR PREC 18 0 15 ΙT 0 0 100 16 IO 17 IN 18 18 KK R1 Runoff from Basin 1 19 20 KM ВА 0.503 PB PC 21 7.67 22 0.020 0.046 0.070 0.095 0.130 0.180 0.300 0.520 0.650 0 23 PC 0.700 0.745 0.785 0.820 0.850 0.905 0.930 0.955 0.980 0.880 24 PC 1.000 25 15 a 72.8 26 0.51 UD 27 KK RB1 28 KM Route B1 29 RD .045 .050 4928 TRAP 20 20 30 KK B2 Runoff from Basin 2 31 KM 32 ВА 0.436 LS 72.5 33 34 0.52 UD 35 KK 36 37 KM BA Runoff from Basin 3 0.279 38 LS 39 UD 0.39 HEC-1 INPUT PAGE 2

1

1

LINE ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10

```
40
41
42
                KK
KM
HC
                      C1
Combine RB1, B2, B3
                KK
KM
RD
  43
                       RC1
 44
45
                      Route RC1
7255 .060
                                        .030
                                                            TRAP
                                                                                 20
                                                                        20
  46
                 KK
 47
48
49
                KM
BA
LS
                       Runoff from Basin 4
                       0.453
                                 73.3
                        0.48
  50
                 UD
                KK
KM
BA
LS
  51
52
53
54
55
                      Runoff from Basin 5
                                 74.1
                        0
0.63
                 UD
  56
                 KK
                KM
HC
*
  57
58
                       Combine RC1, B4, B5
                      RC2
Route C2
2380 .039
  59
60
                 KK
KM
  61
                 RD
                                                            TRAP
                                                                        40
                                                                                  2
                KM
BA
LS
 63
64
65
                       Runoff from Basin 6
                       0.150
                                 84.3
                        0.19
                UD
*
  66
 67
68
69
70
71
                 KK
KM
                       Runoff from Basin 7
                BA
LS
                      0.327
                                75.7
                UD
*
                        0.46
  72
                 KK
                KM
HC
*
  73
74
                       Combine RC2, B6, B7
                          3
                                                   HEC-1 INPUT
                                                                                                                    PAGE 3
LINE
                 ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
  75
                 KK
                       RC3
  76
77
                KM
RD
                       Route C3
                                       .030
                      11323 .023
                                                            TRAP
                                                                                 20
                                                                        40
  78
79
80
                 KK
KM
                       В8
                       Runoff from Basin 8
                BA
LS
                       1.012
                                 84.0
  81
                        0
0.67
                 UD
                 KK
                KM
BA
                      Runoff from Basin 9
 84
85
                      0.242
  86
87
                LS
UD
*
                       0.26
                                 85.5
 88
89
                 KK
                       B10
                 KM
                       Runoff from Basin 10
                 ВА
                       0.129
  91
92
                                 86.7
                LS
UD
                        0
0.18
  93
                 KK
                KM
HC
*
                       Combine B9, B10
  95
  96
                 KK
                       RC4
                 KM
  97
                       Route C4
                                .037
                                          .030
                                                            TRAP
                                                                        40
                                                                                 20
```

```
99
                               B11
            100
                               Runoff from Basin 11
            101
                          ВА
                               0.279
                          LS
            102
                                        84.8
            103
                          UD
                                0.39
            104
                          KK
                               Combine RC3, B8, RC4, B11
            105
                          KM
                          HC
            106
            107
                          KK
                               B12
            108
                          KM
                               Runoff from Basin 12
            109
                          ВΔ
                               0.127
                          LS
                                        81.2
            110
            111
                          UD
                                0.40
                                                        HEC-1 INPUT
                                                                                                                 PAGE 4
                          {\tt ID}.\dots..1\dots..2\dots..3\dots..4\dots..5\dots..6\dots..7\dots..8\dots..9\dots..10
           LINE
            112
                               Call
                          KK
                               Combine C5, B12
            113
                          KM
            114
                          HC
*
                          KK
KM
            115
                               Cove Reservoir
                               Routing through Res'v
            116
            117
                          RS
                                       ELEV
                                             5545.5
                          SV
SV
            118
                                   a
                                         19
                                                  95
                                                         240
                                                                 453
                                                                         738
                                                                                1105
                                                                                         1563
                                                                                                 2217
                                                                                                         2773
                                3542
                                        4423
                                                5419
                                                        6149
                                                                 7347
            119
                                                                         8000
            120
                          SE
                                5470
                                        5476
                                                 5482
                                                         5488
                                                                 5494
                                                                                                 5518
                                                                                                         5524
                          SE
SL
SS
            121
                                5530
                                        5536
                                                5542
                                                        5548
                                                                 5552
                                                                         5558
                              5545.5
            122
                                       4.909
                                                 0.6
                                                         0.5
                              5549.2
                                                 2.67
            124
                          ST
*
                              5552.0
                                        1892
                                                 2.9
                                                         1.5
FLOOD HYDROGRAPH PACKAGE (HEC-1)
                                                                                                   U.S. ARMY CORPS OF ENGINEERS
                                                                                                  HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
                JUN 1998
              VERSION 4.1
                                                                                                      DAVIS, CALIFORNIA 95616
    RUN DATE 06AUG20 TIME 02:59:11
                                                                                                         (916) 756-1104
 **************
                                                                                              ************
                            HYDROLOGY STUDY for COVE RESERVOIR
                            Located in KANE COUNTY, UTAH
                            AUG 2020
                            PREPARED BY ALPHA ENGINEERING
                            43 SOUTH 100 EAST, SUITE 100
ST. GEORGE, UTAH 84770
TEL: (435) 628-6500
FAX: (435) 628-6553
                            Local FBH
   16 IO
                  OUTPUT CONTROL VARIABLES
                                        0 PRINT CONTROL
                        IPRNT
                        IPLOT
                                        0 PLOT CONTROL
```

0. HYDROGRAPH PLOT SCALE QSCAL HYDROGRAPH TIME DATA IT NMIN 18 MINUTES IN COMPUTATION INTERVAL 0 STARTING DATE 00 STARTING TIME IDATE ITIME 0000 100 NUMBER OF HYDROGRAPH ORDINATES NQ NDDATE ENDING DATE ENDING TIME 0 NDTIME 0542 19 CENTURY MARK COMPUTATION INTERVAL .30 HOURS TOTAL TIME BASE 29.70 HOURS ENGLISH UNITS DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH INCHES FEET LENGTH, ELEVATION FLOW STORAGE VOLUME CUBIC FEET PER SECOND ACRE-FEET

SURFACE AREA TEMPERATURE ACRES DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION

NPLAN 1 NUMBER OF PLANS

MULTI-RATIO OPTION JR RATIOS OF PRECIPITATION 1.00

112 KK Call *

Combine C5, B12

114 HC HYDROGRAPH COMBINATION

ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION Cal SUM OF 2 HYDROGRAPHS PLAN 1, RATIO = 1.00

*****	****	****	****	*******	****	****	*******	****	******	***	****	******	*****	*******	***	*****	******	****	******
					*					*					*				
DA	MON	HRMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA	MON HRMN	ORD	FLOW	*	DA M	ION HRMN	ORD	FLOW
					*					*					*				
1		0000	1	0.	*	1	0730	26	332.	*	1	1500	51	0.	*	1	2230	76	0.
1		0018	2	0.	*	1	0748	27	201.	*	1	1518	52	0.	*	1	2248	77	0.
1		0036	3	0.	*	1	0806	28	113.	*	1	1536	53	0.	*	1	2306	78	0.
1		0054	4	8.	*	1	0824	29	62.	*	1	1554	54	0.	*	1	2324	79	0.
1		0112	5	43.	*	1	0842	30	34.	*	1	1612	55	0.	*	1	2342	80	0.
1		0130	6	129.	*	1	0900	31	18.	*	1	1630	56	0.	*	2	0000	81	0.
1		0148	7	306.	*	1	0918	32	9.	*	1	1648	57	0.	*	2	0018	82	0.
1		0206	8	824.	*	1	0936	33	5.	*	1	1706	58	0.	*	2	0036	83	0.
1		0224	9	2325.	*	1	0954	34	2.	*	1	1724	59	0.	*	2	0054	84	0.
1		0242	10	4867.	*	1	1012	35	1.	*	1	1742	60	0.	*	2	0112	85	0.
1		0300	11	6395.	*	1	1030	36	0.	*	1	1800	61	0.	*	2	0130	86	0.
1		0318	12	6123.	*	1	1048	37	0.	*	1	1818	62	0.	*	2	0148	87	0.
1		0336	13	5053.	*	1	1106	38	0.	*	1	1836	63	0.	*	2	0206	88	0.
1		0354	14	4063.	*	1	1124	39	0.	*	1	1854	64	0.	*	2	0224	89	0.
1		0412	15	3364.	*	1	1142	40	0.	*	1	1912	65	0.	*	2	0242	90	0.
1		0430	16	2855.	*	1	1200	41	0.	*	1	1930	66	0.	*	2	0300	91	0.
1		0448	17	2500.	*	1	1218	42	0.	*	1	1948	67	0.	*	2	0318	92	0.
1		0506	18	2228.	*	1	1236	43	0.	*	1	2006	68	0.	*	2	0336	93	0.
1		0524	19	2039.	*	1	1254	44	0.	*	1	2024	69	0.	*	2	0354	94	0.
1		0542	20	1913.	*	1	1312	45	0.	*	1	2042	70	0.	*	2	0412	95	0.
1		0600	21	1819.	*	1	1330	46	0.	*	1	2100	71	0.	*	2	0430	96	0.
1		0618	22	1614.	*	1	1348	47	0.	*	1	2118	72	0.	*	2	0448	97	0.
1		0636	23	1240.	*	1	1406	48	0.	*	1	2136	73	0.	*	2	0506	98	0.
1		0654	24	851.	*	1	1424	49	0.	*	1	2154	74	0.	*	2	0524	99	0.
1		0712	25	540.	*	1	1442	50	0.	*	1	2212	75	0.	*	2	0542	100	0.
					-					-					-				

MAXIMUM AVERAGE FLOW PEAK FLOW TIME 29.70-HR 6-HR 24-HR 72-HR (CFS) (HR) (CFS) 2560. 648. 524. 6395. 3.00 524. (INCHES) 5.019 5.085 5.085 5.085 1286. (AC-FT) 1269. 1286. 1286.

> CUMULATIVE AREA = 4.74 SQ MI

115 KK Cove

Reservoir

Routing through Res'v

HYDROGRAPH ROUTING DATA

117 RS	Sī	ORAGE ROUT NSTPS ITYP RSVRIC X	1 ELEV 5545.50	TYPE OF INITIAL	DF SUBREACH INITIAL CO CONDITION R AND D COE	NDITION						
118 SV		STORAGE	.0 3542.0	19.0 4423.0	95.0 5419.0	240.0 6149.0	453.0 7347.0	738.0 8000.0	1105.0	1563.0	2217.0	2773.0
120 SE	EL	EVATION	5470.00 5530.00	5476.00 5536.00	5482.00 5542.00	5488.00 5548.00	5494.00 5552.00	5500.00 5558.00	5506.00	5512.00	5518.00	5524.00
122 SL	LC	OW-LEVEL OU ELEVL CAREA COQL EXPL	5545.50 4.91	CROSS-SI COEFFIC:	ON AT CENTE ECTIONAL AR IENT F OF HEAD		т					
123 SS	SF	PILLWAY CREL SPWID COQW EXPW	30.00 2.67	SPILLWAY SPILLWAY WEIR COI EXPONEN	FFICIENT	VATION						
124 ST	TC	DP OF DAM TOPEL DAMWID COQD EXPD	5552.00 1892.00 2.90 1.50	DAM WID WEIR CO		F DAM						

				(COMPUTED OU	TFLOW-ELEV	ATION DATA	A				
					(EXCLUDIN	G FLOW OVE	R DAM)					
	OUTFLOW											
	OUTFLOW ELEVATION											
				COMPI	JTED STORAG	E-OUTFLOW-	ELEVATION	DATA				
					(INCLUDIN	G FLOW OVE	R DAM)					
	STORAGE OUTFLOW ELEVATION	۰.0	0 .00	.00	.00	.00	.00	0 .00	.00	.00	.00	
	STORAGE OUTFLOW ELEVATION	۰.0	0 .00	.00	.00	25.78	27.48	8 29.42	31.65	34.25	37.31	
	STORAGE OUTFLOW	6301.5	3 6508.46	6543.50	6628.96	6765.11	6952.1	5 7190.23	3 7347.00	7395.04		
	ELEVATION STORAGE					5550.06	5550.68	8 5551.48	3 5552.00	5552.44	5553.58	
	OUTFLOW ELEVATION	27985.7	1 51484.63	82813.6	3							
*****	*********	*******	*******	******	*******	******	******	*******	*******	*******	*******	******
					HYDROGRAPH PLAN 1		N Cove = 1.00					
*****	*********	*******	******		*******	******	******		*******	*******	*******	******
DA MON	HRMN ORD (OUTFLOW ST	ORAGE STA	GE * DA MO *	ON HRMN ORD	OUTFLOW	STORAGE	STAGE * [OA MON HRMN	ORD OUTF	LOW STORAGE	STAGE
1 1	0000 1 0018 2		844.8 5545 844.8 5545	.5 * 1	1012 35 1030 36			5550.9 * 5550.9 *				5 5550.4 3 5550.4
1	0036 3	0. 5	844.8 5545	.5 * 1	1048 37	227.	7007.9	5550.9 *	1 2100	71 1	50. 6852.6	5550.3
1 1	0054 4 0112 5		845.0 5545 845.5 5545		1106 38 1124 39			5550.8 * 5550.8 *				5550.3 5550.3
1 1	0130 6 0148 7		847.6 5545 852.9 5545		1142 40 1200 41			5550.8 * 5550.8 *				5550.3 5550.3
1	0206 8	10. 5	866.8 5545	.7 * 1	1218 42	213.	6980.7	5550.8 *	1 2230	76 1	42. 6833.8	3 5550.3
1 1	0224 9 0242 10		905.5 5546 994.1 5546		1236 43 1254 44			5550.8 * 5550.7 *				3 5550.3 3 5550.3
1	0300 11	36. 6	133.0 5547	.9 * 1	1312 45	205.	6965.2	5550.7 *	1 2324	79 1	38. 6823.5	5 5550.3
1 1	0318 12 0336 13		287.2 5548 424.7 5548		1330 46 1348 47			5550.7 * 5550.7 *	1 2342 2 0000			1 5550.2 7 5550.2
1	0354 14	48. 6	536.5 5549	.3 * 1	1406 48	197.	6950.1	5550.7 *	2 0018	82 1	34. 6813.4	1 5550.2
1 1	0412 15 0430 16		627.1 5549 702.2 5549		1424 49 1442 50			5550.7 * 5550.6 *				5550.2 5550.2
1	0448 17	114. 6	766.0 5550	.1 * 1	1500 51	190.	6935.8	5550.6 *	2 0112	85 1	29. 6803.6	5 5550.2
1 1	0506 18 0524 19		821.4 5550 870.7 5550		1518 52 1536 53			5550.6 * 5550.6 *				1 5550.2 L 5550.2
1	0542 20		915.4 5550		1554 54			5550.6 *				5550.2

1	0600	21	201.	6957.0	5550.7 *	1	1612	55	181.	6917.3	5550.6 *	2	0224	89	124.	6791.0	5550.1
1	0618	22	220.	6994.3	5550.8 *	1	1630	56	179.	6913.0	5550.6 *	2	0242	90	123.	6787.9	5550.1
1	0636	23	236.	7024.0	5550.9 *	1	1648	57	177.	6908.6	5550.5 *	2	0300	91	122.	6784.9	5550.1
1	0654	24	247.	7043.8	5551.0 *	1	1706	58	175.	6904.2	5550.5 *	2	0318	92	121.	6781.8	5550.1
1	0712	25	253.	7054.8	5551.0 *	1	1724	59	173.	6899.9	5550.5 *	2	0336	93	119.	6778.9	5550.1
1	0730	26	255.	7059.3	5551.0 *	1	1742	60	171.	6895.7	5550.5 *	2	0354	94	118.	6775.9	5550.1
1	0748	27	256.	7059.6	5551.0 *	1	1800	61	169.	6891.5	5550.5 *	2	0412	95	117.	6773.0	5550.1
1	0806	28	254.	7057.2	5551.0 *	1	1818	62	167.	6887.4	5550.5 *	2	0430	96	116.	6770.1	5550.1
1	0824	29	252.	7053.1	5551.0 *	1	1836	63	165.	6883.3	5550.5 *	2	0448	97	115.	6767.2	5550.1
1	0842	30	249.	7048.1	5551.0 *	1	1854	64	163.	6879.2	5550.4 *	2	0506	98	114.	6764.4	5550.1
1	0900	31	246.	7042.5	5551.0 *	1	1912	65	161.	6875.2	5550.4 *	2	0524	99	113.	6761.6	5550.0
1	0918	32	243.	7036.8	5551.0 *	1	1930	66	159.	6871.3	5550.4 *	2	0542	100	112.	6758.8	5550.0
1	0936	33	240.	7031.0	5550.9 *	1	1948	67	157.	6867.3	5550.4 *						
1	0954	34	237.	7025.1	5550.9 *	1	2006	68	156.	6863.4	5550.4 *						
					*						*						

PEAK OUTFLOW IS 256. AT TIME 7.80 HOURS

PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
			6-HR	24-HR	72-HR	29.70-HR
+ (CFS)	(HR)					
		(CFS)				
+ 256.	7.80		238.	178.	151.	151.
		(INCHES)	.466	1.393	1.470	1.470
		(AC-FT)	118.	352.	372.	372.
PEAK STORAGE	TIME			MAXIMUM AVER	RAGE STORAGE	
			6-HR	24-HR	72-HR	29.70-HR
+ (AC-FT)	(HR)					
7060.	7.80		7027.	6906.	6774.	6774.
PEAK STAGE	TIME			MAXIMUM AVE	RAGE STAGE	
			6-HR	24-HR	72-HR	29.70-HR
+ (FEET)	(HR)					
5551.04	7.80		5550.93	5550.53	5549.96	5549.96

CUMULATIVE AREA = 4.74 SQ MI

1

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN		RATIOS RATIO 1 1.00	APPLIED	TO PRECIPITATION
HYDROGRAPH AT +	B1	.50	1	FLOW TIME	689. 3.00		
ROUTED TO +	RB1	.50	1	FLOW TIME	657. 3.00		
HYDROGRAPH AT +	B2	.44	1	FLOW TIME	589. 3.00		
HYDROGRAPH AT +	В3	.28	1	FLOW TIME	393. 2.70		
3 COMBINED AT +	C1	1.22	1	FLOW TIME	1608. 3.00		
ROUTED TO +	RC1	1.22	1	FLOW TIME	1507. 3.00		
HYDROGRAPH AT +	В4	.45	1	FLOW TIME	636. 3.00		
HYDROGRAPH AT +	В5	.81	1	FLOW TIME	1050. 3.00		
3 COMBINED AT +	C2	2.48	1	FLOW TIME	3194. 3.00		
ROUTED TO +	RC2	2.48	1	FLOW TIME	3137. 3.00		

HYDROGRAPH AT

+		В6	.15	1	FLOW TIME	351. 2.40							
HYDROGRAPH +		В7	.33	1	FLOW TIME	490. 3.00							
3 COMBINE +		C3	2.95	1	FLOW TIME	3813. 3.00							
ROUTED TO		RC3	2.95	1	FLOW TIME	3723. 3.30							
HYDROGRAPH +		В8	1.01	1	FLOW TIME	1656. 3.00							
HYDROGRAPH +		В9	.24	1	FLOW TIME	547. 2.70							
HYDROGRAPH +		B10	.13	1	FLOW TIME	326. 2.40							
2 COMBINE +		C4	.37	1	FLOW TIME	835. 2.70							
ROUTED TO +		RC4	.37	1	FLOW TIME	819. 2.70							
HYDROGRAPH +		B11	.28	1	FLOW TIME	575. 2.70							
4 COMBINE +		C5	4.61	1	FLOW TIME	6184. 3.00							
HYDROGRAPH +		B12	.13	1	FLOW TIME	238. 2.70							
2 COMBINE +		Call	4.74	1	FLOW TIME	6395. 3.00							
ROUTED TO +		Cove	4.74	1	FLOW TIME	256. 7.80							
				** 1	PEAK STAGE	TAGES IN FEET 5551.04 7.80	**						
1						RY OF KINEMAT: FLOW IS DIREC			ASE FLOW)	TING LATED TO			
	ISTAQ	ELEMENT	DT		PEAK	TIME TO PEAK	VOLUME	DT	COMPUTATION PEAK		VOLUME		
			(MIN	I)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
	FOR PLAN	= 1 RATI MANE	0= .00 5.4	10	673.41	189.00	4.50	18.00	657.41	180.00	4.48		
CONTINUITY	Y SUMMARY	(AC-FT) -	INFLOW=	.12	.06E+03 I	EXCESS= .0000	E+00 OUTF	LOW= .1207	7E+03 BASIN	STORAGE=	.3686E-02 PERCENT	ERROR=	.0
	FOR PLAN	= 1 RATI MANE	0= .00 5.4	10	1594.30	189.00	4.43	18.00	1507.33	180.00	4.43		
CONTINUITY	Y SUMMARY	(AC-FT) -	INFLOW=	.28	80E+03 I	EXCESS= .0000	E+00 OUTF	LOW= .2881	1E+03 BASIN	STORAGE=	.3547E-02 PERCENT	ERROR=	.0
	FOR PLAN RC2	= 1 RATI MANE	0= .00 1.6	57	3186.21	182.05	4.52	18.00	3137.38	180.00	4.53		
CONTINUITY	Y SUMMARY	(AC-FT) -	INFLOW=	.59	70E+03 E	EXCESS= .0000	E+00 OUTF	LOW= .5976	0E+03 BASIN	STORAGE=	.3099E-02 PERCENT	ERROR=	.0
	FOR PLAN	= 1 RATI MANE		.0	3778.09	194.40	4.63	18.00	3723.23	198.00	4.64		

CONTINUITY SUMMARY (AC-FT) - INFLOW= .7287E+03 EXCESS= .0000E+00 OUTFLOW= .7291E+03 BASIN STORAGE= .1048E-01 PERCENT ERROR= .1

FOR PLAN = 1 RATIO= .00 RC4 MANE 5.53 841.55 154.72 6.01 18.00 818.78 162.00 6.02

CONTINUITY SUMMARY (AC-FT) - INFLOW= .1188E+03 EXCESS= .0000E+00 OUTFLOW= .1189E+03 BASIN STORAGE= .2808E-02 PERCENT ERROR= .0

SUMMARY OF DAM OVERTOPPING/BREACH ANALYSIS FOR STATION Cove (PEAKS SHOWN ARE FOR INTERNAL TIME STEP USED DURING BREACH FORMATION)

PLAN	1		INITIAL	VALUE	SPILLWAY CR	EST TOP	OF DAM	
		ELEVATION	5545	.50	5549.20	5	552.00	
		STORAGE	58	45.	6508.		7347.	
		OUTFLOW		0.	45.		435.	
	RATIO	MAXIMUM	MAXIMUM	MAXIMUM	MAXIMUM	DURATION	TIME OF	TIME OF
	OF	RESERVOIR	DEPTH	STORAGE	OUTFLOW	OVER TOP	MAX OUTFLOW	FAILURE
	PMF	W.S.ELEV	OVER DAM	AC-FT	CFS	HOURS	HOURS	HOURS
	1.00	5551.04	.00	7060.	256.	.00	7.80	.00

^{***} NORMAL END OF HEC-1 ***

Storm Event 16. General Freeboard Hydrograph

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

PAGE 1

DAVIS, CALIFORNIA 95616

Χ	Х	XXXXXXX	XX	XXX		Х
Χ	Х	X	Χ	Χ		XX
Χ	Х	X	Χ			Х
XXX	XXXX	XXXX	Χ		XXXXX	Х
Χ	Χ	X	Χ			Х
Χ	Х	X	Χ	Χ		Х
Χ	Х	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

HEC-1 INPUT

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE ID.....1....2....3....4....5....6....7....8....9....10 HYDROLOGY STUDY for COVE RESERVOIR TD Located in KANE COUNTY, UTAH ID ID TD AUG 2020 ID ID PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 TD ID 11 ID FAX: (435) 628-6553 ID General FBH (NEH) ID JR PREC 1.0 ΙT ΙO IN * QΙ QI QI QI a QI QI QI QI QI QI 24 QI QI QI QΙ QI KK Cove Reservoir KM Routing through Res'v RS SV ELEV 5545.5 SE SE 5530 5536 5548 39 SL 5545.5 4.909 0.5 SS 5549.2 2.67 1.5 ST 5552.0 2.9 1.5 43 ZZ ***************** FLOOD HYDROGRAPH PACKAGE (HEC-1) II.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER JUN 1998 VERSION 4.1 609 SECOND STREET

```
* RUN DATE 06AUG20 TIME 03:41:08 *
                                                        (916) 756-1104
************
                                                  ************
```

 ${\tt HYDROLOGY} \ {\tt STUDY} \ {\tt for} \ {\tt COVE} \ {\tt RESERVOIR}$ Located in KANE COUNTY, UTAH

AUG 2020

PREPARED BY ALPHA ENGINEERING 43 SOUTH 100 EAST, SUITE 100 ST. GEORGE, UTAH 84770 TEL: (435) 628-6500 FAX: (435) 628-6553

General FBH (NEH)

16 IO OUTPUT CONTROL VARIABLES

0 PRINT CONTROL 0 PLOT CONTROL IPRNT **IPLOT**

0. HYDROGRAPH PLOT SCALE QSCAL

HYDROGRAPH TIME DATA IT

NMIN

IDATE

NQ

12 MINUTES IN COMPUTATION INTERVAL
1 0 STARTING DATE
0000 STARTING TIME
600 NUMBER OF HYDROGRAPH ORDINATES
5 0 ENDING DATE
2348 ENDING TIME NDDATE NDTIME ICENT 19 CENTURY MARK

COMPUTATION INTERVAL .20 HOURS TOTAL TIME BASE 119.80 HOURS

ENGLISH UNITS

DRAINAGE AREA SQUARE MILES INCHES FEET PRECIPITATION DEPTH LENGTH, ELEVATION

CUBIC FEET PER SECOND

FLOW STORAGE VOLUME SURFACE AREA ACRE-FEET ACRES

TEMPERATURE DEGREES FAHRENHEIT

JР MULTI-PLAN OPTION

NPLAN 1 NUMBER OF PLANS

JR MULTI-RATIO OPTION

RATIOS OF PRECIPITATION 1.00

17 IN

TIME DATA FOR INPUT TIME SERIES

JXMIN 12 TIME INTERVAL IN MINUTES

JXDATE 1 0 STARTING DATE

JXTIME 0 STARTING TIME

SUBBASIN RUNOFF DATA

SUBBASIN CHARACTERISTICS 0 BA

.00 SUBBASIN AREA TAREA

HYDROGRAPH AT STATION

				*					*					*				
DA MON	HRMN	ORD	FLOW	*	DA MON	HRMN	ORD	FLOW	*	DA MON	HRMN	ORD	FLOW	*	DA MON	HRMN	ORD	FLOW
				*					*					*				
1	0000	1	0.	*	2	0600	151	1.	*	3	1200	301	1.	*	4	1800	451	1.
1	0012	2	0.	*	2	0612	152	1.	*	3	1212	302	1.	*	4	1812	452	1.
1	0024	3	0.	*	2	0624	153	1.	*	3	1224	303	1.	*	4	1824	453	1.
1	0036	4	0.	*	2	0636	154	1.	*	3	1236	304	1.	*	4	1836	454	1.
1	0048	5	0.	*	2	0648	155	1.	*	3	1248	305	1.	*	4	1848	455	1.
1	0100	6	0.	*	2	0700	156	1.	*	3	1300	306	1.	*	4	1900	456	1.
1	0112	7	0.	*	2	0712	157	1.	*	3	1312	307	1.	*	4	1912	457	1.
1	0124	8	0.	*	2	0724	158	1.	*	3	1324	308	1.	*	4	1924	458	1.
1	0136	9	0.	*	2	0736	159	1.	*	3	1336	309	1.	*	4	1936	459	1.
1	0148	10	0.	*	2	0748	160	1.	*	3	1348	310	1.	*	4	1948	460	1.
1	0200	11	0.	*	2	0800	161	1.	*	3	1400	311	1.	*	4	2000	461	1.
1	0212	12	0.	*	2	0812	162	1.	*	3	1412	312	1.	*	4	2012	462	1.
1	0224	13	0.	*	2	0824	163	1.	*	3	1424	313	1.	*	4	2024	463	1.
1	0236	14	0.	*	2	0836	164	1.	*	3	1436	314	1.	*	4	2036	464	1.
1	0248	15	0.	*	2	0848	165	1.	*	3	1448	315	1.	*	4	2048	465	1.
1	0300	16	0.	*	2	0900	166	1.	*	3	1500	316	1.	*	4	2100	466	1.
1	0312	17	0.	*	2	0912	167	1.	*	3	1512	317	1.	*	4	2112	467	1.

1	0324	18	0.	*	2	0924	168	1.	*	3	1524	318	1.	*	4	2124	468	1.
1	0336 0348	19 20	0. 0.	*	2	0936 0948	169 170	1.	*	3 3	1536 1548	319 320	1. 1.	*	4	2136 2148	469 470	1. 1.
1 1	0400	21	0.	*	2	1000	171	1. 1.	*	3	1600	321	1.	*	4	2200	470	1.
1	0412	22	0.	*	2	1012	172	1.	*	3	1612	322	1.	*	4	2212	472	1.
1	0424	23	0.	*	2	1024	173	1.	*	3	1624	323	1.	*	4	2224	473	1.
1	0436	24	0.	*	2	1036	174	1.	*	3	1636	324	1.	*	4	2236	474	1.
1	0448	25	0.	*	2	1048	175	1.	*	3	1648	325	1.	*	4	2248	475	1.
1	0500	26	1.	*	2	1100	176	1.	*	3	1700	326	1.	*	4	2300	476	1.
1	0512	27	2.	*	2	1112	177	1.	*	3	1712	327	1.	*	4	2312	477	1.
1 1	0524 0536	28 29	4. 7.	*	2	1124 1136	178 179	1. 1.	*	3	1724 1736	328 329	1. 1.	*	4 4	2324 2336	478 479	1. 1.
1	0548	30	10.	*	2	1148	180	1.	*	3	1748	330	1.	*	4	2348	480	1.
1	0600	31	15.	*	2	1200	181	1.	*	3	1800	331	1.	*	5	0000	481	1.
1	0612	32	30.	*	2	1212	182	1.	*	3	1812	332	1.	*	5	0012	482	1.
1	0624	33	74.	*	2	1224	183	1.	*	3	1824	333	1.	*	5	0024	483	1.
1	0636	34	175.	*	2	1236	184	1.	*	3	1836	334	1.	*	5	0036	484	1.
1	0648	35	342.	*	2	1248	185	1.	*	3	1848	335	1.	*	5	0048	485	1.
1 1	0700 0712	36 37	567. 829.	*	2 2	1300 1312	186 187	1. 1.	*	3 3	1900 1912	336 337	1. 1.	*	5 5	0100 0112	486 487	1. 1.
1	0724	38	1108.	*	2	1324	188	1.	*	3	1924	338	1.	*	5	0124	488	1.
1	0736	39	1380.	*	2	1336	189	1.	*	3	1936	339	1.	*	5	0136	489	1.
1	0748	40	1634.	*	2	1348	190	1.	*	3	1948	340	1.	*	5	0148	490	1.
1	0800	41	1866.	*	2	1400	191	1.	*	3	2000	341	1.	*	5	0200	491	1.
1	0812	42	2071.	*	2	1412	192	1.	*	3	2012	342	1.	*	5	0212	492	1.
1 1	0824 0836	43 44	2260. 2424.	*	2 2	1424 1436	193 194	1. 1.	*	3 3	2024 2036	343 344	1. 1.	*	5 5	0224 0236	493 494	1. 1.
1	0848	45	2568.	*	2	1448	195	1.	*	3	2048	345	1.	*	5	0230	495	1.
1	0900	46	2696.	*	2	1500	196	1.	*	3	2100	346	1.	*	5	0300	496	1.
1	0912	47	2807.	*	2	1512	197	1.	*	3	2112	347	1.	*	5	0312	497	1.
1	0924	48	2906.	*	2	1524	198	1.	*	3	2124	348	1.	*	5	0324	498	1.
1	0936	49	2993.	*	2	1536	199	1.	*	3	2136	349	1.	*	5	0336	499	1.
1	0948	50	3069.	*	2	1548	200	1.	*	3	2148	350	1.	*	5	0348	500	1.
1 1	1000 1012	51 52	3137. 3198.	*	2	1600 1612	201 202	1. 1.	*	3 3	2200 2212	351 352	1. 1.	*	5 5	0400 0412	501 502	1. 1.
1	1012	53	3252.	*	2	1624	203	1.	*	3	2212	353	1.	*	5	0412	503	1.
1	1036	54	3300.	*	2	1636	204	1.	*	3	2236	354	1.	*	5	0436	504	1.
1	1048	55	3343.	*	2	1648	205	1.	*	3	2248	355	1.	*	5	0448	505	1.
1	1100	56	3381.	*	2	1700	206	1.	*	3	2300	356	1.	*	5	0500	506	1.
1	1112	57	3416.	*	2	1712	207	1.	*	3	2312	357	1.	*	5	0512	507	1.
1	1124	58	3447.	*	2	1724	208	1.	*	3	2324	358	1.	*	5	0524	508	1.
1 1	1136 1148	59 60	3475. 3501.	*	2 2	1736 1748	209 210	1. 1.	*	3 3	2336 2348	359 360	1. 1.	*	5 5	0536 0548	509 510	1. 1.
1	1200	61	3524.	*	2	1800	211	1.	*	4	0000	361	1.	*	5	0600	511	1.
1	1212	62	3498.	*	2	1812	212	1.	*	4	0012	362	1.	*	5	0612	512	1.
1	1224	63	3371.	*	2	1824	213	1.	*	4	0024	363	1.	*	5	0624	513	1.
1	1236	64	3075.	*	2	1836	214	1.	*	4	0036	364	1.	*	5	0636	514	1.
1	1248	65	2649.	*	2	1848	215	1.	*	4	0048	365	1.	*	5	0648	515	1.
1	1300	66	2187.	*	2	1900	216	1.	*	4	0100	366	1.	*	5	0700	516	1.
1 1	1312 1324	67 68	1755. 1392.	*	2 2	1912 1924	217 218	1. 1.	*	4 4	0112 0124	367 368	1. 1.	*	5 5	0712 0724	517 518	1. 1.
1	1336	69	1131.	*	2	1936	219	1.	*	4	0136	369	1.	*	5	0724	519	1.
1	1348	70	950.	*	2	1948	220	1.	*	4	0148	370	1.	*	5	0748	520	1.
1	1400	71	820.	*	2	2000	221	1.	*	4	0200	371	1.	*	5	0800	521	1.
1	1412	72	724.	*	2	2012	222	1.	*	4	0212	372	1.	*	5	0812	522	1.
1	1424	73	655.	*	2	2024	223	1.	*	4	0224	373	1.	*	5	0824	523	1.
1	1436	74	606.	*	2	2036	224	1.	*	4 4	0236	374	1.	*	5 5	0836	524	1.
1 1	1448 1500	75 76	570. 545.	*	2	2048 2100	225 226	1. 1.	*	4	0248 0300	375 376	1. 1.	*	5	0848 0900	525 526	1. 1.
1	1512	77	526.	*	2	2112	227	1.	*	4	0312	377	1.	*	5	0912	527	1.
1	1524	78	513.	*	2	2124	228	1.	*	4	0324	378	1.	*	5	0924	528	1.
1	1536	79	503.	*	2	2136	229	1.	*	4	0336	379	1.	*	5	0936	529	1.
1	1548	80	496.	*	2	2148	230	1.	*	4	0348	380	1.	*	5	0948	530	1.
1	1600	81	492.	*	2	2200	231	1.	*	4	0400	381	1.	*	5	1000		1.
1 1	1612 1624	82 83	488. 485.	*	2 2	2212 2224	232 233	1. 1.	*	4 4	0412 0424	382 383	1. 1.	*	5 5	1012 1024	532 533	1. 1.
1	1636	84	483.	*	2	2236	234	1.	*	4	0436	384	1.	*	5	1036	534	1.
1	1648	85	483.	*	2	2248	235	1.	*	4	0448	385	1.	*	5	1048	535	1.
1	1700	86	483.	*	2	2300	236	1.	*	4	0500	386	1.	*	5	1100	536	1.
1	1712	87	483.	*	2	2312	237	1.	*	4	0512	387	1.	*	5	1112	537	1.
1	1724	88	483.	*	2	2324	238	1.	*	4	0524	388	1.	*	5	1124	538	1.
1	1736	89	483.	*	2	2336	239	1.	*	4	0536	389	1.	*	5	1136	539	1.
1 1	1748 1800	90 91	484. 484.	*	2	2348 0000	240 241	1. 1.	*	4 4	0548 0600	390 391	1. 1.	*	5 5	1148 1200	540 541	1. 1.
1	1812	92	482.	*	3	0012	242	1.	*	4	0612	392	1.	*	5	1212	542	1.
1	1824	93	477.	*	3	0024	243	1.	*	4	0624	393	1.	*	5	1224	543	1.
1	1836	94	465.	*	3	0036	244	1.	*	4	0636	394	1.	*	5	1236	544	1.
1	1848	95	448.	*	3	0048	245	1.	*	4	0648	395	1.	*	5	1248	545	1.
1	1900	96	431.	*	3	0100	246	1.	*	4	0700	396	1.	*	5	1300	546	1.
1 1	1912 1924	97 98	414. 400.	*	3 3	0112 0124	247 248	1. 1.	*	4 4	0712 0724	397 398	1. 1.	*	5 5	1312 1324	547 548	1. 1.
1	1936	99	390.	*	3	0136	249	1.	*	4	0724 0736	399	1.	*	5	1336	549	1.
1	1948	100	383.	*	3	0148	250	1.	*	4	0748	400	1.	*	5	1348	550	1.
1	2000	101	378.	*	3	0200	251	1.	*	4	0800	401	1.	*	5	1400	551	1.
1	2012	102	375.	*	3	0212	252	1.	*	4	0812	402	1.	*	5	1412	552	1.
1	2024	103	372.	*	3	0224	253	1.	*	4	0824	403	1.	*	5	1424	553	1.
1	2036	104	370.	*	3	0236	254	1.	*	4	0836 0848	404	1.	*	5	1436	554	1.
1 1	2048 2100	105 106	369. 368.	*	3 3	0248 0300	255 256	1. 1.	*	4 4	0848 0900	405 406	1. 1.	*	5 5	1448 1500	555 556	1. 1.
1	2112	107	368.	*	3	0312	257	1.	*	4	0912	407	1.	*	5	1512	557	1.
1	2124	108	367.	*	3	0324	258	1.	*	4	0924	408	1.	*	5	1524	558	1.
1	2136		367.	*	3	0336		1.	*	4	0936	409	1.	*	5	1536		1.

1	2148	110	367.	*	3	0348	260	1.	*	4	0948	410	1.	*	5	1548	560	1.
1	2200	111	367.	*	3	0400	261	1.	*	4	1000	411	1.	*	5	1600	561	1.
1	2212	112	366.	*	3	0412	262	1.	*	4	1012	412	1.	*	5	1612	562	1.
1	2224	113	366.	*	3	0424	263	1.	*	4	1024	413	1.	*	5	1624	563	1.
1	2236	114	366.	*	3	0436	264	1.	*	4	1036	414	1.	*	5	1636	564	1.
1	2248	115	367.	*	3	0448	265	1.	*	4	1048	415	1.	*	5	1648	565	1.
1	2300	116	367.	*	3	0500	266	1.	*	4	1100	416	1.	*	5	1700	566	1.
1	2312	117	367.	*	3	0512	267	1.	*	4	1112	417	1.	*	5	1712	567	1.
1	2324	118	367.	*	3	0524	268	1.	*	4	1124	418	1.	*	5	1724	568	1.
1	2336	119	367.	*	3	0536	269	1.	*	4	1136	419	1.	*	5	1736	569	1.
1	2348	120	367.	*	3	0548	270	1.	*	4	1148	420	1.	*	5	1748	570	1.
2	0000	121	367.	*	3	0600	271	1.	*	4	1200	421	1.	*	5	1800	571	1.
2	0012	122	362.	*	3	0612	272	1.	*	4	1212	422	1.	*	5	1812	572	1.
2	0024	123	345.	*	3	0624	273	1.	*	4	1224	423	1.	*	5	1824	573	1.
2	0036	124	308.	*	3	0636	274	1.	*	4	1236	424	1.	*	5	1836	574	1.
2	0048	125	257.	*	3	0648	275	1.	*	4	1248	425	1.	*	5	1848	575	1.
2	0100	126	202.	*	3	0700	276	1.	*	4	1300	426	1.	*	5	1900	576	1.
2	0112	127	151.	*	3	0712	277	1.	*	4	1312	427	1.	*	5	1912	577	1.
2	0124	128	108.	*	3	0724	278	1.	*	4	1324	428	1.	*	5	1924	578	1.
2	0136	129	77.	*	3	0736	279	1.	*	4	1336	429	1.	*	5	1936	579	1.
2	0148	130	56.	*	3	0748	280	1.	*	4	1348	430	1.	*	5	1948	580	1.
2	0200	131	40.	*	3	0800	281	1.	*	4	1400	431	1.	*	5	2000	581	1.
2	0212	132	29.	*	3	0812	282	1.	*	4	1412	432	1.	*	5	2012	582	1.
2	0224	133	21.	*	3	0824	283	1.	*	4	1424	433	1.	*	5	2024	583	1.
2	0236	134	15.	*	3	0836	284	1.	*	4	1436	434	1.	*	5	2036	584	1.
2	0248	135	11.	*	3	0848	285	1.	*	4	1448	435	1.	*	5	2048	585	1.
2	0300	136	8.	*	3	0900	286	1.	*	4	1500	436	1.	*	5	2100	586	1.
2	0312		5.	*	3	0912	287	1.	*	4	1512	437	1.	*	5	2112	587	1.
2	0324	138	4.	*	3	0924	288	1.	*	4	1524	438	1.	*	5	2124	588	1.
2	0336	139	3.	*	3	0936	289	1.	*	4	1536	439	1.	*	5	2136	589	1.
2	0348	140	2.	*	3	0948	290	1.	*	4	1548	440	1.	*	5	2148	590	1.
2	0400	141	1.	*	3	1000	291	1.	*	4	1600	441	1.	*	5	2200	591	1.
2	0412	142	1.	*	3	1012	292	1.	*	4	1612	442	1.	*	5	2212	592	1.
2	0424	143	1.	*	3	1024	293	1.	*	4	1624	443	1.	*	5	2224	593	1.
2	0436	144	1.	*	3	1036	294	1.	*	4	1636	444	1.	*	5	2236	594	1.
2	0448	145	1.	*	3	1048	295	1.	*	4	1648	445	1.	*	5	2248	595	1.
2	0500	146	1.	*	3	1100	296	1.	*	4	1700	446	1.	*	5	2300	596	1.
2	0512	147	1.	*	3	1112	297	1.	*	4	1712	447	1.	*	5	2312	597	1.
2	0524	148	1.	*	3	1124	298	1.	*	4	1724	448	1.	*	5	2324	598	1.
2	0536	149	1.	*	3	1136	299	1.	*	4	1736	449	1.	*	5	2336	599	1.
2	0548	150	1.	*	3	1148	300	1.	*	4	1748	450	1.	*	5	2348	600	1.
				*					*					*				

MAXIMUM AVERAGE FLOW 24-HR 72-HR PEAK FLOW TIME 6-HR 119.80-HR (CFS) (HR) (CFS) 317. .000 1884. 191. .000 1888. 3524. 12.00 2782. 948. (INCHES) .000 (AC-FT) 1379. 1880. CUMULATIVE AREA = .00 SQ MI

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

*****	****	****	****	******	****	***	****	******	****	********	***	****	*****	***:	*****	*******	****	*****	******	*****	********
						*					*						*				
DA	MON H	IRMN	ORD	FLC	W	*	DA	MON HRMN	ORD	FLOW	*	DA	MON HRM	٩N	ORD	FLOW	*	DA I	MON HRMN	ORD	FLOW
						*					*						*				
1	0	000	1	6).	*	2	0600	151	1.	*	3	126	90	301	1.	*	4	1800	451	1.
1		012	2	6).	*	2	0612	152	1.	*	3	121		302	1.	*	4	1812	452	1.
1	0	024	3	6).	*	2	0624	153	1.	*	3	122	24	303	1.	*	4	1824	453	1.
1	0	9036	4	6).	*	2	0636	154	1.	*	3	123	36	304	1.	*	4	1836	454	1.
1	0	048	5	6).	*	2	0648	155	1.	*	3	124		305	1.	*	4	1848	455	1.
1	0	100	6	6).	*	2	0700	156	1.	*	3	136	90	306	1.	*	4	1900	456	1.
1	0	112	7	6).	*	2	0712	157	1.	*	3	131	12	307	1.	*	4	1912	457	1.
1	0	124	8	6).	*	2	0724	158	1.	*	3	132	24	308	1.	*	4	1924	458	1.
1		136	9	6).	*	2	0736	159	1.	*	3	133		309	1.	*	4	1936	459	1.
1		148	10	6).	*	2	0748	160	1.	*	3	134		310	1.	*	4	1948	460	1.
1	0	200	11	6).	*	2	0800	161	1.	*	3	146	90	311	1.	*	4	2000	461	1.
1		212	12	6).	*	2	0812	162	1.	*	3	141		312	1.	*	4	2012	462	1.
1	-	224	13	6).	*	2	0824	163	1.	*	3	142		313	1.	*	4	2024	463	1.
1	-	236	14	6).	*	2	0836	164	1.	*	3	143		314	1.	*	4	2036	464	1.
1	0	248	15	6).	*	2	0848	165	1.	*	3	144	48	315	1.	*	4	2048	465	1.
1	-	300	16	6).	*	2	0900	166	1.	*	3	156		316	1.	*	4	2100	466	1.
1		312	17	6).	*	2	0912	167	1.	*	3	151		317	1.	*	4	2112	467	1.
1	0	324	18	6).	*	2	0924	168	1.	*	3	152	24	318	1.	*	4	2124	468	1.
1		336	19	6).	*	2	0936	169	1.	*	3	153		319	1.	*	4	2136	469	1.
1	0	348	20	6).	*	2	0948	170	1.	*	3	154		320	1.	*	4	2148	470	1.
1	0	400	21	6).	*	2	1000	171	1.	*	3	166		321	1.	*	4	2200	471	1.
1	0	412	22	6).	*	2	1012	172	1.	*	3	161	12	322	1.	*	4	2212	472	1.
1	-	424	23	6).	*	2	1024	173	1.	*	3	162		323	1.	*	4	2224	473	1.
1	0	436	24	6).	*	2	1036	174	1.	*	3	163		324	1.	*	4	2236	474	1.
1	0	448	25	6).	*	2	1048	175	1.	*	3	164	48	325	1.	*	4	2248	475	1.
1	0	500	26	1		*	2	1100	176	1.	*	3	176	90	326	1.	*	4	2300	476	1.
1		512	27	2	2.	*	2	1112	177	1.	*	3	171		327	1.	*	4	2312	477	1.
1	0	524	28	4	١.	*	2	1124	178	1.	*	3	172	24	328	1.	*	4	2324	478	1.

1	0536	29	7.	*	2	1136	179	1.	*	3	1736	329	1.	*	4	2336	479	1.
1	0548	30	10.	*	2	1148	180	1.	*	3	1748	330	1.	*	4	2348	480	1.
1	0600	31	15.	*	2	1200	181	1.	*	3	1800	331	1.	*	5	0000	481	1.
1	0612	32	30.	*	2	1212	182	1.	*	3	1812	332	1.	*	5	0012	482	1.
				*					*					*				
1	0624	33	74.		2	1224	183	1.		3	1824	333	1.	-	5	0024	483	1.
1	0636	34	175.	*	2	1236	184	1.	*	3	1836	334	1.	*	5	0036	484	1.
1	0648	35	342.	*	2	1248	185	1.	*	3	1848	335	1.	*	5	0048	485	1.
1	0700	36	567.	*	2	1300	186	1.	*	3	1900	336	1.	*	5	0100	486	1.
1	0712	37	829.	*	2	1312	187	1.	*	3	1912	337	1.	*	5	0112	487	1.
1	0724	38	1108.	*	2	1324	188	1.	*	3	1924	338	1.	*	5	0124	488	1.
1	0736	39	1380.	*	2	1336	189	1.	*	3	1936	339	1.	*	5	0136	489	1.
1	0748	40	1634.	*	2	1348	190	1.	*	3	1948	340	1.	*	5	0148	490	1.
	0800	41	1866.	*	2	1400	191	1.	*	3	2000	341	1.	*	5	0200	491	1.
1																		
1	0812	42	2071.	*	2	1412	192	1.	*	3	2012	342	1.	*	5	0212	492	1.
1	0824	43	2260.	*	2	1424	193	1.	*	3	2024	343	1.	*	5	0224	493	1.
1	0836	44	2424.	*	2	1436	194	1.	*	3	2036	344	1.	*	5	0236	494	1.
1	0848	45	2568.	*	2	1448	195	1.	*	3	2048	345	1.	*	5	0248	495	1.
_				*					*					*				
1	0900	46	2696.		2	1500	196	1.		3	2100	346	1.		5	0300	496	1.
1	0912	47	2807.	*	2	1512	197	1.	*	3	2112	347	1.	*	5	0312	497	1.
1	0924	48	2906.	*	2	1524	198	1.	*	3	2124	348	1.	*	5	0324	498	1.
1	0936	49	2993.	*	2	1536	199	1.	*	3	2136	349	1.	*	5	0336	499	1.
				*					*					*				
1	0948	50	3069.		2	1548	200	1.		3	2148	350	1.		5	0348	500	1.
1	1000	51	3137.	*	2	1600	201	1.	*	3	2200	351	1.	*	5	0400	501	1.
1	1012	52	3198.	*	2	1612	202	1.	*	3	2212	352	1.	*	5	0412	502	1.
1	1024	53	3252.	*	2	1624	203	1.	*	3	2224	353	1.	*	5	0424	503	1.
				*	2			1.	*			354	1.	*	5			
1	1036	54	3300.			1636	204			3	2236					0436	504	1.
1	1048	55	3343.	*	2	1648	205	1.	*	3	2248	355	1.	*	5	0448	505	1.
1	1100	56	3381.	*	2	1700	206	1.	*	3	2300	356	1.	*	5	0500	506	1.
1	1112	57	3416.	*	2	1712	207	1.	*	3	2312	357	1.	*	5	0512	507	1.
_				*					*					*				
1	1124	58	3447.		2	1724	208	1.		3	2324	358	1.		5	0524	508	1.
1	1136	59	3475.	*	2	1736	209	1.	*	3	2336	359	1.	*	5	0536	509	1.
1	1148	60	3501.	*	2	1748	210	1.	*	3	2348	360	1.	*	5	0548	510	1.
1	1200	61	3524.	*	2	1800	211	1.	*	4	0000	361	1.	*	5	0600	511	1.
				*					*					*				
1	1212	62	3498.		2	1812	212	1.		4	0012	362	1.		5	0612	512	1.
1	1224	63	3371.	*	2	1824	213	1.	*	4	0024	363	1.	*	5	0624	513	1.
1	1236	64	3075.	*	2	1836	214	1.	*	4	0036	364	1.	*	5	0636	514	1.
1	1248	65	2649.	*	2	1848	215	1.	*	4	0048	365	1.	*	5	0648	515	1.
				*					*					*				
1	1300	66	2187.		2	1900	216	1.		4	0100	366	1.		5	0700	516	1.
1	1312	67	1755.	*	2	1912	217	1.	*	4	0112	367	1.	*	5	0712	517	1.
1	1324	68	1392.	*	2	1924	218	1.	*	4	0124	368	1.	*	5	0724	518	1.
1	1336	69	1131.	*	2	1936	219	1.	*	4	0136	369	1.	*	5	0736	519	1.
				*					*					*				
1	1348	70	950.		2	1948	220	1.		4	0148	370	1.		5	0748	520	1.
1	1400	71	820.	*	2	2000	221	1.	*	4	0200	371	1.	*	5	0800	521	1.
1	1412	72	724.	*	2	2012	222	1.	*	4	0212	372	1.	*	5	0812	522	1.
1	1424	73	655.	*	2	2024	223	1.	*	4	0224	373	1.	*	5	0824	523	1.
				*					*					*				
1	1436	74	606.	*	2	2036	224	1.		4	0236	374	1.	*	5	0836	524	1.
1	1448	75	570.	*	2	2048	225	1.	*	4	0248	375	1.	*	5	0848	525	1.
1	1500	76	545.	*	2	2100	226	1.	*	4	0300	376	1.	*	5	0900	526	1.
1	1512	77	526.	*	2	2112	227	1.	*	4	0312	377	1.	*	5	0912	527	1.
1	1524	78	513.	*	2	2124	228	1.	*	4	0324	378	1.	*	5	0924	528	1.
1	1536	79	503.	*	2	2136	229	1.	*	4	0336	379	1.	*	5	0936	529	1.
1	1548	80	496.	*	2	2148	230	1.	*	4	0348	380	1.	*	5	0948	530	1.
									*									
1	1600	81	492.	-	2	2200	231	1.		4	0400	381	1.	~	5	1000	531	1.
1	1612	82	488.	*	2	2212	232	1.	*	4	0412	382	1.	*	5	1012	532	1.
1	1624	83	485.	*	2	2224	233	1.	*	4	0424	383	1.	*	5	1024	533	1.
1	1636	84	483.	*	2	2236	234	1.	*	4	0436	384	1.	*	5	1036	534	1.
1				*	2	2248		1.	*	4	0448	385	1.	*	5			1.
_	1648	85	483.				235									1048	535	
1	1700	86	483.	*	2	2300	236	1.	*	4	0500	386	1.	*	5	1100	536	1.
1	1712	87	483.	*	2	2312	237	1.	*	4	0512	387	1.	*	5	1112	537	1.
1	1724	88	483.	*	2	2324	238	1.	*	4	0524	388	1.	*	5	1124	538	1.
1	1736	89	483.	*	2	2336	239	1.	*	4	0536	389	1.	*	5	1136	539	1.
				*					*					*				
1	1748	90	484.		2	2348	240	1.		4	0548	390	1.		5	1148	540	1.
1	1800	91	484.	*	3	0000	241	1.	*	4	0600	391	1.	*	5	1200	541	1.
1	1812	92	482.	*	3	0012	242	1.	*	4	0612	392	1.	*	5	1212	542	1.
1	1824	93	477.	*	3	0024	243	1.	*	4	0624	393	1.	*	5	1224	543	1.
				*					*	4			1.	*				
1	1836	94	465.		3	0036	244	1.			0636	394			5	1236	544	1.
1	1848	95	448.	*	3	0048	245	1.	*	4	0648	395	1.	*	5	1248	545	1.
1	1900	96	431.	*	3	0100	246	1.	*	4	0700	396	1.	*	5	1300	546	1.
1	1912	97	414.	*	3	0112	247	1.	*	4	0712	397	1.	*	5	1312	547	1.
1	1924	98	400.	*	3	0124	248	1.	*	4	0724	398	1.	*	5	1324	548	1.
				*					*					*				
1	1936	99	390.		3	0136	249	1.		4	0736	399	1.		5	1336	549	1.
1	1948	100	383.	*	3	0148	250	1.	*	4	0748	400	1.	*	5	1348	550	1.
1	2000	101	378.	*	3	0200	251	1.	*	4	0800	401	1.	*	5	1400	551	1.
	2012	102	375.	*	3	0212	252		*	4	0812	402		*	5	1412		
1								1.					1.				552	1.
1	2024		372.	*	3	0224	253	1.	*	4	0824	403	1.	*	5	1424	553	1.
1	2036	104	370.	*	3	0236	254	1.	*	4	0836	404	1.	*	5	1436	554	1.
1	2048	105	369.	*	3	0248	255	1.	*	4	0848	405	1.	*	5	1448	555	1.
1	2100	106	368.	*	3	0300	256	1.	*	4	0900	406	1.	*	5	1500	556	1.
1	2112		368.	*	3	0312	257	1.	*	4	0912	407	1.	*	5	1512	557	1.
1	2124	108	367.	*	3	0324	258	1.	*	4	0924	408	1.	*	5	1524	558	1.
1	2136		367.	*	3	0336	259	1.	*	4	0936	409	1.	*	5	1536	559	1.
1	2148		367.	*	3	0348	260	1.	*	4	0948	410	1.	*	5	1548		1.
																	560	
1	2200		367.	*	3	0400	261	1.	*	4	1000	411	1.	*	5	1600	561	1.
1	2212	112	366.	*	3	0412	262	1.	*	4	1012	412	1.	*	5	1612	562	1.
1	2224		366.	*	3	0424	263	1.	*	4	1024	413	1.	*	5	1624	563	1.
1	2236		366.	*	3	0436	264	1.	*	4	1036	414	1.	*	5	1636	564	1.
1	2248		367.	*	3	0448	265	1.	*	4	1048	415	1.	*	5	1648	565	1.
1	2300	116	367.	*	3	0500	266	1.	*	4	1100	416	1.	*	5	1700	566	1.
1	2312		367.	*	3	0512	267	1.	*	4	1112	417	1.	*	5	1712	567	1.
1	2324		367.	*	3	0524	268	1.	*	4	1124	418	1.	*	5	1724	568	1.
				*					*					*				
1	2336		367.		3	0536	269	1.		4	1136	419	1.		5	1736	569	1.
1	2348	120	367.	*	3	0548	270	1.	*	4	1148	420	1.	*	5	1748	570	1.

		0000		367.	* 3	0600	271	1.	*	4	1200	421	1.			1800	571	1.	
			122	362.	* 3	0612	272	1.	*	4	1212	422	1.				572	1.	
		0024	123	345.	* 3 * 3	0624	273	1.	*	4	1224	423	1.			1824	573	1.	
		0036 0048	124 125	308. 257.	* 3 * 3	0636 0648	274 275	1. 1.	*	4 4	1236 1248	424 425	1. 1.			1836 1848	574 575	1. 1.	
		0100	126	202.	* 3	0700	276	1.	*	4	1300	426	1.			1900	576	1.	
		0112		151.	* 3	0712	277	1.	*	4	1312	427	1.			1912	577	1.	
		0124	128	108.	* 3	0724	278	1.	*	4	1324	428	1.			1924	578	1.	
		0136		77.	* 3	0736	279	1.	*	4	1336	429	1.			1936	579	1.	
		0148	130	56.	* 3	0748	280	1.	*	4	1348	430	1.			1948	580	1.	
		0200		40.	* 3	0800	281	1.	*	4	1400	431	1.			2000	581	1.	
		0212		29.	* 3	0812	282	1.	*	4	1412	432	1.			2012	582	1.	
	2	0224	133	21.	* 3	0824	283	1.	*	4	1424	433	1.		5	2024	583	1.	
	2	0236	134	15.	* 3	0836	284	1.	*	4	1436	434	1.	*	5	2036	584	1.	
	2	0248	135	11.	* 3	0848	285	1.	*	4	1448	435	1.	*	5	2048	585	1.	
	2	0300	136	8.	* 3	0900	286	1.	*	4	1500	436	1.	*	5	2100	586	1.	
	2	0312	137	5.	* 3	0912	287	1.	*	4	1512	437	1.	*	5	2112	587	1.	
	2	0324	138	4.	* 3	0924	288	1.	*	4	1524	438	1.			2124	588	1.	
		0336		3.	* 3	0936	289	1.	*	4	1536	439	1.			2136	589	1.	
			140	2.	* 3	0948	290	1.	*	4	1548	440	1.			2148	590	1.	
			141	1.	* 3	1000	291	1.	*	4	1600	441	1.			2200	591	1.	
		0412		1.	* 3	1012	292	1.	*	4	1612	442	1.				592	1.	
			143	1.	* 3	1024	293	1.	*	4	1624	443	1.			2224	593	1.	
		0436	144	1.	* 3	1036	294	1.	*	4	1636	444	1.			2236	594	1.	
		0448	145	1.	* 3	1048	295	1.	*	4	1648	445	1.			2248	595	1.	
		0500	146	1.	* 3 * 3	1100	296	1.	*	4	1700	446	1.			2300	596	1.	
		0512	147	1.	,	1112	297	1.	*	4	1712	447	1.			2312	597	1.	
		0524	148	1.	-	1124	298	1.	*	4 4	1724	448	1.			2324	598	1.	
			149	1.	* 3 * 3	1136	299	1. 1.	*		1736	449	1.			2336	599	1.	
	2	0548	150	1.	*	1148	300	1.	*	4	1748	450	1.	*	5	2348	600	1.	
*	******	****	*****	******	******	******	*******	****	*****	******	*****	******	******	*****	*****	*****	*****	********	ė.
	PEAK FLOW	ı	TIME			MAX	IMUM AVERA	GE FI	_OW										
					6-H	R :	24-HR	72	-HR	119.80	9-HR								
+	(CFS)		(HR)																
	(/		` '	(CFS)															
+	3524.	1	2.00	, ,	2782		948.	3:	17.	1	L91.								
				(INCHES)	.00	0	.000	. 6	900		.000								
				(AC-FT)	1379	. :	1880.	188	34.	18	388.								
				CUMULAT	IVE AREA	= .00	0 SQ MI												
*	** *** **	* ***	*** **	* *** ***	*** ***	*** ***	*** *** **	* **	* *** :	*** ***	* *** *	** *** *	** *** *	** ***	*** *	:** **	* ***	*** *** ***	:
*	** *** **	* ***	*** **	* *** ***	*** ***	*** ***	*** *** **	* **	* ***	*** ***	* *** *	** *** *	** *** *	** ***	· *** *	** **	* ***	*** *** ***	:
*	** *** **				*** ***	*** *** :	*** *** **	* **	* *** :	*** ***	* *** *	** *** *	** *** *	** ***	· *** *	** **	* ***	*** *** ***	:
*	** *** **		*** **		*** ***	*** *** :	*** *** **	* **	* *** :	*** ***	* *** *	** *** 1	** *** *	** ***	· *** *	*** ***	* ***	*** *** ***	:
*			*****	**** *		*** *** :	*** *** **	* **	* *** :	*** ***	* *** *	** *** 1	** *** *	** ***	: *** *	*** ***	* ***	*** *** ***	:
*	*** *** ** 33 KK	*** *		**** *	*** *** Reservoir	*** *** :	*** *** **	** **	* *** :	*** ***	* *** *	** *** 1	** *** *	** ***	: *** *	** **	* ***	*** *** ***	:
*		*** * *	****** Cove	**** * *		*** *** :	*** *** **	** ***	* *** :	*** ***	* *** *	** ***	** *** *	** ***	· *** *	*** ***	* ***	*** *** ***	:
*		*** * *	*****	**** * * *	Reservoir		*** *** **	** ***	* *** :	*** ***	* *** *	*** ***	** *** *	** ***	: *** *	*** ***	* ***	*** *** ***	:
*		*** * *	****** Cove	**** * * *			*** *** **	***	* ***	*** ***	* *** *	*** *** 3	** *** *	** ***	: *** *	** ***	* ***	*** *** ***	
*		*** * * *	****** Cove *****	**** * * * * ****	Reservoir ing throu		*** *** **	** ***	* ***	*** ***	* *** *	*** *** *	** *** *	** ***	: *** *	** ***	* ***	*** *** ***	
*		*** * * *	****** Cove *****	**** * * *	Reservoir ing throu		*** *** **	** ***	* *** :	*** ***	* *** *	** *** *	** *** *	** ***	*** *	*** ***	* ***	*** *** ***	
*	33 KK	*** * * *	****** Cove ******	**** * * **** Rout	Reservoir ing throu NG DATA		*** ***	***	* *** :	*** ***	* *** *	k *** **	*** ***	** ***	*** *	*** ***	* ***	*** *** ***	
*		*** * * *	****** Cove ******	**** * * **** Rout APH ROUTI	Reservoir ing throu NG DATA G	gh Res'v			* *** :	*** ***	* *** *	** *** 1	*** *** *	** ***	: *** *	** ***	* ***	*** ***	•
*	33 KK	*** * * *	****** Cove ******	**** * * * * * * * * * * * * * * * * *	Reservoir ing throu NG DATA G	gh Res'v NUMBER	OF SUBREA	ACHES		*** ***	* ***	** *** 1	*** *** *	** ***	*** *	** ***	* ***	*** ***	
*	33 KK	*** * * *	****** Cove ****** HYDROGR STORA	**** * * * * * * * * * * * * * * * *	Reservoir ing throu NG DATA G 1 ELEV	gh Res'v NUMBER TYPE OI	OF SUBRE <i>E</i> F INITIAL	ACHES COND:		*** ***	* *** *	*** *** *	*** *** *	** ***	*** *	***	* ***	*** *** ***	
*	33 KK	*** * * *	****** Cove ****** HYDROGR STORA	**** Rout APH ROUTI GE ROUTIN NSTPS ITYP RSVRIC	Reservoir ing throu NG DATA G 1 ELEV 5545.50	gh Res'v NUMBER TYPE OI INITIAI	OF SUBREA F INITIAL L CONDITIC	ACHES COND:	ITION	*** ***	* *** *	*** *** 1	*** *** *	** ***	*** *	***	* ***	*** ***	
*	33 KK	*** * * *	****** Cove ****** HYDROGR STORA	**** * * * * * * * * * * * * * * * *	Reservoir ing throu NG DATA G 1 ELEV 5545.50	gh Res'v NUMBER TYPE OI INITIAI	OF SUBRE <i>E</i> F INITIAL	ACHES COND:	ITION	*** ***	* *** *	*** *** 1	*** *** *	** ***	*** *	***	* ***	*** *** ***	
*	33 KK 35 RS	*** * * *	****** Cove ****** HYDROGR STORA	**** Rout APH ROUTIN MSTPS ITYP RSVRIC X	Reservoir ing throu NG DATA G 1 ELEV 5545.50	gh Res'v NUMBER TYPE OI INITIAI WORKING	OF SUBREA F INITIAL L CONDITIC R AND D C	ACHES COND: DN COEFF:	ITION		* *** *								
*	33 KK	*** * * *	****** Cove ****** HYDROGR STORA	**** Rout APH ROUTI GE ROUTIN NSTPS ITYP RSVRIC	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00	gh Res'v NUMBER TYPE OI INITIAI WORKING 19.0	OF SUBREA F INITIAL L CONDITIC R AND D C 95.0	ACHES CONDI DN COEFFI	ITION	45		738.0	1105.		. *** *		* ***	*** *** *** 2773.0	•
*	33 KK 35 RS	*** * * *	****** Cove ****** HYDROGR STORA	**** Rout APH ROUTIN MSTPS ITYP RSVRIC X	Reservoir ing throu NG DATA G 1 ELEV 5545.50	gh Res'v NUMBER TYPE OI INITIAI WORKING	OF SUBREA F INITIAL L CONDITIC R AND D C 95.0	ACHES CONDI DN COEFFI	ITION ICIENT 240.0	45	53.0								c
*	33 KK 35 RS	*** * * *	****** Cove ****** HYDROGR STORA	**** Rout APH ROUTI GE ROUTIN NSTPS ITYP RSVRIC X RAGE	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0	OF SUBREA F INITIAL L CONDITIC R AND D C 95.0	ACHES CONDI OOCO OOCO OOCO OOCO OOCO OOCO OOCO OO	ITION ICIENT 240.0	45 734	53.0 17.0	738.0		0 1		22:			•
*	33 KK 35 RS	*** * * *	******* Cove ******* HYDROGR STORA	**** Rout APH ROUTI GE ROUTIN NSTPS ITYP RSVRIC X RAGE	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 .0	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0	OF SUBREAF INITIAL L CONDITIC R AND D C 95.6 5419.6	ACHES CONDI NN COEFFI	ITION ICIENT 240.0 5149.0	45 734 5494	53.0 17.0 1.00	738.0 8000.0	1105.	0 1	563.0	22:	17.0	2773.0	c
*	33 KK 35 RS 36 SV 38 SE	*** * * *	******* Cove ******* HYDROGR STORA	**** Rout APH ROUTI GE ROUTIN NSTPS ITVP RSVRIC X RAGE	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 .0 3542.0	NUMBER TYPE OI INITIAL WORKING 19.0 4423.0	OF SUBREAF INITIAL L CONDITIC R AND D C 95.6 5419.6	ACHES CONDI NN COEFFI	ITION ICIENT 240.0 5149.0	45 734 5494	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	•
*	33 KK 35 RS	*** * * *	****** Cove ******* HYDROGR STORA STO	**** Rout APH ROUTI GE ROUTIN NSTPS ITVP RSVRIC X RAGE	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 55470.00 5530.00 ET	NUMBER TYPE 01 INITIAL WORKING 19.0 4423.0 5476.00 5536.00	OF SUBREA F INITIAL L CONDITIO R AND D C 95.6 5419.6 5482.06 5542.06	CCHES CONDI N NCOEFFI O (ITION ICIENT 240.0 5149.0 488.00 548.00	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	c
*	33 KK 35 RS 36 SV 38 SE	*** * * *	****** Cove ******* HYDROGR STORA STO	**** ROUTI APH ROUTI GE ROUTIN NSTPS ITYP RSVRIC X RAGE TION EVEL OUTL ELEVL	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 ET 5545.50	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT	OF SUBREA F INITIAL L CONDITIC R AND D C 95.0 5419.0 542.00 5542.00	CCHES CONDIN COEFF:	ITION ICIENT 240.0 5149.0 488.00 548.00	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	c
*	33 KK 35 RS 36 SV 38 SE	*** * * *	****** Cove ******* HYDROGR STORA STO	**** Rout APH ROUTI GE ROUTIN NSTPS ITYP RSVRIC X RAGE TION EVEL OUTL ELEVL CAREA	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 55470.00 ET 5545.50 4.91	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5536.00 ELEVAT: CROSS-	OF SUBREA F INITIAL L CONDITIC R AND D C 95.6 5419.6 5482.06 5542.06	CCHES CONDIN COEFF:	ITION ICIENT 240.0 5149.0 488.00 548.00	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	· ·
*	33 KK 35 RS 36 SV 38 SE	*** * * *	****** Cove ******* HYDROGR STORA STO	**** Rout APH ROUTI GE ROUTIN NSTPS ITYP RSVRIC X RAGE TION EVEL OUTL ELEVL CAREA COQL	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 ET 5545.50 4.91 .60	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFIG	OF SUBREA F INITIAL L CONDITIC R AND D C 95.6 5419.6 5542.00 SECTIONAL CIENT	ACHES CONDIN NOOEFF:	ITION ICIENT 240.0 5149.0 488.00 548.00	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	•
**	33 KK 35 RS 36 SV 38 SE	*** * * *	****** Cove ******* HYDROGR STORA STO	**** Rout APH ROUTI GE ROUTIN NSTPS ITYP RSVRIC X RAGE TION EVEL OUTL ELEVL CAREA	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 ET 5545.50 4.91 .60	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFIG	OF SUBREA F INITIAL L CONDITIC R AND D C 95.6 5419.6 5482.06 5542.06	ACHES CONDIN NOOEFF:	ITION ICIENT 240.0 5149.0 488.00 548.00	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	·
**	33 KK 35 RS 36 SV 38 SE 40 SL	*** * * *	****** Cove ******* HYDROGR STORA STO ELEVA LOW-L	**** Rout APH ROUTI GE ROUTIN NSTPS ITYP RSVRIC X RAGE TION EVEL OUTL ELEVL CAREA COQL EXPL	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 ET 5545.50 4.91 .60	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFIG	OF SUBREA F INITIAL L CONDITIC R AND D C 95.6 5419.6 5542.00 SECTIONAL CIENT	ACHES CONDIN NOOEFF:	ITION ICIENT 240.0 5149.0 488.00 548.00	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	c
**	33 KK 35 RS 36 SV 38 SE	*** * * *	****** Cove ******* HYDROGR STORA STO	**** Rout APH ROUTI GE ROUTIN NSTPS ITYP RSVRIC X RAGE TION EVEL OUTL ELEVL CAREA COQL EXPL WAY	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 ET 5545.50 .50	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFICE EXPONEI	OF SUBREA F INITIAL L CONDITIC R AND D C 95.6 5419.6 5542.00 SECTIONAL CIENT NT OF HEAD	CCHES COND: N OCOEFF:) () () 54	ITION 240.0 5149.0 188.00 448.00	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	•
*	33 KK 35 RS 36 SV 38 SE 40 SL	*** * * *	****** Cove ******* HYDROGR STORA STO ELEVA LOW-L	**** ROUTI GE ROUTIN NSTPS ITYP RSVRIC X RAGE TION EVEL OUTL ELEVL CAREA COQL EXPL WAY CREL	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 55470.00 5530.00 ET 5545.50 .50 5549.20	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-! COEFFII EXPONEI	OF SUBREAR F INITIAL L CONDITIC R AND D C 95.0 5419.0 5542.00 ION AT CEN SECTIONAL CIENT NT OF HEAD	CCHES COND: N OCOEFF:) () () 54	ITION 240.0 5149.0 188.00 448.00	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	•
*	33 KK 35 RS 36 SV 38 SE 40 SL	*** * * *	****** Cove ******* HYDROGR STORA STO ELEVA LOW-L	**** ROUTIN NSTPS ITVP RSVRIC X RAGE TION EVEL OUTL ELEVL CAREA COQL EXPL WAY CREL SPWID	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 5530.00 ET 5545.50 4.91 .60 .50	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS: COEFFII EXPONEI	OF SUBREAF INITIAL L CONDITIC R AND D C 5419.6 542.06 5542.06 ION AT CENSECTIONAL CIENT NT OF HEAD AY CREST E AY WIDTH	CCHES CONDI N OEFFI) () 55 ITER (I AREA	ITION 240.0 5149.0 188.00 448.00	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	
*	33 KK 35 RS 36 SV 38 SE 40 SL	*** * * *	****** Cove ******* HYDROGR STORA STO ELEVA LOW-L	**** Rout APH ROUTI GE ROUTIN NSTPS ITYP RSVRIC X RAGE TION EVEL OUTL ELEVL CAREA COQL EXPL WAY CREL SPWID COOW	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 55470.00 5530.00 ET 5545.50 4.911 .60 .50 5549.20 30.00 2.67	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS:- COEFFIC EXPONEI	OF SUBREA F INITIAL L CONDITIC R AND D C 95.6 5419.6 5542.00 SECTIONAL CIENT NT OF HEAD AY CREST E AY WIDTH	ACHES CONDI IN COEFFI CONDI COEFFI CONDI COEFFI CONDI COEFFI CONDI COEFFI COEFF	ITION 240.0 5149.0 188.00 448.00	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	
*	33 KK 35 RS 36 SV 38 SE 40 SL	*** * * *	****** Cove ******* HYDROGR STORA STO ELEVA LOW-L	**** ROUTIN NSTPS ITVP RSVRIC X RAGE TION EVEL OUTL ELEVL CAREA COQL EXPL WAY CREL SPWID	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 55470.00 5530.00 ET 5545.50 4.911 .60 .50 5549.20 30.00 2.67	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS:- COEFFIC EXPONEI	OF SUBREAF INITIAL L CONDITIC R AND D C 5419.6 542.06 5542.06 ION AT CENSECTIONAL CIENT NT OF HEAD AY CREST E AY WIDTH	ACHES CONDI IN COEFFI CONDI COEFFI CONDI COEFFI CONDI COEFFI CONDI COEFFI COEFF	ITION 240.0 5149.0 188.00 448.00	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	•
*	33 KK 35 RS 36 SV 38 SE 40 SL 41 SS	*** * * *	****** Cove ******* HYDROGR STORA STO ELEVA LOW-L	**** ROUTIN NSTPS ITVP RSVRIC X RAGE TION EVEL OUTL ELEVL CAREA COQL EXPL WAY CREL SPWID COQW EXPW	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 55470.00 5530.00 ET 5545.50 4.911 .60 .50 5549.20 30.00 2.67	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS:- COEFFIC EXPONEI	OF SUBREA F INITIAL L CONDITIC R AND D C 95.6 5419.6 5542.00 SECTIONAL CIENT NT OF HEAD AY CREST E AY WIDTH	ACHES CONDI IN COEFFI CONDI COEFFI CONDI COEFFI CONDI COEFFI CONDI COEFFI COEFF	ITION 240.0 5149.0 188.00 448.00	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	c
*	33 KK 35 RS 36 SV 38 SE 40 SL	*** * * *	****** Cove ******* HYDROGR STORA STO ELEVA LOW-L	**** Rout APH ROUTI GE ROUTIN NSTPS ITYP RSVRIC X RAGE TION EVEL OUTL ELEVL CAREA COQL EXPL WAY CREL SPWID COQW EXPW F DAM	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 5549.20 4.91 .60 .50 5549.20 30.00 2.67 1.50	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFIC EXPONEI	OF SUBREAF INITIAL L CONDITIC R AND D C 95.6 5419.6 5482.06 5542.06 ION AT CEN SECTIONAL CIENT NT OF HEAD AY CREST E AY WIDTH DEFFICIENT NT OF HEAD	CCHES COND: NO OEFF:) () 55 ITER (AREA)	ITION 240.0 240.0 3149.0 488.00 DF OUT	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	c
*	33 KK 35 RS 36 SV 38 SE 40 SL 41 SS	*** * * *	****** Cove ******* HYDROGR STORA STO ELEVA LOW-L SPILL' TOP 0	**** Rout APH ROUTI GE ROUTIN NSTPS ITYP RSVRIC X RAGE TION EVEL OUTL CAREA COQL EXPL WAY CREL SPWID COQN EXPW F DAM TOPEL	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 5470.00 5530.00 ET 5545.50 4.91 .60 30.00 2.67 1.50	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: EXPONEI SPILLW SPILLW EXPONEI EXPONEI	OF SUBREAF F INITIAL L CONDITIO R AND D C 95.6 5419.6 5542.06 SSECTIONAL CIENT NT OF HEAD AY CREST E AY WIDTH DEFFICIENT NT OF HEAD	CCHES COND: NO OEFF:) () 55 ITER (AREA)	ITION 240.0 240.0 3149.0 488.00 DF OUT	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	
**	33 KK 35 RS 36 SV 38 SE 40 SL 41 SS	*** * * *	****** Cove ******* HYDROGR STORA STO ELEVA LOW-L SPILL' TOP 0	**** ROUTIN NSTPS ITYP RSVRIC X RAGE TION EVEL OUTL ELEVL CAREA COQL EXPL WAY CREL SPWID COQW EXPW F DAM TOPEL DAMWID	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 55470.00 5530.00 ET 5545.50 4.91 .60 .50 5549.20 30.00 2.67 1.50	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COEFFII EXPONEI SPILLW WEIR CC EXPONEI	OF SUBREAF F INITIAL L CONDITIC R AND D C 95.6 5419.6 5542.06 5542.06 ION AT CENSECTIONAL CIENT NT OF HEAD AY CREST E AY WIDTH DEFFICIENT NT OF HEAD	CCHES COND: N OOEFF:) (4) 55 STATE (AREA) CLEVA	ITION 240.0 240.0 3149.0 488.00 DF OUT	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	
**	33 KK 35 RS 36 SV 38 SE 40 SL 41 SS	*** * * *	****** Cove ******* HYDROGR STORA STO ELEVA LOW-L SPILL' TOP 0	**** Rout APH ROUTI GE ROUTIN NSTPS ITYP RSVRIC X RAGE TION EVEL OUTL ELEVL CAREA COQL EXPL WAY CREL SPWID COQW EXPW F DAM TOPEL DAMWID COQD	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 55470.00 5530.00 ET 5545.50 4.91 .60 .50 5549.20 30.00 2.67 1.50	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COFFFILLW WEIR CO EXPONE	OF SUBREAF INITIAL L CONDITIC R AND D C 95.6 5419.6 5482.06 5542.06 ION AT CENT NT OF HEAD AY CREST E AY WIDTH DEFFICIENT NT OF HEAD ION AT TOP DITH DEFFICIENT	CCHES COND: NO COEFF: O SELEVATOR O OF COEFF:	ITION 240.0 240.0 3149.0 488.00 DF OUT	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	·
**	33 KK 35 RS 36 SV 38 SE 40 SL 41 SS	*** * * *	****** Cove ******* HYDROGR STORA STO ELEVA LOW-L SPILL' TOP 0	**** ROUTIN NSTPS ITYP RSVRIC X RAGE TION EVEL OUTL ELEVL CAREA COQL EXPL WAY CREL SPWID COQW EXPW F DAM TOPEL DAMWID	Reservoir ing throu NG DATA G 1 ELEV 5545.50 .00 3542.0 55470.00 5530.00 ET 5545.50 4.91 .60 .50 5549.20 30.00 2.67 1.50	NUMBER TYPE OI INITIAI WORKING 19.0 4423.0 5476.00 5536.00 ELEVAT: CROSS-: COFFFILLW WEIR CO EXPONE	OF SUBREAF F INITIAL L CONDITIC R AND D C 95.6 5419.6 5542.06 5542.06 ION AT CENSECTIONAL CIENT NT OF HEAD AY CREST E AY WIDTH DEFFICIENT NT OF HEAD	CCHES COND: NO COEFF: O SELEVATOR O OF COEFF:	ITION 240.0 240.0 3149.0 488.00 DF OUT	45 734 5494 5552	53.0 17.0 1.00	738.0 8000.0 5500.00	1105.	0 1	563.0	22:	17.0	2773.0	•

COMPUTED OUTFLOW-ELEVATION DATA

(EXCLUDING FLOW OVER DAM)

OUTFLOW	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31	40.98	45.44
ELEVATION	5470.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00	5548.51	5549.20
OUTFLOW	49.37	68.29	113.97	198.20	332.85	529.64	800.37	1156.85	1610.93	2174.46
ELEVATION	5549.32	5549.60	5550.06	5550.68	5551.48	5552.44	5553.58	5554.88	5556.36	5558.00

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA

(INCLUDING FLOW OVER DAM)

STORAGE	.00	19.00	95.00	240.00	453.00	738.00	1105.00	1563.00	2217.00	2773.00
OUTFLOW	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
ELEVATION	5470.00	5476.00	5482.00	5488.00	5494.00	5500.00	5506.00	5512.00	5518.00	5524.00
STORAGE	3542.00	4423.00	5419.00	5844.83	5989.79	6009.51	6033.57	6063.27	6100.64	6148.41
OUTFLOW	.00	.00	.00	.00	25.78	27.48	29.42	31.65	34.25	37.31
ELEVATION	5530.00	5536.00	5542.00	5545.50	5546.69	5546.85	5547.05	5547.30	5547.60	5548.00
STORAGE	6301.53	6508.46	6543.56	6628.96	6765.11	6952.15	7190.23	7347.00	7395.04	7518.54
OUTFLOW	40.98	45.44	49.37	68.29	113.97	198.20	332.85	435.48	2138.72	11657.74
ELEVATION	5548.51	5549.20	5549.32	5549.60	5550.06	5550.68	5551.48	5552.00	5552.44	5553.58
STORAGE	7660.53	7821.02	8000.00							
OUTFLOW	27985.71	51484.63	82813.63							

OUTFLOW 27985.71 51484.63 82813.63 ELEVATION 5554.88 5556.36 5558.00

HYDROGRAPH AT STATION Cove PLAN 1, RATIO = 1.00

*****	*****	****	******	******	*****	***	***	*****	****	******	******	*****	**	****	****	****	******	******	*****
					*							*							
DA MOI	I HRMN	ORD	OUTFLOW	STORAGE	STAGE *	DA	MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE *	D	A MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE
					*							*							
1	0000	1	0.	5844.8	5545.5 *	2		1600	201	195.	6946.4	5550.7 *		4	0800	401	60.	6596.5	5549.5
1	0012	2	0.	5844.8	5545.5 *	2		1612	202	194.	6943.2	5550.7 *		4	0812	402	60.	6595.5	5549.5
1	0024	3	0.	5844.8	5545.5 *	2		1624	203	192.	6940.0	5550.6 *		4	0824	403	59.	6594.4	5549.5
1	0036	4	0.	5844.8	5545.5 *	2		1636	204	191.	6936.8	5550.6 *		4	0836	404	59.	6593.4	5549.5
1	0048	5	0.	5844.8	5545.5 *	2		1648	205	189.	6933.7	5550.6 *		4	0848	405	59.	6592.4	5549.5
1	0100	6	0.	5844.8	5545.5 *	2		1700	206	187.	6930.7	5550.6 *		4	0900	406	59.	6591.4	5549.5
1	0112	7	0.	5844.8	5545.5 *	2		1712	207	186.	6927.6	5550.6 *		4	0912	407	59.	6590.4	5549.5
1	0124	8	0.	5844.8	5545.5 *	2		1724	208	184.	6924.5	5550.6 *		4	0924	408	58.	6589.5	5549.5
1	0136	9	0.	5844.8	5545.5 *	2		1736	209	183.	6921.4	5550.6 *		4	0936	409	58.		5549.5
1	0148	10	0.	5844.8	5545.5 *	2		1748	210	182.	6918.5	5550.6 *		4	0948	410	58.	6587.7	5549.5
1	0200	11	0.	5844.8	5545.5 *	2		1800		180.	6915.6	5550.6 *		4	1000		58.	6586.8	5549.5
1	0212	12	0.	5844.8	5545.5 *	2		1812		179.	6912.7			4	1012		58.		5549.5
1	0224		0.		5545.5 *			1824		177.	6909.7	5550.5 *		4	1024		57.		5549.5
1	0236		0.	5844.8	5545.5 *	2		1836		176.	6906.8	5550.5 *		4	1036		57.		5549.5
1	0248	15	0.		5545.5 *			1848		174.	6903.9			4	1048		57.	6583.3	
1	0300	16	0.	5844.8	5545.5 *	2		1900		173.	6901.0			4	1100		57.		5549.4
1	0312	17	0.	5844.8	5545.5 *	2		1912		172.		5550.5 *		4	1112		57.	6581.6	
1	0324	18	0.	5844.8	5545.5 *	2		1924		170.	6895.4	5550.5 *		4	1124		56.	6580.7	5549.4
1	0336	19	0.	5844.8	5545.5 *	2		1936		169.	6892.6			4	1136		56.	6579.8	
1	0348	20	0.	5844.8	5545.5 *	_		1948		168.	6889.9			4	1148		56.		5549.4
1	0400		0.	5844.8	5545.5 *	2		2000		166.		5550.5 *		4	1200		56.		5549.4
1	0412		0.	5844.8	5545.5 *			2012		165.	6884.3			4	1212		56.		5549.4
1	0424		0.	5844.8	5545.5 *	2		2024		164.	6881.7			4	1224		55.		5549.4
1	0436	24	0.	5844.8	5545.5 *	2		2036		163.	6879.0	5550.4 *		4	1236		55.	6575.4	
1	0448	25	0.	5844.8	5545.5 *	2		2048		162.	6876.4	5550.4 *		4	1248		55.		5549.4
1	0500	26	0.	5844.8	5545.5 *	2		2100		160.		5550.4 *		4	1300		55.	6573.7	
1	0512		0.		5545.5 *	_		2112		159.		5550.4 *		4	1312		55.		5549.4
1	0524		1.	5844.9	5545.5 *	2		2124		158.	6868.5	5550.4 *		4	1324		55.		5549.4
1	0536	29	1.		5545.5 *	2		2136		157.	6865.9	5550.4 *		4	1336		54.		5549.4
1	0548	30	1.		5545.5 *	2		2148		155.	6863.2				1348		54.		5549.4
1	0600	31	1.		5545.5 *	2		2200		154.	6860.8	5550.4 *		4	1400		54.	6569.3	
1	0612		2.	5845.6	5545.5 *	2		2212		153.	6858.3	5550.4 *		4	1412		54.	6568.4	5549.4
1	0624	33	3.	5846.4	5545.5 *	2		2224		152.	6855.8	5550.4 *		4	1424		54.	6567.5	
1	0636	34	4.		5545.5 *			2236		151.	6853.3			4	1436		53.		5549.4
1	0648	35	6.		5545.6 *	2		2248		150.	6850.8	5550.3 *		4	1448		53.		5549.4
1	0700	36	8.		5545.6 *	2		2300		149.	6848.3	5550.3 *		4	1500		53.	6564.9	5549.4
1	0712	37	11.		5545.7 *	2		2312		148.	6845.8				1512		53.		5549.4
1	0724	38	14.		5545.8 *	2		2324		147.	6843.3	5550.3 *		4	1524		53.	6563.2	
1	0736	39	17.	5907.6	5546.0 *	2		2336		147.	6841.0	5550.3 *		4	1536		53.	6562.3	5549.4
1	0748	40	20.		5546.2 *	2		2348		144.	6838.7			4	1548		52.	6561.4	
1	0800	41	23.		5546.5 *	3		0000		143.		5550.3 *		4	1600		52.		5549.4
	0812	41	26.	5992.9	5546.7 *	3		0012		143.		5550.3 *		4	1612		52. 52.		5549.4
1 1	0824	43	29.	6028.3	5547.0 *	3		0012		142.		5550.3 *		4	1624		52. 52.	6558.8	5549.4
	0836					3		0036			6829.3								
1	0848	44 45	32. 35.	6066.5	5547.7 *	3		0048		140. 139.	6827.0				1636 1648		52. 52.		5549.4 5549.4
1														4					
1 1	0900	46 47	37.	6150.0	5548.0 *	3		0100		138.		5550.3 *		4 4	1700		51.		5549.4
	0912 0924	47	38. 40.	6194.9		3		0112		137. 137.	6822.4			4 4	1712		51.	6555.3	
1		48 49			5548.3 *	3		0124				5550.2 *		4 4	1724		51. 51.		5549.4
1 1	0936 0948	49 50	41.	6289.5 6339.0	5548.5 *	3		0136		136.	6818.0 6815.9	5550.2 *		4 4	1736				5549.4
			42.		5548.6 *			0148 0200		135.		5550.2 *		-	1748		51.		5549.3
1	1000	51	43.		5548.8 *	3				134.		5550.2 *			1800		51.		5549.3
1	1012	52	44.		5549.0 *	3		0212		133.	6811.5			4	1812		51.	6550.9	5549.3
1	1024	53	45.		5549.2 *	3		0224		132.		5550.2 *		4	1824		50.		5549.3
1	1036	54	50.	654/.1	5549.3 *	3		0236	254	131.	6807.1	5550.2 *		4	1836	454	50.	6549.1	5549.3

1	1048 55	61.	6601.0	5549.5 *	3	0248 255	130.	6804.9	5550.2 *	4	1848 455	50.	6548.2	5549.3
1	1100 56	76.	6655.4		3	0300 256	129.	6802.7	5550.2 *	4	1900 456	50.	6547.4	5549.3
1	1112 57	94.	6710.1	5549.9 *	3	0312 257	128.	6800.6	5550.2 *	4	1912 457	50.	6546.5	5549.3
					-									
1	1124 58	114.	6765.1	5550.1 *	3	0324 258	127.	6798.6	5550.2 *	4	1924 458	50.	6545.6	5549.3
1	1136 59	137.	6820.2	5550.2 *	3	0336 259	127.	6796.6	5550.2 *	4	1936 459	50.	6544.9	5549.3
1	1148 60	161.	6875.4	5550.4 *	3	0348 260	126.	6794.5	5550.2 *	4	1948 460	49.	6544.1	5549.3
1	1200 61	187.	6930.5	5550.6 *	3	0400 261	125.	6792.5	5550.1 *	4	2000 461	49.	6543.4	5549.3
1	1212 62	215.	6985.2		3	0412 262	124.	6790.4		4	2012 462	49.	6542.7	5549.3
								6788.4						
1	1224 63	244.	7038.1	5551.0 *	3	0424 263	123.			4	2024 463	49.	6541.9	5549.3
1	1236 64	271.	7087.1	5551.1 *	3	0436 264	122.	6786.3	5550.1 *	4	2036 464	49.	6541.2	5549.3
1	1248 65	296.	7129.7	5551.3 *	3	0448 265	122.	6784.3	5550.1 *	4	2048 465	49.	6540.5	5549.3
1	1300 66	317.	7164.6	5551.4 *	3	0500 266	121.	6782.2		4	2100 466	49.	6539.8	5549.3
1	1312 67	334.	7191.8		3	0512 267	120.	6780.3	5550.1 *	4	2112 467	49.	6539.0	5549.3
1	1324 68	347.	7212.2	5551.5 *	3	0524 268	119.	6778.4	5550.1 *	4	2124 468	49.	6538.3	5549.3
1	1336 69	356.	7227.2	5551.6 *	3	0536 269	118.	6776.5	5550.1 *	4	2136 469	48.	6537.6	5549.3
1	1348 70	363.	7238.5	5551.6 *	3	0548 270	118.	6774.6	5550.1 *	4	2148 470	48.	6536.8	5549.3
1	1400 71	369.	7247.1		3	0600 271	117.	6772.7		4	2200 471	48.	6536.1	5549.3
1	1412 72	373.	7253.7	5551.7 *	3	0612 272	116.	6770.8	5550.1 *	4	2212 472	48.	6535.4	5549.3
1	1424 73	377.	7259.0	5551.7 *	3	0624 273	115.	6768.9	5550.1 *	4	2224 473	48.	6534.6	5549.3
1	1436 74	379.	7263.2	5551.7 *	3	0636 274	115.	6767.0	5550.1 *	4	2236 474	48.	6533.9	5549.3
1	1448 75	382.	7266.6	5551.7 *	3	0648 275	114.	6765.1		4	2248 475	48.	6533.2	5549.3
1	1500 76	383.	7269.5		3	0700 276	113.	6763.2		4	2300 476	48.	6532.4	5549.3
1	1512 77	385.	7272.0	5551.7 *	3	0712 277	112.	6761.3	5550.0 *	4	2312 477	48.	6531.7	5549.3
1	1524 78	387.	7274.2	5551.8 *	3	0724 278	112.	6759.4	5550.0 *	4	2324 478	48.	6531.0	5549.3
1	1536 79	388.	7276.2	5551.8 *	3	0736 279	111.	6757.7	5550.0 *	4	2336 479	47.	6530.2	5549.3
1	1548 80	389.	7278.1	5551.8 *	3	0748 280	110.	6755.9	5550.0 *	4	2348 480	47.	6529.5	5549.3
										•				
1	1600 81	390.	7279.9	5551.8 *	3	0800 281	110.	6754.1		5	0000 481	47.	6528.8	5549.3
1	1612 82	391.	7281.5	5551.8 *	3	0812 282	109.	6752.4	5550.0 *	5	0012 482	47.	6528.1	5549.3
1	1624 83	392.	7283.1	5551.8 *	3	0824 283	108.	6750.6	5550.0 *	5	0024 483	47.	6527.3	5549.3
1	1636 84	393.	7284.6		3	0836 284	108.	6748.9	5550.0 *	5	0036 484	47.	6526.6	5549.3
		394.	7286.0	5551.8 *						5	0048 485	47.		5549.3
1					3	0848 285	107.	6747.1					6525.9	
1	1700 86	395.	7287.5	5551.8 *	3	0900 286	106.	6745.4	5550.0 *	5	0100 486	47.	6525.1	5549.3
1	1712 87	396.	7288.9	5551.8 *	3	0912 287	106.	6743.6	5550.0 *	5	0112 487	47.	6524.4	5549.3
1	1724 88	397.	7290.4	5551.8 *	3	0924 288	105.	6741.9	5550.0 *	5	0124 488	47.	6523.7	5549.3
1	1736 89	398.	7291.9	5551.8 *	3	0936 289	104.		5550.0 *	5	0136 489	47.	6522.9	5549.2
1	1748 90	399.	7293.3		3	0948 290	104.	6738.3	5550.0 *	5	0148 490	47.	6522.2	5549.2
1	1800 91	400.	7294.8		3	1000 291	103.	6736.6	5550.0 *	5	0200 491	46.	6521.5	5549.2
1	1812 92	401.	7296.1	5551.8 *	3	1012 292	103.	6734.8	5550.0 *	5	0212 492	46.	6520.7	5549.2
1	1824 93	402.	7297.4	5551.8 *	3	1024 293	102.	6733.2	5550.0 *	5	0224 493	46.	6520.0	5549.2
1	1836 94	403.	7298.6	5551.8 *	3	1036 294	101.	6731.6	5549.9 *	5	0236 494	46.	6519.3	5549.2
						1048 295			5549.9 *	5				5549.2
1		403.	7299.5		3		101.	6730.0			0248 495	46.	6518.5	
1	1900 96	404.	7300.1		3	1100 296	100.	6728.4	5549.9 *	5	0300 496	46.	6517.8	5549.2
1	1912 97	404.	7300.3	5551.8 *	3	1112 297	100.	6726.8	5549.9 *	5	0312 497	46.	6517.1	5549.2
1	1924 98	404.	7300.3	5551.8 *	3	1124 298	99.	6725.2	5549.9 *	5	0324 498	46.	6516.4	5549.2
1	1936 99	404.	7300.2	5551.8 *	3	1136 299	98.	6723.6	5549.9 *	5	0336 499	46.	6515.6	5549.2
1	1948 100	404.	7299.9	5551.8 *	3	1148 300	98.	6722.0	5549.9 *	5	0348 500	46.	6514.9	5549.2
1	2000 101	403.	7299.5		3	1200 301	97.	6720.4		5	0400 501	46.	6514.2	5549.2
1	2012 102	403.	7299.0	5551.8 *	3	1212 302	97.	6718.8	5549.9 *	5	0412 502	46.	6513.4	5549.2
1	2024 103	403.	7298.6	5551.8 *	3	1224 303	96.	6717.1	5549.9 *	5	0424 503	46.	6512.7	5549.2
1	2036 104	402.	7298.0	5551.8 *	3	1236 304	96.	6715.5	5549.9 *	5	0436 504	46.	6512.0	5549.2
			7297.4	5551.8 *				6713.9	5549.9 *	5			6511.2	5549.2
1	2048 105	402.			3	1248 305	95.				0448 505	46.		
1	2100 106	402.	7296.8	5551.8 *	3	1300 306	94.	6712.3	5549.9 *	5	0500 506	46.	6510.5	5549.2
1	2112 107	401.	7296.3	5551.8 *	3	1312 307	94.	6710.7	5549.9 *	5	0512 507	45.	6509.8	5549.2
1	2124 108	401.	7295.7	5551.8 *	3	1324 308	93.	6709.2	5549.9 *	5	0524 508	45.	6509.0	5549.2
1	2136 109	400.	7295.1		3	1336 309	93.	6707.8	5549.9 *	5	0536 509	45.	6508.3	5549.2
									5549.9 *					
1	2148 110	400.	7294.5	5551.8 *	3	1348 310	92.	6706.3		5	0548 510	45.	6507.6	5549.2
1	2200 111	400.	7293.9	5551.8 *	3	1400 311	92.	6704.9	5549.9 *	5	0600 511	45.	6506.8	5549.2
1	2212 112	399.	7293.3	5551.8 *	3	1412 312	91.	6703.4	5549.9 *	5	0612 512	45.	6506.1	5549.2
1	2224 113	399.	7292.7	5551.8 *	3	1424 313	91.	6701.9	5549.8 *	5	0624 513	45.	6505.4	5549.2
1	2236 114	398.	7292.2	5551.8 *	3	1436 314	90.	6700.5	5549.8 *	5	0636 514	45.	6504.7	5549.2
						1448 315			5549.8 *	5				
1	2248 115	398.	7291.6		3		90.	6699.0			0648 515	45.	6503.9	5549.2
1	2300 116	398.			3	1500 316	89.	6697.5	5549.8 *	5	0700 516	45.	6503.2	5549.2
1	2312 117	397.	7290.7	5551.8 *	3	1512 317	89.	6696.1	5549.8 *	5	0712 517	45.	6502.5	5549.2
1	2324 118	397.			3	1524 318	88.		5549.8 *	5	0724 518	45.		5549.2
1	2336 119	397.			3	1536 319	88.		5549.8 *	5	0736 519	45.		5549.2
			7289.4											5549.2
1	2348 120	397.			3	1548 320	87.	6691.7		5	0748 520	45.	6500.3	
2	0000 121	396.			3	1600 321	87.		5549.8 *	5	0800 521	45.		5549.2
2	0012 122	396.	7288.4	5551.8 *	3	1612 322	86.		5549.8 *	5	0812 522	45.	6498.8	5549.2
2	0024 123	395.	7287.6	5551.8 *	3	1624 323	86.	6687.3	5549.8 *	5	0824 523	45.	6498.1	5549.2
2	0036 124	395.			3	1636 324	85.		5549.8 *	5	0836 524	45.		5549.2
2	0048 125	393.			3	1648 325	85.		5549.8 *	5	0848 525	45.		5549.2
2	0100 126	392.			3	1700 326	85.		5549.8 *	5	0900 526	45.	6495.9	5549.2
2	0112 127	389.	7278.4	5551.8 *	3	1712 327	84.	6681.8	5549.8 *	5	0912 527	45.	6495.2	5549.2
2	0124 128	387.			3	1724 328	84.		5549.8 *	5	0924 528	45.		5549.2
2	0136 129	383.			3	1736 329	83.		5549.8 *	5	0936 529	45.	6493.7	
2	0148 130	380.			3	1748 330	83.		5549.8 *	5	0948 530	45.		5549.1
2	0200 131	376.			3	1800 331	82.		5549.8 *	5	1000 531	45.		5549.1
2	0212 132	373.	7253.1	5551.7 *	3	1812 332	82.	6675.2	5549.8 *	5	1012 532	45.	6491.5	5549.1
2	0224 133	369.			3	1824 333	82.		5549.8 *	5	1024 533	45.		5549.1
2	0236 134	365.			3	1836 334	81.		5549.7 *	5	1036 534	45.		5549.1
									5549.7 *					
2	0248 135	362.			3	1848 335	81.			5	1048 535	45.		5549.1
2	0300 136	358.			3	1900 336	80.		5549.7 *	5	1100 536	45.		5549.1
2	0312 137	354.	7224.2		3	1912 337	80.	6668.6	5549.7 *	5	1112 537	45.	6487.8	5549.1
2	0324 138	351.	7218.5	5551.6 *	3	1924 338	80.	6667.3	5549.7 *	5	1124 538	45.	6487.1	5549.1
2	0336 139	347.			3	1936 339	79.		5549.7 *	5	1136 539	45.		5549.1
2	0348 140	343.			3	1948 340	79.		5549.7 *	5	1148 540	45.		5549.1
2	0400 141	340.	7201.5		3	2000 341	78.	6663.3		5	1200 541	45.		5549.1
2	0412 142	336.			3	2012 342	78.		5549.7 *	5	1212 542	45.		5549.1
2	0424 143	333.			3	2024 343	77.		5549.7 *	5	1224 543	45.		5549.1
2	0436 144	330.			3	2036 344	77.	6659.4	5549.7 *	5	1236 544	45.	6482.7	5549.1
2	0448 145	326.			3	2048 345	77.		5549.7 *	5	1248 545	45.		5549.1
2	0500 146	323.	7174.1	5551.4 *		2100 346	76.		5549.7 *		1300 546	45.		5549.1
_	0300 140	323.	/1/4.1	JJJ1.4	,	2100 340	70.	0000.7	JJ4J./ "	,	1300 340	43.	0401.3	JJ47.1

2	0512 147	320.		5551.4 *	2112 347	76.		5549.7 *		1312 547	45.	6480.5	
2	0524 148	316.		5551.4 *	2124 348	76.	6654.4	5549.7 *	5	1324 548	45.	6479.8	5549.1
2	0536 149	313.		5551.4 *	2136 349	75.	6653.2	5549.7 *	5	1336 549	45.	6479.1	
2	0548 150	310.		5551.4 *	2148 350	75.		5549.7 *	5	1348 550	45.	6478.3	
2	0600 151	307.	7148.3	5551.3 *	2200 351	75.	6650.9	5549.7 *	5	1400 551	45.	6477.6	5549.1
2	0612 152	304.		5551.3 *	2212 352	74.	6649.7		5	1412 552	45.	6476.9	5549.1
2	0624 153	301.		5551.3 *	2224 353	74.	6648.6	5549.7 *	5	1424 553	45.	6476.1	
2	0636 154	298.	7133.3	5551.3 *	2236 354	74.	6647.4	5549.7 *	5	1436 554	45.	6475.4	5549.1
2	0648 155	295.		5551.3 *	2248 355	73.	6646.2		5	1448 555	45.	6474.7	
2	0700 156	292.	7123.7		2300 356	73.	6645.0	5549.7 *	5	1500 556	45.	6473.9	
2	0712 157	290.	7118.9	5551.2 *	2312 357	72.	6643.9	5549.7 *	5	1512 557	45.	6473.2	
2	0724 158	287.		5551.2 *	2324 358	72.	6642.7	5549.6 *	5	1524 558	45.	6472.5	5549.1
2	0736 159	284.		5551.2 *	2336 359	72.	6641.5	5549.6 *	5	1536 559	45.		5549.1
2	0748 160	281.		5551.2 *	2348 360	71.	6640.4	5549.6 *	5	1548 560	45.	6471.0	5549.1
2	0800 161	279.		5551.2 *	0000 361	71.	6639.2		5	1600 561	45.	6470.3	
2	0812 162	276.		5551.2 *	0012 362	71.	6638.0	5549.6 *	5	1612 562	45.	6469.6	5549.1
2	0824 163	273.		5551.1 *	0024 363	70.	6636.9	5549.6 *	5	1624 563	45.	6468.8	5549.1
2	0836 164	271.		5551.1 *	0036 364	70.	6635.7		5	1636 564	45.	6468.1	
2	0848 165	268.		5551.1 *	0048 365	70.	6634.5		5	1648 565	45.	6467.4	5549.1 5549.1
2	0900 166	266.		5551.1 *	0100 366	70.	6633.3	5549.6 *	5 5	1700 566	45.	6466.6	
2	0912 167	263.		5551.1 *	0112 367	69.		5549.6 *		1712 567	45.	6465.9	
2	0924 168	261.		5551.1 *	0124 368	69.	6631.0		5	1724 568	45.	6465.2	
2	0936 169 0948 170	258. 256.	7064.8 7060.5	5551.1 * 5551.0 *	0136 369 0148 370	69. 68.	6629.8 6628.7	5549.6 * 5549.6 *	5 5	1736 569 1748 570	45. 45.	6464.4 6463.7	5549.1 5549.1
2						68.		5549.6 *	5	1800 571	44.		
2	1000 171	254. 251.		5551.0 *	0200 371			5549.6 *	5			6463.0	5549.0
2	1012 172 1024 173	249.		5551.0 * 5551.0 *	0212 372 0224 373	68. 67.	6626.3 6625.2	5549.6 *	5	1812 572 1824 573	44. 44.	6462.2 6461.5	5549.0
2	1036 174	247.		5551.0 *	0236 374	67.		5549.6 *	5	1836 574	44.	6460.8	
2	1048 175	247.	7039.9	5551.0 *	0248 375	67.		5549.6 *	5	1848 575	44.	6460.1	
2	1100 176	243.	7035.9	5551.0 *	0300 376	66.		5549.6 *	5	1900 576	44.	6459.3	
2	1112 177	242.		5550.9 *	0312 377	66.		5549.6 *	5	1912 577	44.	6458.6	5549.0
2	1112 177	238.	7028.0	5550.9 *	0312 377	66.	6620.0	5549.6 *	5	1924 578	44.	6457.9	5549.0
2	1136 179	236.		5550.9 *	0336 379	66.		5549.6 *	5	1936 579	44.	6457.1	
2	1148 180	234.		5550.9 *	0348 380	65.	6618.0	5549.6 *	5	1948 580	44.	6456.4	5549.0
2	1200 181	232.	7016.5		0400 381	65.	6617.0	5549.6 *	5	2000 581	44.	6455.7	5549.0
2	1212 182	230.		5550.9 *	0412 382	65.	6615.9	5549.6 *	-	2012 582	44.	6454.9	
2	1224 183	228.	7008.9	5550.9 *	0412 382	65.	6614.9	5549.6 *	5	2024 583	44.	6454.2	
2	1236 184	226.	7005.1		0436 384	64.	6613.9	5549.6 *	5	2036 584	44.	6453.5	5549.0
2	1248 185	224.		5550.8 *	0448 385	64.	6612.9	5549.5 *		2048 585	44.	6452.7	
2	1300 186	222.		5550.8 *	0500 386	64.	6611.9	5549.5 *	5	2100 586	44.	6452.0	5549.0
2	1312 187	220.	6994.1	5550.8 *	0512 387	63.	6610.8	5549.5 *	5	2112 587	44.	6451.3	5549.0
2	1324 188	218.		5550.8 *	0524 388	63.	6609.8	5549.5 *	5	2124 588	44.	6450.5	5549.0
2	1336 189	216.	6987.0		0536 389	63.	6608.8	5549.5 *	5	2136 589	44.	6449.8	5549.0
2	1348 190	214.	6983.4	5550.8 *	0548 390	63.	6607.8	5549.5 *	5	2148 590	44.	6449.1	
2	1400 191	212.	6979.9	5550.8 *	0600 391	62.	6606.7	5549.5 *	5	2200 591	44.	6448.4	
2	1412 192	211.	6976.4		0612 392	62.	6605.7	5549.5 *	5	2212 592	44.	6447.6	5549.0
2	1424 193	209.	6972.9		0624 393	62.	6604.7	5549.5 *	5	2224 593	44.	6446.9	5549.0
2	1436 194	207.	6969.6	5550.7 *	0636 394	62.	6603.7	5549.5 *	5	2236 594	44.	6446.2	
2	1448 195	205.	6966.2	5550.7 *	0648 395	61.	6602.6	5549.5 *	5	2248 595	44.	6445.4	5549.0
2	1500 196	204.		5550.7 *	0700 396	61.	6601.6	5549.5 *	5	2300 596	44.	6444.7	
2	1512 197	202.		5550.7 *	0712 397	61.	6600.6	5549.5 *	5	2312 597	44.	6444.0	5549.0
2	1524 198	200.	6956.1	5550.7 *	0724 398	61.	6599.6	5549.5 *	5	2324 598	44.	6443.2	
2	1536 199	199.	6952.9		0736 399	60.	6598.5	5549.5 *	5	2336 599	44.	6442.5	5549.0
2	1548 200	197.		5550.7 *	0748 400	60.		5549.5 *	5	2348 600	44.	6441.8	
				*				*					

PEAK OUTFLOW IS 404. AT TIME 19.20 HOURS

	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
		4		6-HR	24-HR	72-HR	119.80-HR
+	(CFS)	(HR)	(CFS)				
+	404.	19.20	(613)	401.	346.	191.	130.
			(INCHES)	.000	.000	.000	.000
			`(AC-FT)	199.	687.	1135.	1291.
PI	EAK STORAGE	TIME			MAXIMUM AVERA	AGE STORAGE	
				6-HR	24-HR	72-HR	119.80-HR
+	(AC-FT)	(HR)					
	7300.	19.20		7296.	7209.	6902.	6696.
	PEAK STAGE	TIME			MAXIMUM AVE	RAGE STAGE	
				6-HR	24-HR	72-HR	119.80-HR
+	(FEET)	(HR)					
	5551.84	19.20		5551.83	5551.54	5550.52	5549.72
			CUMULATIV	E AREA =	.00 SQ MI		

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES
TIME TO PEAK IN HOURS

RATIOS APPLIED TO PRECIPITATION RATIO 1 1.00

OPERATION STATION AREA PLAN

+	Cove	.00 1	FLOW TIME	3524. 12.00				
ROUTED TO								
+	Cove	.00 1	FLOW TIME	404. 19.20				
		** 1	PEAK STAGES STAGE 5	IN FEET ** 5551.84				
1		-	TIME	19.20	EACH ANALYSIS	C COD CTATT	ON Cove	
1							CH FORMATION)	
PLAN	1		INITIAL	\/ALLIE	SPILLWAY CR	TCT TOD	OF DAM	
PLAN	1	EL EVATTON					OF DAM	
		ELEVATION STORAGE		345.	5549.20 6508.		552.00 7347.	
			58					
		OUTFLOW		0.	45.		435.	
	RATIO	MAXIMUM	MAXIMUM	MAXIMUM	MAXIMUM	DURATION	TIME OF	TIME OF
	OF	RESERVOIR	DEPTH	STORAGE	OUTFLOW	OVER TOP	MAX OUTFLOW	FAILURE
	PMF	W.S.ELEV	OVER DAM	AC-FT	CFS	HOURS	HOURS	HOURS
	1.00	5551.84	.00	7300.	404.	.00	19.20	.00

*** NORMAL END OF HEC-1 ***

Spillway Analysis

TIME	06:12:11						
*******	******	****** 80	-80 LIST O	F INPUT Da	ta ******	*******	******
SITES SAVMOV	01/01/2009 0 101	5COVRES	COV RES			4.74	C3
SAVMOV STRUCTURE	101 1 STR1	Cove Res 5470 5480 5490 5500 5510 5520 5530 5540 5545.5 5552 5552				0.18 62.26 303.40 738.03 1400.09 2323.02 3541.97 5073.81 6055.03 6934.92 7347.18 7450.25	1
ENDTABLE HYD	1		Principal				
		0 15 15 16 16 17 17 18	11 15 16 16 17 17 18 18	14 15 16 16 17 17 18 18	15 15 16 16 17 17 18 18	15 15 16 16 17 17 18 19	
		20 20 21 22 24 25 27 29	20 21 21 23 24 25 27	20 21 22 23 24 26 27 29	20 21 22 23 24 26 28 30	20 21 22 23 25 26 28 30	
		31 34 38 43 51 65 96 850	31 35 39 45 53 69 109 479	32 35 40 46 56 74 127 259	33 36 41 48 58 80 157 172	33 37 42 49 61 87 219	
		111 70 54 45 39 35 32 29	98 65 51 43 38 34 31	88 62 50 42 37 33 30 28	81 59 48 41 36 33 30 28	75 56 46 40 35 32 29 27	
		27 25 24 23 22 21	27 25 24 22 21 20 20	26 25 23 22 21 20	26 24 23 22 21 20	26 24 23 22 21 20	
		19 18 18 17 17 16 16 15	19 18 17 17 16 16 15 15	19 18 17 17 16 16 15 15	19 18 17 17 16 16 15	18 18 17 17 16 16 15	
ENDTABLE HYD	3	0.3 0 6 2027 1248 833 180	Auxiliary 0 39 2180 1107 748 112	Spillway 0 194 1955 1001 589	(Local) 0 687 1683 924 423 47	0 1365 1441 874 283 28	
ENDTABLE HYD	5	1.2 0 195 2008	9	(General) 4 1352 1060	35 3365 912	84 3296 792	

			742 547 1	664 262 0	624 90	613 24	611 5	
ENDTABLE WSDATA PDIRECT	2C CI	₹		4.74	0.40	16.00		
POOLDATA PSINLET	ELEV		1	5545.5 3.75	9.40	16.00 5552	5435	sc
PSDATA ASSPREL	1 41		1000	30		0.012	5450	
	0 237 1170		5530 5517.6 5435	75 600	5549.2 5481.7	155 1049	5549.2 5453.3	
ENDTABLE								
ASSURFACE			1170	1	_	_		
ENDTABLE	0		1170	1	0	1		
ASDATA	41				2			1
BTMWIDTH	FEET		30		2			1
ASMATERIA			30					
	1		50	1	75	115	.2	
ENDTABLE								
ASCOORD	1		W.Shale	N				
	0		5530	75	5550	125	5565	
	200		5552	250	5520	600	5485	
	1050		5460	1150	5435	1300	5432.4	
ENDTABLE								
GRAPHICS	I							
GO, DESIGN			TYPE2	24				
SAVMOV ENDJOB	2	101	1		STR1			
*******	*****	****	******	******	*******	*******	*******	****

***** MESSAGE - DEFAULT TOPSOIL FILL MATERIAL PARAMETERS USED.

***** MESSAGE - AUXILIARY SPILLWAY CREST ELEVATION IS SET TO 5549.20 FROM THE ASSPRFL RECORDS.

***** MESSAGE - ASSURFACE REACH 1: ZERO ROOTING DEPTH IS DEFAULTED TO 0.5 FT.

1SITES					
XEQ 08/20/2020	COV RES			WSID= C	OVRES
VER 2005.1.8	Cove Res			SUBW=	: CR
TIME 06:12:11	SITE = STR1	PASS=	1	PART=	1

******	*****	MATERIAL	PROPERTIES	*****	******	****
		DRY		PERCENT	DETACH.	REP.
MATERIAL	PΙ	DENSITY	Kh	CLAY	RATE	DIAMETER
		lbs/CuFt			(Ft/H)/(lb/SqFt)	inches
W.Shale	50.	115.	0.20	75.0		1.00000
TS_FILL	0.	100.	0.05	0.0		0.05000
GEN_FILL	50.	115.	0.20	75.0		1.00000

HUMID- SUBHUMID CLIMATE AREA DESIGN CLASS C

HOHED SOL	MONIE CLINA	L ANEA	•	DESIGN CEASS C	
INFLOW HYD	PROGRAPH(S) E	ENTERED			
PRECIP		Q-PS,10-DAY 0.00	P-SD 9.40	P-FB 16.00	
WSDATA -	CN 0.00	DA-SM 4.74	TC/L 0.00	-/H 0.00	QRF 0.00
SITEDATA-	PERM POOL 0.00	CREST PS 5545.50	FP SED 0.00	VALLEY FL 5435.00	378? NO
	BASEFLOW 0.00	INITIAL EL 0.00	EXTRA VOL 0.00	SITE TYPE DESIGN	
PSDATA -	NO. COND 1.00	COND L 1000.00	DIA/W 30.00	-/H 0.00	
	PS N 0.012	KE 1.00	WEIR L 3.75	TW EL 5450.00	
	2ND STG 0.00	ORF H 0.00	ORF L 0.00	START AUX. 0.00	
ASCRESTS -	AUX.1 5549.20	AUX.2 0.00	AUX.3 0.00	AUX.4 0.00	AUX.5 0.00
AUX.Data -	REF.NO.	RETARD. Ci 0.00	TIE STATION 155.00	INLET LENGTH 0	
AUX.Data -	INLET Ci 1.000	SIDE SLOPE 2.00	EXIT Ci 1.000	EXIT SLOPE 0.385	ACTUAL AUX? NO

BTM WIDTH -RM1 RM2 BM3 RM4 RM5 30.00 0.00 0.00 0.00 0.00

AUXILIARY SPILLWAY RATING DEVELOPED USING WSPVRT.

1SITES -----XEQ 08/20/2020 WSID= COVRES

COV RES SUBW= CR VER 2005.1.8 Cove Res SITE = STR1 1 PART= 2 TIME 06:12:11 PASS=

MESSAGE ---- Climatic Index changed from 0.0 to 1.0 for this run.

CREST PS 5545.50 FT 6055.0 ACFT 0.00 AC 126.3 CFS

SED ACCUM 5545.50 FT 6055.0 ACFT 0.00 AC 126.3 CES

START ELEV 5545.50 FT 6055.0 ACFT 0.00 AC 0.0 CFS

INFLOW HYDROGRAPH PROVIDED IN LOCATION 1, PEAK= 850.00 CFS, AT 120.00 HRS.

TITLE = Principal Spillway

PS STORAGE

33.00 18.0

2.6 5545.7 6094.6

9.9

CREST PS 5545.50 FT 6055.0 ACFT 0.00 AC 126.3 CFS

6055.0 ACFT 126.3 CFS SED ACCUM 5545.50 FT 0.00 AC

START ELEV 5545.50 FT 0.00 AC 0.0 CFS 6055.0 ACFT

NRCS-PSH RAINFALL 1-DAY = 0.00 IN 10-DAY = 0.00 IN DA = 4.74 SM 1-DAY = 0.00 IN 10-DAY = 0.00 IN

CLIMATIC INDEX = 1.00 CN 10-DAY = 0. CN 1-DAY = 0.

PEAK = 850.0 CFS, AT 120.0 HRS.

ROUTED RESULT - HYD TYPE FMΔX VOL-MAX ΔΜΔΧ ΟΜΔΧ NRCS-PSH 5547.76 FT 6496.1 ACFT 0.00 AC 40.0 CFS

441.0 ACFT, BETWEEN AUX. CREST AND SED. ACCUM ELEVATIONS.

DRAWDOWN (DDT) TEST 5545.84 FT 6121.2 ACFT CONTROL IS 0.150 DETENTION STORAGE

TIME LIMIT REACHED = 10.00 DAYS. FLOW WAS 9.73 CFS, ELEV = 5546.26 (ELEVATION TO START ROUTING SDH AND/OR FBH HAS BEEN RAISED.)

TIME TO DDT TEST DISCHARGE IS 15.79 DAYS - DRAWDOWN STOPPED.

***** NOTE - CREST OF AUX. RAISED TO HOLD 148.03 ACFT NOT EVACUATED IN DRAWDOWN TIME LIMIT. TOTAL STORAGE REQUIRED = 6644.08 ACFT, NEW ELEVATION OF AUXILIARY SPILLWAY CREST = 5548.51 FT.

PLOT OF PRINCIPAL SPILLWAY HYDROGRAPH, 1 INCH= 200. CFS 200. 400. 600. 800. 1000. 1200. 1400. Vol Area ExtVel I Time Oin Oout Elev 0.00 0.0 0.0 5545.5 6055.5 0.0 1.00 11.0 0.0 5545.5 6055.5 0.0 .I 0.1 5545.5 6056.5 2.00 14.0 0.0 .I 3.00 15.0 0.2 5545.5 6057.7 0.3 5545.5 .I 4.00 15.0 6058.9 0.0 0.3 5545.5 5.00 6060.1 15.0 0.0 6.00 15.0 0.4 5545.5 6061.3 7.00 15.0 0.5 5545.5 6062.5 9.9 .I 0.6 5545.5 8.00 15.0 6063.7 9.00 15.0 0.7 5545.6 6064.9 10.00 15.0 0.7 5545.6 6066.1 0.0 .I 0.8 5545.6 16.0 12.00 16.0 0.9 5545.6 6068.6 0.0 1.0 5545.6 .I 13.00 16.0 6069.8 0.0 1.1 5545.6 14.00 16.0 6071.1 0.0 15.00 16.0 1.1 5545.6 6072.3 0.0 1.2 5545.6 .I 16.00 16.0 6073.5 0.0 1.3 5545.6 17.00 16.0 6074.7 0.0 18.00 16.0 1.4 5545.6 6076.0 0.0 .I 1.5 5545.6 6077.2 .I 19.00 16.0 0.0 1.5 5545.6 6078.4 .I 20.00 16.0 1.6 5545.6 1.7 5545.6 21.00 17.0 6079.6 0.0 .I .I 22.00 17.0 6080.9 0.0 23.00 17.0 1.8 5545.6 6082.1 .I 24.00 17.0 1.9 5545.6 1.9 5545.7 6083.4 0.0 .I 17.0 6084.6 25.00 0.0 2.0 5545.7 6085.9 26.00 27.00 17.0 2.1 5545.7 6087.1 0.0 2.2 5545.7 28.00 17.0 6088.3 0.0 .I 2.3 5545.7 6089.5 30.00 17.0 2.3 5545.7 6090.8 9.9 2.4 5545.7 6092.0 31.00 18.0 0.0 .I 2.5 5545.7 6093.3

```
2.7 5545.7
2.8 5545.7
34.00 18.0
                            6095 8
                                                   .I
.I
35.00
                            6097.1
       18.0
                                      0.0
 36.00
        18.0
               2.8 5545.7
                            6098.4
37.00
       18.0
               2.9 5545.7
                            6099.6
                                      0.0
                                                   .I
.I
               3.0 5545.7
                            6100.8
 38.00
        18.0
                                      0.0
 39.00
        19.0
                3.1 5545.7
                            6102.1
40.00
       19.0
               3.2 5545.7
                            6103.4
                                      0.0
                                                   .I
.I
41.00
               3.3 5545.8
                            6104.7
        19.0
                                      0.0
 42.00
       19.0
                3.4 5545.8
                            6106.0
                                      0.0
                                                   .I
.I
43.00
       19.0
               3.4 5545.8
                            6107.3
                                      0.0
 44.00
               3.5 5545.8
       19.0
                            6108.6
                                      0.0
 45.00
        20.0
               3.6 5545.8
3.7 5545.8
                            6109.9
 46.00
       20.0
                            6111.3
                                      0.0
                                                   .I
.I
               3.8 5545.8
 47.00
                            6112.6
        20.0
                                      0.0
 48.00
        20.0
               3.9 5545.8
                            6114.0
                                      0.0
49.00
       20.0
               4.0 5545.8
                            6115.3
                                      9.9
                                                   .I
.I
               4.0 5545.8
 50.00
        20.0
                            6116.6
                                      0.0
 51.00
       21.0
               4.1 5545.8
                            6118.0
                                      0.0
 52.00
       21.0
               4.2 5545.8
                            6119.4
                                      9.9
                                                   .I
.I
               4.3 5545.8
                            6120.7
 53.00
        21.0
                                      0.0
 54.00
       21.0
               4.4 5545.8
                            6122.1
                                      0.0
 55.00 21.0
               4.5 5545.9
                            6123.5
                                      0.0
                                                   .I
               4.6 5545.9
                            6124.8
                                                   .I
 56.00
       21.0
                                      0.0
 57.00
       22.0
               4.7 5545.9
                            6126.2
                                      0.0
               4.8 5545.9
 58.00 22.0
                            6127.7
                                      0.0
                                                   .I
               4.9 5545.9
                                                   .I
 59.00
       22.0
                            6129.1
                                      0.0
 60.00
       22.0
               5.0 5545.9
                            6130.5
                                      0.0
               5.1 5545.9
 61.00
       23.0
                            6131.9
                                      0.0
                                                   .I
               5.2 5545.9
                                                   .I
 62.00
       23.0
                            6133.4
                                      0.0
 63.00
       23.0
                5.2 5545.9
                            6134.9
                                      0.0
                                                   .I
.I
               5.3 5545.9
                            6136.4
 64.00
       23.0
                                      0.0
               5.4 5545.9
                            6137.8
                                                   .I
 65.00
        24.0
                                      0.0
               5.5 5545.9
5.6 5545.9
 66.00
       24.0
                            6139.4
                                      0.0
                                                   .I
.I
       24.0
 67.00
                            6140.9
                                      0.0
 68.00
        24.0
               5.7 5545.9
                            6142.4
                                                   .I
 69.00
       25.0
               5.8 5546.0
                            6144.0
                                     0.0
                                                   .I
               5.9 5546.0
                            6145.5
 70.00
       25.0
                                      0.0
                                                   .I
 71.00
        25.0
               6.1 5546.0
                            6147.1
                                                   .I
 72.00
       26.0
               6.2 5546.0
                            6148.7
                                      0.0
                                                   .I
               6.3 5546.0
                            6150.3
 73.00
       26.0
                                      0.0
                                                   .I
               6.4 5546.0
                                                   .1
 74.00
        26.0
                            6152.0
                                      0.0
 75.00
       27.0
               6.5 5546.0
                            6153.6
                                      9.9
                                                   .I
               6.6 5546.0
 76.00
       27.0
                            6155.3
                                      0.0
                                                   .I
               6.7 5546.0
                            6157.0
                                                   .I
 78.00
       28.0
               6.8 5546.0
                            6158.7
                                      9.9
                                                   .I
               6.9 5546.0
                            6160.5
 79.00
       28.0
                                      0.0
                                                   .I
 80.00
       29.0
               7.0 5546.0
                            6162.2
                                                   .I
               7.2 5546.1
7.3 5546.1
                                                   .I
.I
 81.00
       29.0
                            6164.1
                                     0.0
                            6165.9
                                      0.0
       29.0
 82.00
 83.00
        30.0
               7.4 5546.1
                            6167.7
                                      0.0
 84.00
       30.0
               7.5 5546.1
7.7 5546.1
                            6169.5
                                     0.0
                                                   . I
        31.0
                            6171.4
                                      0.0
 85.00
                                                   . I
 86.00
        31.0
               7.8 5546.1
                            6173.4
                                      0.0
87.00
       32.0
               7.9 5546.1
                            6175.3
                                     0.0
                                                   . I
               8.0 5546.1
                            6177.3
 88.00
       33.0
                                      0.0
                                                   . I
 89.00
        33.0
               8.2 5546.1
                            6179.4
                                      0.0
               8.3 5546.1
 90.00
       34.0
                            6181.5
                                     0.0
                                                   . I
 91.00
       35.0
               8.5 5546.2
                            6183.6
                                      0.0
                                                   . I
 92.00
       35.0
               8.6 5546.2
8.7 5546.2
                            6185.8
                                      0.0
                                                   . I
 93.00
       36.0
                            6188.1
                                      0.0
                                                   . I
               8.9 5546.2
 94.00
       37.0
                            6190.3
                                      0.0
                                                   . I
 95.00
        38.0
               9.0 5546.2
                            6192.7
                                      0.0
               9.2 5546.2
 96.00
       39.0
                            6195.1
                                      0.0
                                                   . I
               9.4 5546.2
 97.00
       40.0
                            6197.6
                                      0.0
                                                   . I
 98.00 41.0
               9.5 5546.2
                            6200.2
                                      0.0
99.00
       42.0
               9.7 5546.3
                            6202.8
                                      9.9
                                                   . I
               9.9 5546.3
100.00
       43.0
                            6205.5
                                      0.0
101.00 45.0
              10.1 5546.3
                            6208.3
                                      0.0
                                                   .PI
102.00
       46.0
              10.3 5546.3
                            6211.3
                                      0.0
                                                   .PI
              10.5 5546.3
103.00
       48.0
                            6214.3
                                      0.0
              10.7 5546.3
10.9 5546.3
104.00 49.0
                            6217.4
                                      0.0
                                                    .PI
105.00
       51.0
                            6220.7
                                      0.0
                                                   .P I
              11.1 5546.4
106.00
        53.0
                            6224.0
                                      0.0
107.00
       56.0
              11.3 5546.4
                            6227.6
                                      0.0
                                                   .P I
       58.0
              11.6 5546.4
                                                   .P I
108.00
                            6231.4
                                      0.0
             11.9 5546.4
109.00
       61.0
                            6235.3
                                      0.0
110.00 65.0 12.1 5546.4
                            6239.5
                                      0.0
                                                   P I
                                                   .P I
       69.0 12.4 5546.5
                            6244.1
111.00
                                      0.0
       74.0 12.7 5546.5
112.00
                            6248.9
                                      0.0
113.00 80.0 13.1 5546.5
114.00 87.0 13.5 5546.5
                                                   .P
.P
                            6254.2
                                      0.0
                            6260.0
                                      0.0
115.00
       96.0
             13.9 5546.6
                            6266.5
116.00 109.0 14.4 5546.6
117.00 127.0 14.9 5546.7
                            6273.8
                                      0.0
                                                    .Р
                            6282.3
                                      0.0
              15.6 5546.7
118.00 157.0
                            6292.8
119.00 219.0 17.3 5546.8
                            6307.0
                                     0.0
                                                   .Р
              22.4 5547.0
120.00 850.0
                            6349.5
                                      0.0
                                                   .Р
                                                                                                Х
121.00 479.0
              28.7 5547.3
                            6402.3
                                                                            Ι
                                                   . Р
122.00 259.0
              32.1 5547.4
                            6430.3
                                     9.9
                                                                 Ι
                                                  . P
              33.9 5547.5
                            6445.4
                                                            Ι
123.00 172.0
                                     0.0
                                                        I
              35.1 5547.5
                            6455.1
125.00 111.0 35.9 5547.6 6462.2
                                     9.9
```

126.00	98.0	36.6 5547.6	6467.8	0.0	. Р	
127.00	88.0	37.2 5547.6	6472.5	0.0	. P	Ι
128.00	81.0	37.6 5547.7	6476.4	0.0	. P	Ι
129.00	75.0	38.0 5547.7	6479.7	0.0	. P	Ι
130.00	70.0	38.4 5547.7	6482.5	0.0	. P	
131.00	65.0	38.7 5547.7	6484.9	0.0	. P:	Ι
132.00	62.0	38.9 5547.7	6487.0	0.0	. P:	Ι
133.00	59.0	39.1 5547.7	6488.7	0.0	. P:	
134.00	56.0	39.3 5547.7	6490.2	0.0	. P:	
135.00	54.0	39.4 5547.7	6491.5	0.0	. P:	Ι
136.00	51.0	39.6 5547.7	6492.6	0.0	. P:	
137.00	50.0	39.7 5547.7	6493.5	0.0	. P:	Ι
138.00	48.0	39.8 5547.7	6494.3	0.0	. P	
139.00	46.0	39.8 5547.7	6494.9	0.0	. P	
140.00	45.0	39.9 5547.8	6495.3	0.0	. P	
141.00	43.0	39.9 5547.8	6495.7	0.0	. P	
142.00	42.0	40.0 5547.8	6495.9	0.0	. P	
143.00	41.0	40.0 5547.8	6496.0	0.0	. P	
144.00	40.0	40.0 5547.8	6496.1	0.0	. x	
145.00	39.0	40.0 5547.8	6496.0	0.0	. P	
146.00	38.0	40.0 5547.8	6495.9	0.0	. P	
147.00	37.0	39.9 5547.8	6495.7	0.0	. P	
148.00	36.0	39.9 5547.8	6495.4	0.0	. P	
149.00	35.0	39.9 5547.8	6495.0	0.0		
150.00	35.0	39.8 5547.7	6494.6	0.0	. P	
151.00 152.00	34.0 33.0	39.8 5547.7 39.7 5547.7	6494.2 6493.7	0.0 0.0		
153.00	33.0	39.6 5547.7	6493.1	0.0		
154.00	32.0	39.6 5547.7	6492.6	0.0	. P	
155.00	32.0	39.5 5547.7	6491.9	0.0		
156.00	31.0	39.4 5547.7	6491.3	0.0	. P . P	
157.00	30.0	39.3 5547.7	6490.5	0.0	. P	
158.00	30.0	39.2 5547.7	6489.8	0.0		
159.00	29.0	39.1 5547.7	6489.0	0.0	. P .IP	
160.00	29.0	39.0 5547.7	6488.1	0.0	.IP	
161.00	29.0	38.9 5547.7	6487.3	0.0	.IP	
162.00	28.0	38.8 5547.7	6486.5	0.0	.IP	
163.00	28.0	38.7 5547.7	6485.6	0.0	.IP	
164.00	27.0	38.6 5547.7	6484.6	0.0	.IP	
165.00	27.0	38.5 5547.7	6483.7	0.0	.IP	
166.00	27.0	38.4 5547.7	6482.7	0.0	.IP	
167.00	26.0	38.3 5547.7	6481.8	0.0	.IP	
168.00	26.0	38.1 5547.7	6480.8	0.0	.IP	
169.00	26.0	38.0 5547.7	6479.8	0.0	.IP	
170.00	25.0	37.9 5547.7	6478.7	0.0	.IP	
171.00	25.0	37.8 5547.7	6477.7	0.0	.IP	
172.00	25.0	37.7 5547.7	6476.6	0.0	.IP	
173.00	24.0	37.5 5547.7	6475.5	0.0	.IP	
174.00	24.0	37.4 5547.6	6474.4	0.0	.IP	
175.00	24.0	37.3 5547.6	6473.3	0.0	.IP	
176.00	24.0	37.1 5547.6	6472.2	0.0	.IP	
177.00	23.0	37.0 5547.6	6471.1	0.0	.IP	
178.00	23.0	36.9 5547.6	6470.0	0.0	.IP	
179.00	23.0	36.7 5547.6	6468.8	0.0	.IP	
180.00	23.0	36.6 5547.6	6467.7	0.0	.IP	
181.00	22.0	36.4 5547.6	6466.5	0.0	.IP	
182.00	22.0	36.3 5547.6	6465.3	0.0	.IP	
183.00	22.0	36.2 5547.6	6464.2	0.0	.IP	
184.00	22.0	36.0 5547.6	6463.0	0.0	.IP	
185.00	22.0	35.9 5547.6	6461.8	0.0	.IP	
186.00	21.0	35.7 5547.6	6460.7	0.0	.IP	
187.00	21.0	35.6 5547.6	6459.5	0.0	.IP	
188.00	21.0	35.4 5547.6	6458.3	0.0	.IP	
189.00	21.0	35.3 5547.6	6457.1	0.0	.IP	
190.00	21.0	35.2 5547.6	6455.9	0.0	.IP	
191.00	20.0	35.0 5547.5	6454.7	0.0	.IP	
192.00	20.0	34.9 5547.5	6453.4	0.0	.IP	
193.00	20.0	34.7 5547.5	6452.2	0.0	.IP	
194.00 195.00	20.0	34.6 5547.5	6451.0	0.0	.IP	
	20.0	34.4 5547.5	6449.8	0.0	.IP	
196.00	20.0	34.3 5547.5	6448.6	0.0	.IP	
197.00	19.0 19.0	34.1 5547.5 34.0 5547.5	6447.4	0.0	.IP	
198.00 199.00		33.8 5547.5	6446.2 6444.9	0.0 0.0	.IP	
200.00	19.0 19.0	33.7 5547.5	6443.7	0.0	.IP	
201.00	19.0	33.6 5547.5	6442.5	0.0	.IP	
202.00	19.0	33.4 5547.5	6441.3	0.0	.IP	
203.00	19.0	33.3 5547.5	6440.1	0.0	.IP	
204.00	18.0	33.1 5547.5	6438.9	0.0	.IP	
205.00	18.0	33.0 5547.5	6437.7	0.0	.IP	
206.00	18.0	32.8 5547.5	6436.4	0.0	.IP	
207.00	18.0	32.7 5547.4	6435.2	0.0	.IP	
208.00	18.0	32.5 5547.4	6434.0	0.0	.IP	
209.00	18.0	32.4 5547.4	6432.8	0.0	.IP	
210.00	18.0	32.2 5547.4	6431.6	0.0	.IP	
211.00	17.0	32.1 5547.4	6430.4	0.0	.IP	
212.00	17.0	32.0 5547.4	6429.2	0.0	.IP	
213.00	17.0	31.8 5547.4	6427.9	0.0	.IP	
214.00	17.0	31.7 5547.4	6426.7	0.0	.IP	
215.00	17.0	31.5 5547.4	6425.5	0.0	.IP	
216.00	17.0	31.4 5547.4	6424.3	0.0	.IP	
217.00	17.0	31.2 5547.4	6423.1	0.0	.IP	

```
218.00 17.0 31.1 5547.4
219.00 17.0 30.9 5547.4
                          6422.0
                                                .IP
                          6420.8
                                   0.0
220.00
       17.0
             30.8 5547.4
                          6419.7
221.00 16.0
             30.7 5547.4
                          6418.5
                                   0.0
                                                .IP
             30.5 5547.4
222.00
                          6417.3
                                                .IP
       16.0
                                   0.0
223.00
       16.0
             30.4 5547.3
                          6416.1
             30.2 5547.3
30.1 5547.3
224.00 16.0
                          6414.9
                                   0.0
                                                .IP
225.00
                          6413.7
                                                .IP
       16.0
                                   0.0
226.00
       16.0
             30.0 5547.3
                          6412.6
                                   0.0
227.00 16.0 29.8 5547.3
                          6411.4
                                   0.0
                                                . Р
228.00 16.0
             29.7 5547.3
                          6410.3
                                                .Р
                                   0.0
229.00 16.0 29.5 5547.3
230.00 16.0 29.4 5547.3
                          6409.2
                                                .Р
                          6408.1
                                   0.0
                                                . Р
             29.3 5547.3
231.00
       15.0
                          6406.9
                                                .Р
                                   0.0
232.00
       15.0 29.1 5547.3
                          6405.7
                                   0.0
                                                .Р
233.00 15.0
             29.0 5547.3
                          6494.6
                                   9.9
                                                .Р
234.00
             28.9 5547.3
                                                .P
       15.0
                          6403.4
                                   0.0
235.00
       15.0
             28.7 5547.3
                          6402.3
                                   0.0
                                                .Р
236.00 15.0 28.6 5547.3
                          6401.2
                                   9.9
                                                . Р
237.00
             28.5 5547.3
                          6400.0
       15.0
                                   0.0
238.00
       15.0 28.3 5547.3
                          6398.9
                                   0.0
                                                .Р
239.00 15.0 28.2 5547.3 6397.8
                                   0.0
                                                . Р
                           Vol
                                 Area ExtVel
Time
        Oin Oout Elev
                                                        200.
                                                                 400.
                                                                           600.
                                                                                     800.
                                                                                              1000.
                                                                                                        1200.
                                                                                                                 1400.
       END NRCS-PSH PLOT
RATING TABLE DEVELOPED, SITE = STR1 :
BY PROGRAM FOR PS AND AUX. SPILLWAYS
AUX. RATING USED WSPVRT METHOD.
RATING TABLE NUMBER 1
                                   Q-AUX.
      ELEV.
               Q-TOTAL
                          Q-PS
                                             VOLUME
      FEET
                 CFS
                           CFS
                                     CFS
                                             AC-FT
                                                        ACRE
                 0.00
                           0.00
                                            6055.03
    5545.50
                                     0.00
                                                        0.00
    5546.72
                15.71
                          15.71
                                     0.00
                                            6294.00
    5547.94
                44.43
                          44.43
                                     0.00
                                            6532.97
                                                        9.99
 4 5549.17
                81.62
                          81.62
                                     0.00
                                            6771.95
                                                        0.00
                                          FULL CONDUIT
                                                      FLOW, ELEV = 5550.39 FT
                                     9.99
 5
    5550.39
               125.65
                         125.65
                                           7015.04
                                                        9.99
```

5550.65 7069.39 0.00 125.84 125.84 0.00 5550.92 126.01 126.01 7123.74 5551.18 126.17 126.17 0.00 7178.09 9.99 5551.44 126.34 126.34 0.00 7232.44 0.00 5551.71 126.50 126.50 0.00 7286.79 0.00 5551.97 5552.23 126.67 126.83 11 126.67 0.00 7341.14 0.00 0.00 7395.49 0.00 126.83 12 126.99 126.99 7449.85

INFLOW HYDROGRAPH PROVIDED IN LOCATION 3, PEAK= 2180.00 CFS, AT 3.30 HRS. TITLE = Auxiliary Spillway (Local)

INFLOW HYDROGRAPH PROVIDED IN LOCATION 5, PEAK= 3365.00 CFS, AT 9.60 HRS. TITLE = Freeboard (General)

1SITES -----COV RES XEQ 08/20/2020 WSID= COVRES VER 2005.1.8 Cove Res SUBW= CR SITE = STR1 PART= 3 TIME 06:12:11 PASS=

AUX. CREST 5548.51 FT 6644.1 ACFT 0.00 AC 61.7 CFS

PS STORAGE 589.1 ACFT. BETWEEN AUX. CREST AND SED. ACCUM ELEVATIONS.

START ELEV 5546.26 FT 6203.0 ACFT 0.00 AC 9.7 CFS

***** WARNING - AUXILIARY CREST LOWER THAN LOW POINT IN SITE.

NRCS-SDH INFLOW HYDROGRAPH INPUT, DA = 4.74 SOUARE MILES

PEAK = 2180.0 CFS, AT 3.3 HRS.

NRCS-FBH INFLOW HYDROGRAPH INPUT, DA = 4.74 SQUARE MILES

3365.0 CFS, AT 9.6 HRS. PEAK =

***** WARNING - MAXIMUM AUX. SURFACE PROFILE ELEVATION (5549.20) AND AUXILIARY CREST (5548.51) ELEVATION DO NOT MATCH. MAXIMUM AUX. SURFACE PROFILE ELEVATION USED IN WSPVRT PROCEDURE.

***** MESSAGE - INPUT(5549.14) TO INTERPOLATION ROUTINE IS BELOW ARRAY LIMIT(5549.20).

RATING TABLE DEVELOPED, SITE = STR1 : BY PROGRAM FOR PS AND AUX. SPILLWAYS AUX. RATING USED WSPVRT METHOD.

RATI	NG TABLE	NUMBER 2				
	ELEV.	Q-TOTAL	Q-PS	Q-AUX.	VOLUME	AREA
	FEET	CFS	CFS	CFS	AC-FT	ACRE
1	5545.50	0.00	0.00	0.00	6055.03	0.00
2	5545.83	2.25	2.25	0.00	6120.52	0.00
3	5546.17	6.37	6.37	0.00	6186.02	0.00
4	5546.50	11.71	11.71	0.00	6251.52	0.00
5	5546.84	18.03	18.03	0.00	6317.01	0.00
6	5547.17	25.20	25.20	0.00	6382.51	0.00
7	5547.51	33.12	33.12	0.00	6448.00	0.00
8	5547.84	41.74	41.74	0.00	6513.50	0.00
9	5548.18	50.99	50.99	0.00	6578.99	0.00
10	5548.51	60.85	60.85	0.00	6644.49	0.00
11	5549.14	80.67	80.67	0.00	6766.41	0.00
12	5549.76	126.50	102.35		6888.71	0.00
					FULL CONDUI	T FLOW, ELEV = 5550.39 FT
13	5550.39	223.05	125.67	97.38	7015.14	0.00
14	5550.49	237.89	125.75	112.14	7036.88	0.00
15	5550.60	255.98	125.81	130.16	7058.62	0.00
16	5550.79	290.40	125.93	164.47	7097.77	0.00
17	5551.02	332.53	126.08	206.45	7145.68	0.00
18	5551.44	422.70	126.34	296.36	7232.64	0.00
19	5551.97	551.57	126.67	424.90	7341.44	0.00
20	5552.50	697.75	126.99	570.75	7450.25	0.00
***	******	*********	*******	******	*******	*******

SUMMARY OF AUXILIARY SPILLWAY SURFACE CONDITIONS USED IN COMPUTATIONS BY REACH

REACH	FROM STA (ft)	TO STA (ft)	SLOPE (%)	RETARDANCE CURVE INDEX	VEGETAL COVER FACTOR	MAINT. CODE +	ROOTING DEPTH (ft)	REACH LOCATION *
1	0.	75.	-25.6	1.000	**	**	**	INLET
2	75.	155.	0.0	1.000	**	**	**	CREST
3	155.	237.	38.5	1.000	0.00	1		EXIT !
4	237.	600.	9.9	1.000	0.00	1		EXIT
5	600.	1049.	6.3	1.000	0.00	1		EXIT
6	1049.	1170.	15.1	1.000	0.00	1		EXIT

+ The minimum maintenance code value of 2 is used in INTEGRITY computations (the program changes values of 1 to 2 during computation).

* Upper case indicates a reach of constructed spillway channel.

** The program does not use vegetal cover factor, maintenance code, and rooting depth for inlet and crest reaches in computations.

! Reach 3 used in computing exit channel velocities.

ROUTED RESULTS NRCS-SDH	BTM WIDTH FT 30.0	MAX ELEV FT 5548.67	VOL-MAX ACFT 6675.5	AREA-MAX AC 0.0	AUXHP FT 0.16	VOL-AUX. ACFT 31.0
	PEAK - CFS DISCHARGE =	Q-PS 65.7	Q-AUX. 0.2	Q-TOT. 65.9		
	AUXILIARY SPILLWAY	CRITICAL DEPTH FT 0.01	CRITICAL VELOCITY FT/SEC 0.57	CRITICAL SLOPE-Sc FT/FT 0.148	25% OF Q Sc FT/FT 0.308	

AUXILIARY SPILLWAY DURATION FLOW = 8.7 HOURS

	PLC	T NRCS-SDH			1 IN =	50	00. CFS								EX1	T SLOP	E = 1	0.385	
						0.	50	0.	10	100.	1500.		2000.	25	00.	3000		350	0.
Time	Qin	Qout Elev	Vol	Area	ExtVel	Ι		Ι		I	I		I		I	I			Ι
1.50	0	8 5546.3	6203.0	0.0	0.00														
1.80	6	8 5546.3	6203.0	0.0	0.00														
2.10	39	8 5546.3	6203.4	0.0	0.00	.I													
2.40	194	8 5546.3	6206.1	0.0	0.00		I												
2.70	687	9 5546.3	6216.8	0.0	0.00				I										
3.00	1365	11 5546.5	6242.0	0.0	0.00						I								
3.30	2027	15 5546.7	6283.7	0.0	0.00								I						
3.60	2180	20 5546.9	6335.4	0.0	0.00									Χ					
3.90	1955	26 5547.2	6386.1	0.0	0.00	.Р							I						
4.20	1683	31 5547.4	6430.5	0.0	0.00	.P						I							
4.50	1441	36 5547.6	6468.4	0.0	0.00	.P					I								
4.80	1248	40 5547.8	6500.8	0.0	0.00	.P					I								
5.10	1107	44 5547.9	6528.9	0.0	0.00	.P				I									
5.40	1001	47 5548.1	6553.9	0.0	0.00	.Р				I									
5.70	924	51 5548.2	6576.6	0.0	0.00	.P			I										
6.00	874	54 5548.3	6597.6	0.0	0.00	.P			I										
6.30	833	57 5548.4	6617.4	0.0	0.00	.P			I										
6.60	748	60 5548.5	6635.5	0.0	0.00	.P			I										
6.90	589	62 5548.5	6650.6	0.0	0.00	. А		I											
7.20	423	64 5548.6	6661.6	0.0	0.00	. А	I												
7.50	283	65 5548.6	6668.8	0.0	0.00	. A	I												
7.80	180	65 5548.7	6672.9	0.0	0.00	. А	I												
8.10	112	66 5548.7	6674.9	0.0	0.00	.AI													

8.40	73	66 5548.7	6675.5	0.0	0.00	.x
8.70	47	66 5548.7	6675.4	0.0	0.00	. А
9.00	28	66 5548.7	6674.7	0.0	0.00	. А
9.30	16	66 5548.7	6673.6	0.0	0.00	. А
9.60	9	65 5548.7	6672.3	0.0	0.00	. А
9.90	5	65 5548.6	6670.8	0.0	0.00	. А
10.20	3	65 5548.6	6669.3	0.0	0.00	. А
10.50	1	65 5548.6	6667.8	0.0	0.00	. А
10.80	1	64 5548.6	6666.2	0.0	0.00	. А
11.10	0	64 5548.6	6664.6	0.0	0.00	. А
11.40	0	64 5548.6	6663.1	0.0	0.00	. А
11.70	0	64 5548.6	6661.5	0.0	0.00	.A
12.00	ø	63 5548.6	6660.0	0.0	0.00	.A
12.30	0	63 5548.6	6658.4	0.0	0.00	.A
12.60	0	63 5548.6	6656.9	0.0	0.00	.A
12.90	0	63 5548.6	6655.4	0.0	0.00	.A
13.20	0	62 5548.6	6653.8	0.0	0.00	.A
13.50	0	62 5548.6	6652.3	0.0	0.00	.A
13.80	0	62 5548.5	6650.8	0.0	0.00	.A
14.10	0	62 5548.5	6649.3	0.0	0.00	.A
14.40	0	61 5548.5	6647.8	0.0	0.00	.A
14.70	0	61 5548.5	6646.3	0.0	0.00	.A
15.00	0	61 5548.5	6644.8	0.0	0.00	.A
15.30	0	61 5548.5	6643.3	0.0	0.00	.P
15.60	0	60 5548.5	6641.9	0.0	0.00	.P
15.90	0	60 5548.5	6640.4	0.0	0.00	.P
16.20	0	60 5548.5	6638.9	0.0	0.00	. P
16.50	0		6637.5	0.0	0.00	.P
						.г .Р
16.80 17.10	0		6636.0 6634.5	0.0	0.00	.г .Р
	0			0.0	0.00	.P
17.40	0		6633.1	0.0	0.00	.P
17.70	0	59 5548.4	6631.7	0.0	0.00	
18.00	0	59 5548.4	6630.2	0.0	0.00	.Р
18.30	0	58 5548.4	6628.8	0.0	0.00	.Р
18.60	0	58 5548.4	6627.4	0.0	0.00	.Р
18.90	0	58 5548.4	6626.0	0.0	0.00	.Р
19.20	0	58 5548.4	6624.6	0.0	0.00	.Р
19.50	0	58 5548.4	6623.1	0.0	0.00	.Р
19.80	0	57 5548.4	6621.7	0.0	0.00	.Р
20.10	0	57 5548.4	6620.3	0.0	0.00	.Р
20.40	0	57 5548.4	6619.0	0.0	0.00	.Р
20.70	0	57 5548.4	6617.6	0.0	0.00	.Р
21.00	0	57 5548.4	6616.2	0.0	0.00	.Р
21.30	0	56 5548.4	6614.8	0.0	0.00	.Р
21.60	0	56 5548.4	6613.4	0.0	0.00	.Р
21.90	0	56 5548.3	6612.1	0.0	0.00	.Р
22.20	0	56 5548.3	6610.7	0.0	0.00	.Р
22.50	0	56 5548.3	6609.4	0.0	0.00	.Р
22.80	0	55 5548.3	6608.0	0.0	0.00	.Р
23.10	0	55 5548.3	6606.7	0.0	0.00	.Р
23.40	0	55 5548.3	6605.3	0.0	0.00	.P
23.70	0	55 5548.3	6604.0	0.0	0.00	.Р
24.00	0	55 5548.3	6602.7	0.0	0.00	.P
24.30	0	54 5548.3	6601.3	0.0	0.00	.P
24.60	0	54 5548.3	6600.0	0.0	0.00	.Р
24.90	0	54 5548.3	6598.7	0.0	0.00	.Р
25.20	0	54 5548.3	6597.4	0.0	0.00	.Р
25.50	0	54 5548.3	6596.1	0.0	0.00	.Р
25.80	0	53 5548.3	6594.8	0.0	0.00	.P
26.10	0	53 5548.3	6593.5	0.0	0.00	.P
26.40	0	53 5548.2	6592.2	0.0	0.00	.Р
26.70	0	53 5548.2	6590.9	0.0	0.00	.Р
27.00	0	53 5548.2	6589.6	0.0	0.00	.P
27.30	0	52 5548.2	6588.4	0.0	0.00	.P
27.60	0	52 5548.2	6587.1	0.0	0.00	.P
27.90	0	52 5548.2	6585.8	0.0	0.00	.P
28.20	0	52 5548.2	6584.5	0.0	0.00	.P
28.50	0	52 5548.2	6583.3	0.0	0.00	.P
28.80	0	51 5548.2	6582.0	0.0	0.00	.Р
29.10	0	51 5548.2	6580.8	0.0	0.00	.P
29.40	0	51 5548.2	6579.5	0.0	0.00	.P
29.70	0	51 5548.2	6578.3	0.0	0.00	.P
30.00	0	51 5548.2	6577.1	0.0	0.00	.P
30.30	0	51 5548.2	6575.8	0.0	0.00	.Р
30.60	0	50 5548.2	6574.6	0.0	0.00	.Р
30.90	0	50 5548.2	6573.4	0.0	0.00	.Р
31.20	0	50 5548.1	6572.2	0.0	0.00	.Р
31.50	0	50 5548.1	6571.0	0.0	0.00	.Р
31.80	0	50 5548.1	6569.8	0.0	0.00	.Р
32.10	0	50 5548.1	6568.5	0.0	0.00	.Р
32.40	0	49 5548.1	6567.3	0.0	0.00	.Р
32.70	0	49 5548.1	6566.1	0.0	0.00	.P
33.00	0	49 5548.1	6565.0	0.0	0.00	.Р
33.30	0	49 5548.1	6563.8	0.0	0.00	.Р
33.60	0	49 5548.1	6562.6	0.0	0.00	.Р
33.90	0	49 5548.1	6561.4	0.0	0.00	.Р
34.20	0	48 5548.1	6560.2	0.0	0.00	.P
34.50	ø	48 5548.1	6559.1	0.0	0.00	.P
34.80	0	48 5548.1	6557.9	0.0	0.00	.P
35.10	0	48 5548.1	6556.7	0.0	0.00	.P
35.40	ø	48 5548.1	6555.6	0.0	0.00	.P
35.70	ø	48 5548.1	6554.4	0.0	0.00	.P

36.00	0	47 5548.0	6553.3	0.0	0.00	.Р
36.30	0	47 5548.0	6552.1	0.0	0.00	.P
36.60	0	47 5548.0	6551.0	0.0	0.00	.Р
36.90	0	47 5548.0	6549.8	0.0	0.00	.Р
37.20	0	47 5548.0	6548.7	0.0	0.00	.Р
37.50	0	47 5548.0	6547.6	0.0	0.00	.Р
37.80	0	46 5548.0	6546.4	0.0	0.00	.Р
38.10	0	46 5548.0 46 5548.0	6545.3 6544.2	0.0	0.00 0.00	.P .P
38.40 38.70	0 0	46 5548.0	6543.1	0.0 0.0	0.00	. P
39.00	0	46 5548.0	6542.0	0.0	0.00	. P
39.30	0	46 5548.0	6540.9	0.0	0.00	. P
39.60	0	45 5548.0	6539.8	0.0	0.00	.P
39.90	0	45 5548.0	6538.7	0.0	0.00	.Р
40.20	0	45 5548.0	6537.6	0.0	0.00	.Р
40.50	0	45 5548.0	6536.5	0.0	0.00	.P
40.80	0	45 5548.0	6535.4	0.0	0.00	.P
41.10	0	45 5548.0	6534.3	0.0	0.00	.Р
41.40	0	45 5547.9	6533.2	0.0	0.00	.Р
41.70	0	44 5547.9	6532.1	0.0	0.00	.Р
42.00	0	44 5547.9	6531.1	0.0	0.00	.Р
42.30	0	44 5547.9	6530.0	0.0	0.00	.Р
42.60	0 0	44 5547.9 44 5547.9	6528.9	0.0	0.00	.Р .Р
42.90 43.20	0	44 5547.9 44 5547.9	6527.9 6526.8	0.0 0.0	0.00 0.00	.P
43.50	0	43 5547.9	6525.7	0.0	0.00	. P
43.80	0	43 5547.9	6524.7	0.0	0.00	.P
44.10	0	43 5547.9	6523.6	0.0	0.00	. P
44.40	0	43 5547.9	6522.6	0.0	0.00	.P
44.70	0	43 5547.9	6521.6	0.0	0.00	.P
45.00	0	43 5547.9	6520.5	0.0	0.00	.P
45.30	0	43 5547.9	6519.5	0.0	0.00	.Р
45.60	0	42 5547.9	6518.5	0.0	0.00	.Р
45.90	0	42 5547.9	6517.4	0.0	0.00	.Р
46.20	0	42 5547.9	6516.4	0.0	0.00	.Р
46.50	0	42 5547.9	6515.4	0.0	0.00	.Р
46.80	0	42 5547.8	6514.4	0.0	0.00	.Р
47.10	0 0	42 5547.8 42 5547.8	6513.4	0.0	0.00	.Р .Р
47.40 47.70	0	42 5547.8	6512.4 6511.4	0.0 0.0	0.00 0.00	.P
48.00	0	41 5547.8	6510.4	0.0	0.00	.r .P
48.30	0	41 5547.8	6509.4	0.0	0.00	.P
48.60	0	41 5547.8	6508.4	0.0	0.00	.P
48.90	0	41 5547.8	6507.4	0.0	0.00	.Р
49.20	0	41 5547.8	6506.4	0.0	0.00	.Р
49.50	0	41 5547.8	6505.4	0.0	0.00	.P
49.80	0	41 5547.8	6504.4	0.0	0.00	.P
50.10	0	40 5547.8	6503.4	0.0	0.00	.Р
50.40	0	40 5547.8	6502.5	0.0	0.00	.Р
50.70	0	40 5547.8	6501.5	0.0	0.00	.Р
51.00	0	40 5547.8	6500.5	0.0	0.00	.Р
51.30	0	40 5547.8	6499.6	0.0	0.00	.Р
51.60	0	40 5547.8	6498.6	0.0	0.00	.Р .Р
51.90 52.20	0 0	40 5547.8 40 5547.8	6497.6 6496.7	0.0 0.0	0.00 0.00	.P
52.50	0	39 5547.8	6495.7	0.0	0.00	. P
52.80	0	39 5547.7	6494.8	0.0	0.00	.P
53.10	0	39 5547.7	6493.8	0.0	0.00	.P
53.40	0	39 5547.7	6492.9	0.0	0.00	.Р
53.70	0	39 5547.7	6491.9	0.0	0.00	.P
54.00	0	39 5547.7	6491.0	0.0	0.00	.P
54.30	0	39 5547.7	6490.1	0.0	0.00	.Р
54.60	0	39 5547.7	6489.1	0.0	0.00	.Р
54.90	0	38 5547.7	6488.2	0.0	0.00	.Р
55.20	0	38 5547.7	6487.3	0.0	0.00	.Р
55.50 55.80	0 0	38 5547.7 38 5547.7	6486.4 6485.4	0.0 0.0	0.00 0.00	.Р .Р
56.10	0	38 5547.7	6484.5	0.0	0.00	.P
56.40	0	38 5547.7	6483.6	0.0	0.00	.P
56.70	0	38 5547.7	6482.7	0.0	0.00	.P
57.00	0	38 5547.7	6481.8	0.0	0.00	.Р
57.30	0	37 5547.7	6480.9	0.0	0.00	.P
57.60	0	37 5547.7	6480.0	0.0	0.00	.Р
57.90	0	37 5547.7	6479.1	0.0	0.00	.Р
58.20	0	37 5547.7	6478.2	0.0	0.00	.Р
58.50	0	37 5547.7	6477.3	0.0	0.00	.Р
58.80	0	37 5547.7	6476.4	0.0	0.00	.Р
59.10 59.40	0	37 5547.7 37 5547.6	6475.5 6474.6	0.0 0.0	0.00 0.00	.Р .Р
59.40	0 0	37 5547.6 37 5547.6	6474.6	0.0	0.00	.P
60.00	0	36 5547.6	6472.9	0.0	0.00	.P
60.30	0	36 5547.6	6472.0	0.0	0.00	.P
60.60	0	36 5547.6	6471.1	0.0	0.00	.P
60.90	0	36 5547.6	6470.2	0.0	0.00	.Р
61.20	0	36 5547.6	6469.4	0.0	0.00	.P
61.50	0	36 5547.6	6468.5	0.0	0.00	.Р
61.80	0	36 5547.6	6467.7	0.0	0.00	.Р
62.10	0	36 5547.6	6466.8	0.0	0.00	.Р
62.40	0	35 5547.6	6465.9	0.0	0.00	.Р
62.70	0	35 5547.6	6465.1	0.0	0.00	.Р
63.00 63.30	0 0	35 5547.6 35 5547.6	6464.2 6463.4	0.0 0.0	0.00 0.00	.Р .Р
55.50	J	55 5547.0	5.05.4	3.0	5.00	• •

63.60	0	35 5547.6	6462.5	0.0	0.00	.P
63.90	0	35 5547.6	6461.7	0.0	0.00	.Р
64.20	0	35 5547.6	6460.9	0.0	0.00	.Р
64.50	0	35 5547.6	6460.0	0.0	0.00	.Р
64.80	0	35 5547.6	6459.2	0.0	0.00	.P
65.10	0	34 5547.6	6458.4	0.0	0.00	.Р
65.40	0	34 5547.6	6457.5	0.0	0.00	.Р
65.70	0	34 5547.6	6456.7	0.0	0.00	.P
66.00	ø	34 5547.5	6455.9	0.0	0.00	.P
66.30	ø	34 5547.5	6455.1	0.0	0.00	.P
66.60	0	34 5547.5	6454.2	0.0	0.00	.P
66.90	0	34 5547.5	6453.4	0.0	0.00	.P
67.20	0	34 5547.5	6452.6	0.0		.г .Р
67.50	0	34 5547.5			0.00	.г .Р
67.80	0	34 5547.5	6451.8 6451.0	0.0 0.0	0.00 0.00	.г .Р
68.10						.г .Р
	0		6450.2	0.0	0.00	.P
68.40	0		6449.4	0.0	0.00	
68.70	0	33 5547.5	6448.6	0.0	0.00	.Р
69.00	0	33 5547.5	6447.8	0.0	0.00	.Р
69.30	0	33 5547.5	6447.0	0.0	0.00	.Р
69.60	0	33 5547.5	6446.2	0.0	0.00	.Р
69.90	0	33 5547.5	6445.4	0.0	0.00	.Р
70.20	0	33 5547.5	6444.6	0.0	0.00	.Р
70.50	0	33 5547.5	6443.8	0.0	0.00	.Р
70.80	0	33 5547.5	6443.1	0.0	0.00	.Р
71.10	0	32 5547.5	6442.3	0.0	0.00	.Р
71.40	0	32 5547.5	6441.5	0.0	0.00	.Р
71.70	0	32 5547.5	6440.7	0.0	0.00	.Р
72.00	0	32 5547.5	6439.9	0.0	0.00	.Р
72.30	0	32 5547.5	6439.2	0.0	0.00	.P
72.60	0	32 5547.5	6438.4	0.0	0.00	.Р
72.90	0	32 5547.5	6437.6	0.0	0.00	.Р
73.20	0	32 5547.5	6436.9	0.0	0.00	.Р
73.50	0	32 5547.4	6436.1	0.0	0.00	.Р
73.80	0	32 5547.4	6435.4	0.0	0.00	.P
74.10	0	31 5547.4	6434.6	0.0	0.00	.Р
74.40	0	31 5547.4	6433.8	0.0	0.00	.Р
74.70	ø	31 5547.4	6433.1	0.0	0.00	.P
75.00	0	31 5547.4	6432.3	0.0	0.00	.P
75.30	0	31 5547.4	6431.6	0.0	0.00	.P
75.60	0	31 5547.4	6430.8	0.0	0.00	.P
75.90	0	31 5547.4	6430.1	0.0	0.00	. P
76.20	0	31 5547.4	6429.4	0.0	0.00	.г .Р
						.г .Р
76.50	0	31 5547.4	6428.6	0.0	0.00	
76.80	0	31 5547.4	6427.9	0.0	0.00	.Р
77.10	0	31 5547.4	6427.1	0.0	0.00	.Р
77.40	0	31 5547.4	6426.4	0.0	0.00	.Р
77.70	0	30 5547.4	6425.7	0.0	0.00	.Р
78.00	0	30 5547.4	6425.0	0.0	0.00	.Р
78.30	0	30 5547.4	6424.2	0.0	0.00	.Р
78.60	0	30 5547.4	6423.5	0.0	0.00	.Р
78.90	0	30 5547.4	6422.8	0.0	0.00	.Р
79.20	0	30 5547.4	6422.1	0.0	0.00	.Р
79.50	0	30 5547.4	6421.3	0.0	0.00	.Р
79.80	0	30 5547.4	6420.6	0.0	0.00	.Р
80.10	0	30 5547.4	6419.9	0.0	0.00	.Р
80.40	0	30 5547.4	6419.2	0.0	0.00	.P
80.70	0	30 5547.4	6418.5	0.0	0.00	.P
81.00	0	29 5547.4	6417.8	0.0	0.00	.P
81.30	0	29 5547.4	6417.1	0.0	0.00	.Р
81.60	0	29 5547.3	6416.4	0.0	0.00	.P
81.90	0	29 5547.3	6415.7	0.0	0.00	.P
82.20	0	29 5547.3	6415.0	0.0	0.00	.P
82.50	0	29 5547.3	6414.3	0.0	0.00	.P
82.80	0	29 5547.3	6413.6	0.0	0.00	.P
83.10	0	29 5547.3	6412.9	0.0	0.00	.Р
83.40	0	29 5547.3	6412.2	0.0	0.00	.Р
83.70	0	29 5547.3	6411.5	0.0	0.00	.Р
84.00	0	29 5547.3	6410.8	0.0	0.00	.Р
84.30	0	29 5547.3	6410.2	0.0	0.00	.Р
84.60	0	28 5547.3	6409.5	0.0	0.00	.Р
84.90	0	28 5547.3	6408.8	0.0	0.00	.P
85.20	0	28 5547.3	6408.1	0.0	0.00	.P
85.50	ø	28 5547.3	6407.4	0.0	0.00	.P
85.80	0	28 5547.3	6406.8	0.0	0.00	.P
86.10	0	28 5547.3	6406.1	0.0	0.00	.P
86.40	0	28 5547.3	6405.4	0.0	0.00	.г .Р
86.70	0	28 5547.3	6404.8	0.0	0.00	.г .Р
87.00	0	28 5547.3	6404.1	0.0	0.00	.г .Р
87.30	0	28 5547.3	6403.4	0.0	0.00	.Р .Р
87.60	0	28 5547.3	6402.8	0.0	0.00	.P
87.50						.Р .Р
	0	28 5547.3	6402.1	0.0	0.00	
88.20	0	27 5547.3	6401.4	0.0	0.00	.Р
88.50	0	27 5547.3	6400.8	0.0	0.00	.Р
88.80	0	27 5547.3	6400.1	0.0	0.00	.Р
89.10	0	27 5547.3	6399.5	0.0	0.00	.Р
89.40	0	27 5547.3	6398.8	0.0	0.00	.Р
89.70	0	27 5547.3	6398.2	0.0	0.00	.Р
90.00	0	27 5547.3	6397.5	0.0	0.00	.Р
90.30	0	27 5547.2	6396.9	0.0	0.00	.Р
90.60	0	27 5547.2	6396.3	0.0	0.00	.Р
90.90	0	27 5547.2	6395.6	0.0	0.00	.Р

```
27 5547.2
27 5547.2
                                           0.00
0.00
91.20
                           6395.0
91.50
                           6394.3
                                     0.0
                27 5547.2
                            6393.7
92.10
                26 5547.2
                           6393.1
                                     0.0
                                            0.00
                                                    . Р
                26 5547.2
92.40
                           6392.4
                                      0.0
                                            0.00
                                                    .Р
 92.70
                26 5547.2
                            6391.8
                                      0.0
                                            0.00
93.00
                26 5547.2
                           6391.2
                                     0.0
                                            0.00
 93.30
                26 5547.2
                           6390.6
                                      0.0
                                            0.00
93.60
                26 5547.2
                            6389.9
                                      0.0
                                            0.00
                26 5547.2
93.90
                           6389.3
                                     0.0
                                            0.00
 94.20
                26 5547.2
                           6388.7
                                                   .Р
                                     0.0
                                            0.00
 94.50
                26 5547.2
                            6388.1
                                      0.0
 94.80
           0
                26 5547.2
                           6387.5
                                     0.0
                                            0.00
                26 5547.2
 95.10
                           6386.9
                                      0.0
                                            0.00
 95.40
                26 5547.2
                            6386.2
                                      0.0
                                            0.00
 95.70
                26 5547.2
                           6385.6
                                     9.9
                                           9.99
                26 5547.2
 96.00
                            6385.0
                                      0.0
                                            0.00
 96.30
                25 5547.2
                            6384.4
                                     0.0
                                            0.00
 96.60
                25 5547.2
                           6383.8
                                     9.9
                                           9.99
                25 5547.2
                           6383.2
 96.90
                                     0.0
                                           0.00
97.20
           0
                25 5547.2
                           6382.6
                                     0.0
                                            0.00
         Qin Qout Elev
Time
                             Vol
                                    Area ExtVel
                                                              Ι
                                                                        Ι
                                                                                   Ι
                                                                                             Ι
                                                                                                        Ι
                                                            500.
                                                                     1000.
                                                                                1500.
                                                                                          2000.
                                                                                                     2500.
                                                                                                               3000.
                                                                                                                          3500.
        END NRCS-SDH PLOT
             BTM WIDTH MAX ELEV
                                                                    VOL-AUX.
ROUTED
                                    VOL-MAX AREA-MAX
                                                          AUX.-HP
RESULTS
                           FT
                                      ACET
                                                                      ACFT
                  30.0
                        5552.32
                                                            3.81
NRCS-FBH
                                     7413.5
                                                   0.0
                                                                      769.0
          PEAK - CFS
                             Q-PS
                                       O-AUX.
                                                 Q-TOT.
          DISCHARGE =
                            126.9
                                       521.5
                                                 648.3
                         CRITICAL
                                   CRITICAL
                                               CRITICAL 25% OF Q
                          DEPTH
                                   VELOCITY
                                               SLOPE-Sc
                                                            Sc
                                                           FT/FT
          AUXILIARY
                                     FT/SEC
                                                 FT/FT
          SPILLWAY ---
                           2.01
                                      7.61
                                                0.008
                                                           0.011
          INTEGRITY ANALYSIS - REACH SURFACE PERFORMANCE SUMMARY
           (The auxiliary spillway began flow at time = and peaked at time = 20.4 hours.)
                                                             9.6 hours
            REACH 3: FROM STATION
                                       155. TO
                                                    237. ON 38.5% SLOPE.
               Non-vegetated conditions implied: flow concentration
                assumed with minimal flow: Time = 12.0 hours.
               ACH 4: FROM STATION 237. TO 600. ON 9.9% SI
Non-vegetated conditions implied: flow concentration
            REACH 4: FROM STATION
                                                              9.9% SLOPE.
                assumed with minimal flow: Time = 12.0 hours.
               ACH 5: FROM STATION 600. TO 1049. ON 6.3% SI
Non-vegetated conditions implied: flow concentration
            REACH 5: FROM STATION
                                                              6.3% SLOPE.
                assumed with minimal flow: Time = 12.0 hours.
            REACH 6: FROM STATION 1049. TO 1170. ON 15.1% SLOPE.
               Non-vegetated conditions implied: flow concentration
                assumed with minimal flow: Time = 12.0 hours.
          INTEGRITY ANALYSIS - HEADCUT EROSION DAMAGE SUMMARY
            The headcut BREACHED the spillway crest at
            time equal approximately
                                         27.6 hours.
            Computations terminated at that point!
            The most upstream headcut began at station and progressed upstream to station 75.
            The final height of the headcut was 36.2 ft.
            The deepest headcut is also the furthest upstream.
          THE HYDROGRAPH WAS NOT ADJUSTED FOR THE EFFECTS OF EROSION.
                          DURATION
                                      ATTACK
                                                DIST, FROM MOST U/S
                                                HEADCUT TO U/S EDGE
                                       OE/B
                            FLOW
          AUXILIARY
                                                  AUX. CREST, FT
                                      ACFT/FT
          SPILLWAY----
                            74.4
                                      27.8
                                                    >>>BREACH<<<
                                                 Depth = 36.2 ft
          EXIT CHANNEL FLOW SUPERCRITICAL: MAX VELOCITY= 25.9 FT/SEC
                                             EXIT SLOPE = 0.385 FT/FT
FLOW DEPTH = 0.6 FT
          PLOT NRCS-FBH
                                                                                                          EXIT SLOPE = 0.385
                                           1 IN =
                                                     500. CFS
                                                  0.
                                                            500.
                                                                     1000.
                                                                                1500.
                                                                                           2000.
                                                                                                     2500.
                                                                                                               3000.
                                          ExtVel I
 Time
         Oin Cout
                    Flev
                             Vol
                                    Area
                                                             Ι
                 8 5546.3 6203.0
                                    0.0
 2.40
           0
                                           0.00
```

8 5546.3

8 5546.3 6204.0

4.80

6203.0

0.0

9.99

```
6.00
7.20
                 8 5546.3
9 5546.4
                                          0.00
0.00
                           6222.1
                                     0.0
          195
  8.40
          425
                 12 5546.5
                            6251.8
                                     0.0
                                           0.00
                                                           Ι
  9.60
        1352
                20 5546.9
                           6338.3
                                     0.0
                                          0.00
                                                                             Ι
                50 5548.1
  10.80
         3365
                           6568.7
                                     0.0
                                          0.00
                                                  .Р
  12.00
         3296
                128 5549.8
                            6890.2
                                     0.0
                                          7.93
                                                  . A
                                         17.72
21.69
  13.20
        2008
                320 5551.0
                           7131.1
                                     0.0
                                                                                          Ι
        1331
                453 5551.6
                           7258.3
                                     0.0
  14.40
  15.60
         1060
                535 5551.9
                           7327.8
                                     0.0
                                          23.63
                590 5552.1
                                                                    Ι
  16.80
         912
                           7369.8
                                     0.0
                                          24.78
                                                              Α
                622 5552.2
                           7394.2
                                          25.43
  18.00
          792
                                     0.0
                                                             A I
X
IA
                641 5552.3
                            7407.7
                                     0.0
  20.40
          664
                648 5552.3
                           7413.5
                                     0.0
                                          25.92
                648 5552.3
  21.60
         624
                           7413.1
                                          25.91
                                     0.0
  22.80
          613
                644 5552.3
                           7410.3
                                     0.0
                                          25.85
                                                              ΙA
  24.00
          611
                640 5552.3
                           7497.4
                                     0.0
                                          25.77
                                                              ТΔ
  25.20
          547
                632 5552.3
                           7401.7
                                     0.0
                                          25.62
  26.40
          262
                604 5552.2
                           7380.5
                                     0.0
                                         25.07
                                                  . I
  27.60
           90
                551 5552.0
                           7340.7
                                     9.9
                                         23.96
  28.80
           24
                496 5551.7
                           7294.4
                                     0.0
                                          22.73
  30.00
                442 5551.5
                           7249.3
                                     0.0
                                          21.41
  31.20
           1
                397 5551.3
                           7208.0
                                     0.0
                                         20.18
                358 5551.1
  32.40
                           7170.6
                                     0.0
                                          19.01
  33.60
           0
                325 5551.0
                           7136.9
                                     0.0
                                          17.90
           0
                298 5550.8
  34.80
                           7106.1
                                     0.0
                                         16.91
                                                        Α
                273 5550.7
                            7077.9
  36.00
           0
                                     0.0
                                          15.92
  37.20
            0
                251 5550.6
                           7052.0
                                     0.0
                                          14.93
           0
                232 5550.5
                           7028.2
                                          14.02
  38.40
                                     0.0
                216 5550.3
  39.60
           0
                           7006.1
                                     0.0
                                          13.26
               200 5550.2
186 5550.2
  40.80
           0
                           6985.5
                                     0.0
                                          12.56
                                                      Α
  42.00
           0
                           6966.5
                                     0.0
                                          11.85
                                                      Α
                172 5550.1
                           6948.8
  43.20
                                     0.0
                                          11.12
           0
0
               160 5550.0
148 5549.9
  44.40
                           6932.4
                                     0.0
                                          10.38
                           6917.2
  45.60
                                     0.0
                                          9.61
  46.80
                138 5549.8
                           6903.2
                                     0.0
                                           8.80
  48.00
           0
               128 5549.8
122 5549.7
                           6890.1
                                     0.0
                                          7.92
                                                     Α
  49.20
           0
                           6877.8
                                     0.0
                                           7.54
  50.40
                118 5549.6
                           6866.0
  51.60
           0
                114 5549.6
                           6854.6
                                     0.0
                                           6.89
                                                    Α
                110 5549.5
                           6843.6
  52.80
           0
                                     0.0
                                           6.55
                                                  . A
                106 5549.5
  54.00
                           6833.1
  55.20
           0
                102 5549.4
                           6822.9
                                     0.0
                98 5549.4
                           6813.1
           0
                                     0.0
                                           5.38
                                                  . A
  56.40
                95 5549.3
                           6803.6
                                                  . А
  58.80
            0
                91 5549.3
                           6794.5
                                     9.9
                                           4.40
                88 5549.2
                           6785.7
           0
  60.00
                                     0.0
                                           3.68
                                                  . A
  61.20
                 85 5549.2
                           6777.2
 62.40
63.60
                                     0.0
           0
0
                82 5549.2
                           6769.1
                                           1.37
                80 5549.1
                           6761.2
                                           0.00
  64.80
                 79 5549.1
                           6753.4
                                           0.00
 66.00
67.20
           0
0
                77 5549.0
                           6745.8
                                     0.0
                                          0.00
                                                  . A
                76 5549.0
                           6738.3
                                     0.0
  68.40
                75 5549.0
                           6730.9
                                           0.00
  69.60
           0
                74 5548.9
                           6723.6
                                     0.0
                                           0.00
                                                  . A
                73 5548.9
                           6716.5
  70.80
                                     0.0
                                           0.00
                                                  . А
  72.00
                71 5548.8
                           6709.4
                                     0.0
                                           0.00
                70 5548.8
  73.20
           0
                           6702.5
                                     0.0
                                           0.00
                69 5548.8
                           6695.7
  74.40
                                     0.0
                                          0.00
                                                  . А
  75.60
                 68 5548.7
                           6689.0
                                     0.0
                                           0.00
  76.80
           0
                67 5548.7
                           6682.4
                                     0.0
                                          0.00
                66 5548.7
                           6675.9
                                          0.00
  78.00
           0
                                     0.0
                                                  .Α
  79.20
                65 5548.6
                           6669.5
                                     0.0
  80.40
           0
                64 5548.6
                           6663.2
                                     0.0
                                           0.00
                                                  . A
         Qin Qout
                             Vol Area ExtVel
                     Elev
  Time
                                                          500.
                                                                   1000.
                                                                             1500.
                                                                                       2000.
                                                                                                 2500.
                                                                                                           3000.
                                                                                                                     3500.
        FND NRCS-FRH PLOT
 Inflow Hvd 1 PSH-Peak =
                               39.99 CFS at 143.00 hrs., Location Point
 Inflow Hyd 1 SDH-Peak =
                                65.90 CFS at 8.10 hrs., Location Point
 Inflow Hyd 1 FBH-Peak =
                               648.34 CFS at 19.20 hrs., Location Point
HYDOUT
           STR1
1SITES....JOB NO. 1 COMPLETE.
  -----
COVRES
              COV RES
      0 SUBWATERSHED(S) ANALYZED.
      1 STRUCTURE(S) ANALYZED.
      3 HYDROGRAPHS ROUTED AT LOWEST SITE.
      0 TRIALS TO OBTAIN BOTTOM WIDTH FOR SPECIFIED STRESS OR VELOCITY.
```

6209.1

0.0

SUMMARY TABLE 1 SITES VERSION 2005.1.8
----- DATED 01/01/2005

WATER 	SHED ID				N DATE 0/2020				RUN TIME 06:12:11
>>>	SITE ID STR1	SUBWS ID CR	SUBWS DA (SQ MI) 4.74	CURVE NO. 0.	TC (HRS) 0.00	TOTAL DA (SQ MI) 4.74	TYPE DESIGN TR60	STRUC CLASS C	<<<
PASS NO.	DIA./ WIDTH (IN/FT)	AUX.CRES ELEV (FT)	T BTM. WIDTH (FT)	MAX. HP (FT)	MAX. ELEV (FT)	VOL. DI	ST.	XIT* VEL. T/SEC)	TYPE HYD
1	30.0	5548.5	30.0	3.8	5552.3	0. <br< td=""><td>EACH></td><td>25.9 N</td><td>RCS-FBH</td></br<>	EACH>	25.9 N	RCS-FBH

^{*} INTEGRITY DIST. AND EXIT VEL. VALUES ARE BASED ON THE ROUTED HYDROGRAPH SHOWN UNDER TYPE HYD.

SITES.....SUMMARY TABLE 1 COMPLETED.

NRCS SITES VERSION 2005.1.8 ,01/01/2005 COVRES FILES

 $\begin{array}{lll} \mbox{INPUT} &= \mbox{c:} \mbox{USDA}\mbox{SITES}\mbox{080620-PSH-ASHL-FBHG.042c} \\ \mbox{OUTPUT} &= \mbox{c:} \mbox{USDA}\mbox{SITES}\mbox{080620-PSH-ASHL-FBHG.0UT} \\ \mbox{DATED} \mbox{08/20/2020} \mbox{06:} 12:11 \\ \end{array}$

GRAPHICS FILES GENERATED

OPTION "L" = c:\USDA\SITES\080620-PSH-ASHL-FBHG.DRG DATED 08/20/2020 06:12:11

OPTION "P" = c:\USDA\SITES\080620-PSH-ASHL-FBHG.DHY DATED 08/20/2020 06:12:11

OPTION "E" = c:\USDA\SITES\080620-PSH-ASHL-FBHG.DEM DATED 08/20/2020 06:12:11

AUX.GRAPHICS = c:\USDA\SITES\080620-PSH-ASHL-FBHG.DG* DATED 08/20/2020 06:12:11

	2005.1.8 06:12:11		(USER M	ANUAL - DA	IED DECEMB	ER 2005)	
******	*******	****** 80	-80 LIST 0	F INPUT Da	ta ******	*******	******
SITES SAVMOV	0 101	5COVRES	COV RES			4.74	C3
SAVMOV STRUCTURE	101 1 STR1	Cove Res 5470 5480 5490 5510 5520 5530 5545.5 5550 5552				0.18 62.26 303.40 738.03 1400.09 2323.02 3541.97 5073.81 6055.03 6934.92 7347.18	1
ENDTABLE		5552.5				7450.25	
HYD	1	1	Principal	Spillway			
		1 0	11	14	15	15	
		15	15	15	15	15	
		15 16	16 16	16 16	16 16	16 16	
		16	17	17	17	17	
		17 17	17 18	17 18	17 18	17 18	
		18	18	18	18	19	
		19	19	19	19	19	
		20 20	20 21	20 21	20 21	20 21	
		21	21	22	22	22	
		22 24	23 24	23 24	23 24	23 25	
		25	25	26	26	26	
		27 29	27 29	27 29	28 30	28 30	
		31	31	32	33	33	
		34	35 39	35 40	36	37 42	
		38 43	45	46	41 48	42 49	
		51	53	56	58	61	
		65 96	69 109	74 127	80 157	87 219	
		850	479	259	172	132	
		111 70	98 65	88 62	81 59	75 56	
		54	51	50	48	46	
		45	43	42	41	40	
		39 35	38 34	37 33	36 33	35 32	
		32	31	30	30	29	
		29 27	29 27	28 26	28 26	27 26	
		25	25	25	24	24	
		24 23	24 22	23 22	23 22	23 22	
		22	21	21	21	21	
		21	20	20	20	20	
		20 19	20 19	19 19	19 19	19 18	
		18	18	18	18	18	
		18 17	17 17	17 17	17 17	17 17	
		17	16	16	16	16	
		16 16	16 15	16 15	16 15	16 15	
		15	15	15	15	15	
ENDTABLE		15	4	1			
HYD	3	0.3	Auxiliary	Spillway	(Local)		
		0	0	0	0	0	
		6 2027	39 2180	194 1955	687 1683	1365 1441	
		1248	1107	1001	924	874	
		833	748	589	423	283	
		180 16	112 9	73 5	47 3	28 1	
FURTER		1	0				
ENDTABLE HYD	5		Freeboard	(Local)			
	-	0.3					
		0 129	0 306	0 824	8 2325	43 4867	
		6395	6123	824 5053	4063	3364	

			2855	2500	2228	2039	1913	
			1819	1614	1240	851	540	
			332	201	113	62	34	
			18	9	5	2	1	
			0	,	,	2	-	
ENDTABLE			0					
WSDATA	2C C	D		4.74				
PDIRECT	20 0			4.74	9.40	16.00		
POOLDATA	ELEV	,		5545.5	3.40	5552	5435	SC
PSINLET	ELEV		1	3.75		3332	3433	30
PSINLET	1		1000	30		0.012	5450	
ASSPREL			1000	30		0.012	5450	
ASSPREL	41		FF30	7-	FF 40 0	455	5540.0	
	0		5530	75	5549.2	155	5549.2	
	237		5517.6	600	5481.7	1049	5453.3	
	1170		5435					
ENDTABLE								
ASSURFACE			1170	1				
	0		1170	1	0	1		
ENDTABLE								
ASDATA	41				2			1
BTMWIDTH	FEET		30					
ASMATERIA	L							
	1		50	1	75	115	.2	
ENDTABLE								
ASCOORD	1		W.Shale	N				
	0		5530	75	5550	125	5565	
	200		5552	250	5520	600	5485	
	1050		5460	1150	5435	1300	5432.4	
ENDTABLE								
GRAPHICS	I							
GO, DESIGN	LCP		TYPE2	24				
SAVMOV	2	101	1		STR1			
ENDJOB								

***** MESSAGE - DEFAULT TOPSOIL FILL MATERIAL PARAMETERS USED.								
***** MESSAGE - AUXILIARY SPILLWAY CREST ELEVATION IS SET TO 5549.20								

* MESSAGE - AUXILIARY SPILLWAY CREST ELEVATION IS SET TO 5549.20 FROM THE ASSPRFL RECORDS.

***** MESSAGE - ASSURFACE REACH 1: ZERO ROOTING DEPTH IS DEFAULTED TO 0.5 FT.

1SITES					
XEQ 08/20/2020	COV RES			WSID= (OVRES
VER 2005.1.8	Cove Res			SUBW=	= CR
TIME 06:12:11	SITE = STR1	PASS=	1	PART=	1

*******		MATERIAL	PROPERTIES	********			
		DRY		PERCENT	DETACH.	REP.	
MATERIAL	PΙ	DENSITY	Kh	CLAY	RATE	DIAMETER	
		lbs/CuFt			(Ft/H)/(lb/SqFt)	inches	
W.Shale	50.	115.	0.20	75.0		1.00000	
TS_FILL	0.	100.	0.05	0.0		0.05000	
GEN_FILL	50.	115.	0.20	75.0		1.00000	

HUMID- SUBHUMID CLIMA	TE AREA	I	DESIGN CLASS C	
INFLOW HYDROGRAPH(S)	ENTERED			
PRECIP Q-PS,1-DAY 0.00	Q-PS,10-DAY 0.00	P-SD 9.40	P-FB 16.00	
WSDATA - CN	DA-SM	TC/L	-/H	QRF
0.00	4.74	0.00	0.00	0.00
SITEDATA- PERM POOL	CREST PS	FP SED	VALLEY FL	378?
0.00	5545.50	0.00	5435.00	NO
BASEFLOW	INITIAL EL	EXTRA VOL	SITE TYPE	
0.00	0.00	0.00	DESIGN	
PSDATA - NO. COND	COND L	DIA/W	-/H	
1.00	1000.00	30.00	0.00	
PS N	KE	WEIR L	TW EL	
0.012	1.00	3.75	5450.00	
2ND STG	ORF H	ORF L	START AUX.	
0.00	0.00	0.00	0.00	
ASCRESTS - AUX.1	AUX.2	AUX.3	AUX.4	AUX.5
5549.20	0.00	0.00	0.00	0.00
AUX.Data - REF.NO.	RETARD. Ci	TIE STATION	INLET LENGTH	
41	0.00	155.00	0	
AUX.Data - INLET Ci	SIDE SLOPE	EXIT Ci	EXIT SLOPE	ACTUAL AUX?

	1.000	2.00	1.000	0.385	NO			
BTM WIDTH -		BW2	BW3	BW4	BW5			
ft	30.00	0.00	0.00	0.00	0.00			
AUXILIARY SP	ILLWAY RATING	DEVELOPED US	ING WSPVRT	•				
1********** WEIR COEF. F WEIR COEF. F DISCHARGE CO		DETAILED LIS 3.10 3.10 CES 0.60	T OF BASIC RATIO TIME I NO. PO	Data ******* OF Ia TO S (CH.10, NCS TO PEAK OF UNI INTS FOR DESIGN HY	**************************************			
HOOD, WEIR I HOOD, PIPE E HOOD, SLUG F	NLET COEF NTRANCE COEF. LOW COEF	0.60 0.60 0.00	DRAWDO DRAWDO OTHER	WN TIME LIMIT - DA WN RATIO STORAGE L DRAWDOWN RATIOS AF	AYS 10.0 LIMIT 0.15 PPLY ?. NO			
	OF FULL FLOW OF FOR BOX CONDUI			LOWABLE FSS VEL. O S CALC. PRECISION,				
GRAVITATIONA MIN. NHCP378	L CONSTANT PS PIPE AREA	32.16 SQFT 0.545	AUX. S	PILLWAY MIN. CAP. PILLWAY MIN. CAP.	COEF. 237.0 EXP. 0.493			
MIN. TR60 DE MIN. NHCP378 MIN. NHCP378 MIN. NHCP378	PTH AUX. TO TO DEPTH AUX.TO DEPTH PS - AU DEPTH DESIGN	DP DAM 3.00 TOP DAM 2.00 JX.CREST 1.00 Q - TOD 1.00	MIN. A PRECIS OLD TR OLD NH	UX. BW IN BW SOLUT ION OF BW SOLUTION 60 CRITERIA USED . CP378 CRITERIA USE	TION,FT 20.0 1 1.0 NO ED NO			
	WAVE BERM M	MULTIPLE STAB	ILITY BERM DELTA H	CROWN = 0.667 ft, S SEPARATE STAE WIDTHS, ft	BILITY BERMS HEIGHTS, ft			
2.50 2.50		0.0		U/S D/S 0.00 0.00				
STANDARD DIM PEAK FACTOR	DIMENSIONLESS UNIT HYDROGRAPH STANDARD DIMENSIONLESS UNIT HYDROGRAPH PEAK FACTOR = 484.0 TIME INC. =0.020 NO. INC. TO PEAK = 10. VOLUME FACTOR = 48.3429							
0.0000			0.1900	0.3100				
0.4700 1.0000	0.6600 0.9900		0.9300 0.8600	0.9900 0.7800				
0.6800		0.4600	0.3900	0.3300				
0.2800	0.2410	0.2070 0.0910		0.1470				
0.1260	0.1070			0.0660				
0.0550				0.0290				
0.0250 0.0110			0.0150 0.0070	0.0130 0.0060				
0.0050 0.0000	0.0040	0.0030		0.0010				
	URAL SURFACE A	AT AUXILIARY :	SPILLWAY S	ITE - X,Y COORDINA	ATES:			
	0. 5536	3.00						
	75. 5556							
	125. 5565							
	200. 5552 250. 5526							
	600. 5485							
	1050. 5460							
	1150. 5435	5.00						
1NRCS DESIGN	STORM RAINFALL	DISTRIBUTIO	N (CHAPTE	R 21, NEH4 & TR-60	9).			
0.000	0.008	0.016	0.025	0.033				
0.043	0.052	0.063	0.074	0.086				
0.099	0.112	0.126	0.142	0.160				
0.180 0.530	0.205 0.603	0.255 0.633	0.345 0.660	0.437 0.684				
0.705	0.724	0.742	0.759	0.775				
0.790	0.804	0.818	0.831	0.844				
0.856	0.868	0.879	0.890	0.900				
0.910	0.920	0.930	0.939	0.948				
0.957	0.966	0.975	0.983	0.992				
1.000								
24 HOUR TYPE II RAINFALL DISTRIBUTION IDENTIFICATION NAME IS TYPE2 GIVEN DURATION = 24.0 HRS								
0.000	0.001	0.002	0.003	0.004				
0.005	0.006	0.007	0.008	0.009				
0.010 0.016	0.012 0.017	0.013 0.018	0.014 0.020	0.015 0.021				
0.015	0.017	0.018	0.026	0.021				
0.028	0.029	0.024	0.032	0.033				
0.034	0.036	0.037	0.038	0.040				
0.041	0.042	0.044	0.045	0.047				
0.048	0.049	0.051	0.052	0.054				
0.055	0.057	0.058	0.060	0.061				
0.063	0.065	0.066	0.068	0.070				

a a71 a a73 0 075 0.076 0 078 0.084 0.085 0.080 0.082 0.087 0.089 0.091 0.093 0.095 0.097 0.099 0.101 0.103 0.105 0.107 0.109 0.111 0.113 0.116 0.118 0.120 0.122 0.125 0.127 0.132 0.135 0.138 0.141 0.144 0.147 0.150 0.157 0.160 0.153 0.163 0.166 0.170 0.173 0.177 0.181 0.185 0.189 0.194 0.199 0.209 0.215 0.221 0.204 0.228 0.235 0.243 0.251 0.261 0.271 0.283 0.307 0.354 0.431 0.568 0.713 0.663 0.682 0.699 0.725 0.735 0.743 0.751 0.759 0.766 9.772 9.778 0.784 0.789 9.794 0.799 0.804 0.812 0.808 0.820 0.824 0.827 0.831 0.834 0.838 0.841 0.844 0.847 0.850 0.859 0.862 0.854 0.856 0.868 0.870 0.873 0.875 0.878 0.880 0.882 0.885 0.887 0.889 0.891 0.893 0.895 0.898 0.900 0.902 0.904 0.906 0.908 0.910 0.914 0.915 0.917 0.912 0.919 0.925 0.921 0.923 0.926 0.928 0.930 0.931 0.933 0.935 0.936 0.939 0.941 0.942 0.944 0.938 0.947 0.948 0.949 0.945 0.951 0.952 0.953 0.955 0.956 0.957 0.958 0.960 0.961 0.962 0.964 0.965 0.966 0.967 0.968 0.970 0.971 0.972 0.973 0.975 0.976 0.978 0.979 0.977 0.981 0.982 0.983 0.984 0.985 0.986 0.988 0.989 0.990 0.991 0.992 0.993 0.994 0.996 0.997 0.998 0.999

MESSAGE ---- Climatic Index changed from 0.0 to 1.0 for this run.

CREST PS 5545.50 FT 6055.0 ACFT 0.00 AC 126.3 CFS
SED ACCUM 5545.50 FT 6055.0 ACFT 0.00 AC 126.3 CFS

6055.0 ACFT

INFLOW HYDROGRAPH PROVIDED IN LOCATION 1, PEAK= 850.00 CFS, AT 120.00 HRS.

0.00 AC

0.0 CFS

TITLE = Principal Spillway

5545.50 FT

START ELEV

CREST PS 5545.50 FT 6055.0 ACFT 0.00 AC 126.3 CFS
SED ACCUM 5545.50 FT 6055.0 ACFT 0.00 AC 126.3 CFS
START ELEV 5545.50 FT 6055.0 ACFT 0.00 AC 0.0 CFS

NRCS-PSH RAINFALL 1-DAY = 0.00 IN 10-DAY = 0.00 IN DA = 4.74 SM RUNOFF 1-DAY = 0.00 IN 10-DAY = 0.00 IN

CLIMATIC INDEX = 1.00 CN 10-DAY = 0. CN 1-DAY = 0.

PEAK = 850.0 CFS, AT 120.0 HRS.

ROUTED RESULT - HYD TYPE EMAX VOL-MAX AMAX QMAX NRCS-PSH 5547.76 FT 6496.1 ACFT 0.00 AC 40.0 CFS

PS STORAGE 441.0 ACFT, BETWEEN AUX. CREST AND SED. ACCUM ELEVATIONS.

DRAWDOWN (DDT) TEST 5545.84 FT 6121.2 ACFT 4.35 CFS CONTROL IS 0.150 DETENTION STORAGE

TIME LIMIT REACHED = 10.00 DAYS. FLOW WAS 9.73 CFs, ELEV = 5546.26 (ELEVATION TO START ROUTING SDH AND/OR FBH HAS BEEN RAISED.)

TIME TO DDT TEST DISCHARGE IS 15.79 DAYS - DRAWDOWN STOPPED.

***** NOTE - CREST OF AUX. RAISED TO HOLD 148.03 ACFT NOT EVACUATED IN DRAWDOWN TIME LIMIT. TOTAL STORAGE REQUIRED = 6644.08 ACFT, NEW ELEVATION OF AUXILIARY SPILLWAY CREST = 5548.51 FT.

PLOT OF PRINCIPAL SPILLWAY HYDROGRAPH, 1 INCH= 200. CFS
0. 200. 400. 600. 800. 1000. 1200. 1400.
Time Qin Qout Elev Vol Area ExtVel I I I I I I I I

0.00	0.0	0.0 5545.5	6055.5	0.0	
1.00	11.0	0.0 5545.5	6055.5	0.0	.I
2.00	14.0	0.1 5545.5	6056.5	0.0	.I
3.00	15.0	0.2 5545.5	6057.7	0.0	.I
4.00	15.0	0.3 5545.5	6058.9	0.0	.I
5.00	15.0	0.3 5545.5	6060.1	0.0	.I
6.00	15.0	0.4 5545.5	6061.3	0.0	.I
7.00	15.0	0.5 5545.5	6062.5	0.0	.I
8.00	15.0	0.6 5545.5	6063.7	0.0	.ī
9.00	15.0	0.7 5545.6	6064.9	0.0	.1
10.00	15.0	0.7 5545.6	6066.1	0.0	.I
					.I
11.00	16.0		6067.3	0.0	.1 .1
12.00	16.0	0.9 5545.6	6068.6	0.0	
13.00	16.0	1.0 5545.6	6069.8	0.0	.I
14.00	16.0	1.1 5545.6	6071.1	0.0	.I
15.00	16.0	1.1 5545.6	6072.3	0.0	.I
16.00	16.0	1.2 5545.6	6073.5	0.0	.1
17.00	16.0	1.3 5545.6	6074.7	0.0	.I
18.00	16.0	1.4 5545.6	6076.0	0.0	.I
19.00	16.0	1.5 5545.6	6077.2	0.0	.1
20.00	16.0	1.5 5545.6	6078.4	0.0	.I
21.00	17.0	1.6 5545.6	6079.6	0.0	.I
22.00	17.0	1.7 5545.6	6080.9	0.0	.I
23.00	17.0	1.8 5545.6	6082.1	0.0	.I
24.00	17.0	1.9 5545.6	6083.4	0.0	.I
25.00	17.0	1.9 5545.7	6084.6	0.0	.I
26.00	17.0	2.0 5545.7	6085.9	0.0	.I
27.00	17.0	2.1 5545.7	6087.1	0.0	.I
28.00	17.0	2.2 5545.7	6088.3	0.0	.I
29.00	17.0	2.3 5545.7	6089.5	0.0	.I
30.00	17.0	2.3 5545.7	6090.8	0.0	.1
31.00	18.0	2.4 5545.7	6092.0	0.0	.I
32.00	18.0	2.5 5545.7	6093.3	0.0	.I
33.00	18.0	2.6 5545.7	6094.6	0.0	.ī
		2.7 5545.7			.I
34.00	18.0		6095.8	0.0	
35.00	18.0	2.8 5545.7	6097.1	0.0	.I
36.00	18.0	2.8 5545.7	6098.4	0.0	.I
37.00	18.0	2.9 5545.7	6099.6	0.0	.1
38.00	18.0	3.0 5545.7	6100.8	0.0	.1
39.00	19.0	3.1 5545.7	6102.1	0.0	.I
40.00	19.0	3.2 5545.7	6103.4	0.0	.I
41.00	19.0	3.3 5545.8	6104.7	0.0	.I
42.00	19.0	3.4 5545.8	6106.0	0.0	.I
43.00	19.0	3.4 5545.8	6107.3	0.0	.I
44.00	19.0	3.5 5545.8	6108.6	0.0	.I
45.00	20.0	3.6 5545.8	6109.9	0.0	.I
46.00	20.0	3.7 5545.8	6111.3	0.0	.I
47.00	20.0	3.8 5545.8	6112.6	0.0	.I
48.00	20.0	3.9 5545.8	6114.0	0.0	.I
49.00	20.0	4.0 5545.8	6115.3	0.0	.I
50.00	20.0	4.0 5545.8	6116.6	0.0	.I
51.00	21.0	4.1 5545.8	6118.0	0.0	.I
52.00	21.0	4.2 5545.8	6119.4	0.0	.I
53.00	21.0	4.3 5545.8	6120.7	0.0	.1
54.00	21.0	4.4 5545.8	6122.1	0.0	.1
55.00	21.0	4.5 5545.9	6123.5	0.0	.ī
56.00	21.0	4.6 5545.9	6124.8	0.0	.I
57.00	22.0	4.7 5545.9	6126.2	0.0	.ī
58.00	22.0	4.8 5545.9	6127.7	0.0	.I
			6129.1		.I
59.00	22.0 22.0	4.9 5545.9 5.0 5545.9		0.0	
60.00			6130.5	0.0	.I
61.00	23.0	5.1 5545.9	6131.9	0.0	.I
62.00	23.0	5.2 5545.9	6133.4	0.0	.I
63.00	23.0	5.2 5545.9	6134.9	0.0	.I
64.00	23.0	5.3 5545.9	6136.4	0.0	.I
65.00	24.0	5.4 5545.9	6137.8	0.0	.I
66.00	24.0	5.5 5545.9	6139.4	0.0	.I
67.00	24.0	5.6 5545.9	6140.9	0.0	.I
68.00	24.0	5.7 5545.9	6142.4	0.0	.1
69.00	25.0	5.8 5546.0	6144.0	0.0	.I
70.00	25.0	5.9 5546.0	6145.5	0.0	.I
71.00	25.0	6.1 5546.0	6147.1	0.0	.I
72.00	26.0	6.2 5546.0	6148.7	0.0	.I
73.00	26.0	6.3 5546.0	6150.3	0.0	.I
74.00	26.0	6.4 5546.0	6152.0	0.0	.I
75.00	27.0	6.5 5546.0	6153.6	0.0	.I
76.00	27.0	6.6 5546.0	6155.3	0.0	.I
77.00	27.0	6.7 5546.0	6157.0	0.0	.I
78.00	28.0	6.8 5546.0	6158.7	0.0	.I
79.00	28.0	6.9 5546.0	6160.5	0.0	.I
80.00	29.0	7.0 5546.0	6162.2	0.0	.1
81.00	29.0	7.2 5546.1	6164.1	0.0	.1
82.00	29.0	7.3 5546.1	6165.9	0.0	.1
83.00	30.0	7.4 5546.1	6167.7	0.0	. I
84.00	30.0	7.5 5546.1	6169.5	0.0	-
85.00	31.0	7.7 5546.1	6171.4	0.0	_
86.00	31.0	7.8 5546.1	6173.4	0.0	
					. I
87.00	32.0	7.9 5546.1	6175.3	0.0	. I
88.00	33.0	8.0 5546.1	6177.3	0.0	. I
89.00	33.0	8.2 5546.1	6179.4	0.0	. I
90.00	34.0	8.3 5546.1	6181.5	0.0	. I
91.00	35.0	8.5 5546.2	6183.6	0.0	. I

```
8.6 5546.2
8.7 5546.2
92.00 35.0
                            6185.8
                                                    . I
93.00
                            6188.1
       36.0
                                      0.0
 94.00
        37.0
                8.9 5546.2
                            6190.3
95.00
       38.0
                9.0 5546.2
                            6192.7
                                      0.0
                                                    . I
                9.2 5546.2
 96.00
        39.0
                            6195.1
                                                    . I
                                      0.0
 97.00 40.0
                9.4 5546.2
                            6197.6
                                                    . I
98.00 41.0
                9.5 5546.2
                            6200.2
                                      0.0
                9.7 5546.3
99.00
        42.0
                            6202.8
                                      0.0
                                                    . I
               9.9 5546.3
100.00 43.0
                            6205.5
                                      0.0
101.00 45.0
              10.1 5546.3
                            6208.3
                                      0.0
                                                    .PI
102.00 46.0
              10.3 5546.3
                            6211.3
                                      0.0
                                                    .PI
103.00 48.0 10.5 5546.3
104.00 49.0 10.7 5546.3
                            6214.3
                            6217.4
                                      0.0
                                                    .PI
              10.9 5546.3
105.00
                            6220.7
                                                    .P I
       51.0
                                      0.0
106.00 53.0 11.1 5546.4
                            6224.0
                                      0.0
                                                    .P I
107.00 56.0 11.3 5546.4
108.00 58.0 11.6 5546.4
                            6227.6
                                      9.9
                                                    .P T
                            6231.4
                                      0.0
109.00 61.0 11.9 5546.4
                            6235.3
                                      0.0
                                                    .P I
110.00 65.0 12.1 5546.4
                            6239.5
                                      9.9
                                                    .P T
       69.0 12.4 5546.5
                            6244.1
111.00
                                      0.0
                                                    .Р
112.00 74.0 12.7 5546.5
                            6248.9
                                      0.0
113.00 80.0 13.1 5546.5
                            6254.2
                                      0.0
              13.5 5546.5
114.00 87.0
                            6260.0
                                                    .Р
                                      0.0
115.00 96.0 13.9 5546.6
116.00 109.0 14.4 5546.6
                            6266.5
                                      0.0
                                                    .Р
                                                    .Р
                            6273.8
                                      0.0
117.00 127.0
              14.9 5546.7
                            6282.3
                                      0.0
118.00 157.0 15.6 5546.7
119.00 219.0 17.3 5546.8
                            6292.8
                                      0.0
                                                    .Р
                                                            Ι
                            6307.0
                                                    .Р
                                                               Ι
                                      0.0
              22.4 5547.0
120.00 850.0
                            6349.5
                                      0.0
                                                                                                  Х
121.00 479.0 28.7 5547.3
122.00 259.0 32.1 5547.4
                            6402.3
                                      0.0
                                                    .Р
                                                                              Ι
                                                    . P
                            6430.3
                                      0.0
                                                   . P
              33.9 5547.5
123.00 172.0
                            6445.4
                                      0.0
                                                             Ι
              35.1 5547.5
35.9 5547.6
                                                   . P
124.00 132.0
                            6455.1
                                      0.0
                                                           Ι
125.00 111.0
                                                    . P
                                                          Ι
                            6462.2
                                      0.0
                                                   . P
126.00 98.0
              36.6 5547.6
                            6467.8
127.00 88.0 37.2 5547.6
128.00 81.0 37.6 5547.7
                            6472.5
                                      0.0
                                                    . P I
                                                    . P I
                            6476.4
                                      0.0
                                                   . P I
129.00 75.0
              38.0 5547.7
                            6479.7
                                                    . P I
              38.4 5547.7
38.7 5547.7
130.00
       70.0
                            6482.5
                                      0.0
                            6484.9
                                                    . PI
131.00 65.0
                                      0.0
              38.9 5547.7
                            6487.0
        62.0
                                                    . PI
133.00 59.0
              39.1 5547.7
                            6488.7
                                      0.0
134.00 56.0
              39.3 5547.7
                            6490.2
                                                    . PI
                                      0.0
135.00
        54.0
               39.4 5547.7
                            6491.5
136.00 51.0 39.6 5547.7
137.00 50.0 39.7 5547.7
                            6492.6
                                      9.9
                                                    . PI
                            6493.5
                                                    . PI
                                      0.0
138.00 48.0
              39.8 5547.7
                            6494.3
                                      0.0
              39.8 5547.7
39.9 5547.8
                                                    . P
139.00 46.0
                            6494.9
                                      0.0
140.00 45.0
                            6495.3
                                      0.0
                                                    . P
141.00 43.0
              39.9 5547.8
                            6495.7
                                      0.0
                                                    . Р
142.00 42.0
143.00 41.0
              40.0 5547.8
40.0 5547.8
                            6495.9
                                      0.0
                                                    . P
                            6496.0
                                      0.0
                                                    . P
144.00 40.0
              40.0 5547.8
                            6496.1
                                      0.0
145.00 39.0
              40.0 5547.8
                            6496.0
                                      0.0
                                                    . Р
146.00 38.0
              40.0 5547.8
                            6495.9
                                                    . Р
                                      0.0
                                                   . P
147.00 37.0
              39.9 5547.8
                            6495.7
                                      0.0
              39.9 5547.8
148.00
       36.0
                            6495.4
                                      0.0
                                                    . P
149.00 35.0
              39.9 5547.8
                            6495.0
                                      0.0
                                                    . P
150.00 35.0
              39.8 5547.7
                            6494.6
                                      0.0
                                                    . Р
151.00
       34.0
              39.8 5547.7
                            6494.2
                                      0.0
                                                    . P
              39.7 5547.7
152.00 33.0
                            6493.7
                                      0.0
                                                    . P
              39.6 5547.7
39.6 5547.7
153.00 33.0
                            6493.1
                                      0.0
                                                    . P
                                                    . P
154.00
       32.0
                            6492.6
                                      0.0
              39.5 5547.7
155.00
       32.0
                            6491.9
                                      0.0
                                                    . Р
                                                    . P
156.00 31.0 39.4 5547.7
                            6491.3
                                      0.0
157.00
       30.0
              39.3 5547.7
                            6490.5
                                      9.9
                                                    . P
158.00
              39.2 5547.7
       30.0
                            6489.8
                                      0.0
159.00 29.0
              39.1 5547.7
                            6489.0
                                      0.0
                                                    .IP
160.00
       29.0
              39.0 5547.7
                            6488.1
                                      0.0
                                                    .IP
161.00
       29.0
              38.9 5547.7
                            6487.3
                                                    .IP
162.00 28.0
              38.8 5547.7
                            6486.5
                                      0.0
                                                    .IP
              38.7 5547.7
163.00 28.0
                            6485.6
                                      0.0
                                                    .IP
              38.6 5547.7
38.5 5547.7
38.4 5547.7
164.00
       27.0
                            6484.6
                                      0.0
                                                    .IP
165.00 27.0
                            6483.7
                                      0.0
                                                    .IP
       27.0
166.00
                            6482.7
                                      0.0
                                                    .IP
              38.3 5547.7
167.00
       26.0
                            6481.8
                                                    .IP
168.00 26.0
              38.1 5547.7
                            6480.8
                                      0.0
                                                    .IP
                            6479.8
              38.0 5547.7
169.00
        26.0
                                                    .IP
                                      0.0
              37.9 5547.7
170.00
       25.0
                            6478.7
                                      0.0
                                                    .IP
              37.8 5547.7
37.7 5547.7
171.00 25.0
                            6477.7
                                      0.0
                                                    .IP
       25.0
                            6476.6
                                                    .IP
172.00
                                      0.0
173.00
       24.0
              37.5 5547.7
                            6475.5
                                                    .IP
174.00 24.0
              37.4 5547.6
37.3 5547.6
                            6474.4
                                      0.0
                                                    .IP
175.00
       24.0
                            6473.3
                                                    .IP
                                      0.0
176.00 24.0
              37.1 5547.6
                            6472.2
177.00 23.0
              37.0 5547.6
                            6471.1
                                      0.0
                                                    .IP
              36.9 5547.6
                            6470.0
178.00 23.0
                                      0.0
                                                    .IP
       23.0
              36.7 5547.6
                            6468.8
180.00 23.0
              36.6 5547.6
                            6467.7
                                      9.9
                                                    .IP
              36.4 5547.6
                            6466.5
181.00 22.0
                                      0.0
                                                    .IP
                            6465.3
182.00 22.0
              36.3 5547.6
183.00 22.0 36.2 5547.6 6464.2
                                      9.9
```

```
184.00 22.0 36.0 5547.6
185.00 22.0 35.9 5547.6
                             6463.0
                                                      .IP
                             6461.8
                                        0.0
186.00
        21.0
               35.7 5547.6
                             6460.7
187.00 21.0
               35.6 5547.6
                             6459.5
                                        0.0
                                                      .IP
               35.4 5547.6
188.00
        21.0
                             6458.3
                                                      .IP
                                        0.0
189.00
        21.0
               35.3 5547.6
                             6457.1
                                                       .IP
              35.2 5547.6
35.0 5547.5
190.00 21.0
                             6455.9
                                        0.0
                                                      .IP
191.00
        20.0
                             6454.7
                                                      .IP
                                        0.0
192.00
        20.0
               34.9 5547.5
                             6453.4
                                        0.0
                                                       .IP
193.00 20.0 34.7 5547.5
                             6452.2
                                        0.0
                                                      .IP
194.00
        20.0
               34.6 5547.5
                             6451.0
                                                      .IP
                                        0.0
195.00 20.0 34.4 5547.5
196.00 20.0 34.3 5547.5
                             6449.8
                             6448.6
                                        0.0
                                                      . IP
197.00
               34.1 5547.5
        19.0
                             6447.4
                                                      .IP
                                        0.0
198.00
        19.0
               34.0 5547.5
                             6446.2
                                        0.0
                                                      .IP
              33.8 5547.5
33.7 5547.5
199.00 19.0
                             6444.9
                                        9.9
                                                      .IP
200.00
                             6443.7
                                                      .IP
        19.0
                                        0.0
201.00
        19.0
               33.6 5547.5
                             6442.5
                                        0.0
                                                      .IP
202.00 19.0
               33.4 5547.5
                             6441.3
                                        9.9
                                                      . TP
                             6440.1
203.00
        19.0
               33.3 5547.5
                                                      .IP
                                        0.0
204.00
        18.0
               33.1 5547.5
                             6438.9
                                        0.0
                                                      .IP
205.00 18.0
               33.0 5547.5
                             6437.7
                                        0.0
                                                      .IP
              32.8 5547.5
32.7 5547.4
32.5 5547.4
206.00
        18.0
                             6436.4
                                                      .IP
                                        0.0
207.00
        18.0
                             6435.2
                                        0.0
                                                      .IP
208.00 18.0
                             6434.0
                                        0.0
                                                      .IP
               32.4 5547.4
209.00
        18.0
                             6432.8
                                        0.0
                                                      .IP
210.00
        18.0 32.2 5547.4
                             6431.6
                                        0.0
                                                      .IP
211.00 17.0
              32.1 5547.4
                                                      .IP
                             6430.4
                                        0.0
               32.0 5547.4
212.00
        17.0
                             6429.2
                                        0.0
                                                      .IP
              31.8 5547.4
31.7 5547.4
213.00
        17.0
                             6427.9
                                        0.0
                                                      .IP
214.00 17.0
                             6426.7
                                                      .IP
                                        0.0
215.00
        17.0
               31.5 5547.4
                             6425.5
                                        0.0
                                                      .IP
216.00 17.0
217.00 17.0
              31.4 5547.4
31.2 5547.4
                                                      .IP
                             6424.3
                                        0.0
                             6423.1
                                        0.0
218.00 17.0
               31.1 5547.4
                             6422.0
                                                      .IP
              30.9 5547.4
30.8 5547.4
30.7 5547.4
219.00
        17.0
                             6420.8
                                        0.0
                                                      .IP
220.00 17.0
                             6419.7
                                        0.0
                                                      . IP
221.00
        16.0
                             6418.5
                                                      .IP
222.00 16.0
223.00 16.0
              30.5 5547.4
30.4 5547.3
                             6417.3
                                        0.0
                                                      .IP
                             6416.1
                                        0.0
                                                      .IP
               30.2 5547.3
                             6414.9
224.00
        16.0
                                                      .IP
225.00
        16.0
              30.1 5547.3
                             6413.7
                                        0.0
                                                      .IP
              30.0 5547.3
226.00 16.0
                                                      .Р
                             6412.6
                                        0.0
227.00
        16.0
               29.8 5547.3
                             6411.4
228.00 16.0 29.7 5547.3
                             6410.3
                                        9.9
                                                      .Р
                                                      .P
229.00 16.0
              29.5 5547.3
                             6409.2
                                        0.0
230.00
        16.0 29.4 5547.3
                             6408.1
        15.0
15.0
              29.3 5547.3
29.1 5547.3
                             6406.9
6405.7
                                       0.0
231.00
                                                      .Р
.Р
232.00
233.00
        15.0
               29.0 5547.3
                             6404.6
234.00
235.00
        15.0
              28.9 5547.3
28.7 5547.3
                             6403.4
                                       0.0
                                                      .Р
.Р
        15.0
                             6402.3
                                        0.0
236.00
        15.0
               28.6 5547.3
                             6401.2
                                        0.0
                                                      .Р
237.00
        15.0
              28.5 5547.3
                             6400.0
                                       0.0
                                                      . Р
               28.3 5547.3
238.00
                             6398.9
                                                      .Р
        15.0
                                       0.0
239.00 15.0
               28.2 5547.3
                             6397.8
                                       0.0
 Time
         Qin
               Qout
                     Elev
                               Vol
                                      Area ExtVel
                                                      Ι
                                                                            Ι
                                                               200.
                                                                          400.
                                                                                     600.
                                                                                                800.
                                                                                                          1000.
                                                                                                                     1200.
                                                                                                                                1400.
                                                      0.
        END NRCS-PSH PLOT
```

RATING TABLE DEVELOPED, SITE = STR1 : BY PROGRAM FOR PS AND AUX. SPILLWAYS AUX. RATING USED WSPVRT METHOD.

RATI	NG TABLE	NUMBER 1						
	ELEV.	Q-TOTAL	Q-PS	Q-AUX.	VOLUME	AREA		
	FEET	CFS	CFS	CFS	AC-FT	ACRE		
1	5545.50	0.00	0.00	0.00	6055.03	0.00		
2	5546.72	15.71	15.71	0.00	6294.00	0.00		
3	5547.94	44.43	44.43	0.00	6532.97	0.00		
4	5549.17	81.62	81.62	0.00	6771.95	0.00		
					FULL CONDUIT	FLOW, ELEV	= 5550.39 F	Т
5	5550.39	125.65	125.65	0.00	7015.04	0.00		
6	5550.65	125.84	125.84	0.00	7069.39	0.00		
7	5550.92	126.01	126.01	0.00	7123.74	0.00		
8	5551.18	126.17	126.17	0.00	7178.09	0.00		
9	5551.44	126.34	126.34	0.00	7232.44	0.00		
10	5551.71	126.50	126.50	0.00	7286.79	0.00		
11	5551.97	126.67	126.67	0.00	7341.14	0.00		
12	5552.23	126.83	126.83	0.00	7395.49	0.00		
13	5552.50	126.99	126.99	0.00	7449.85	0.00		

INFLOW HYDROGRAPH PROVIDED IN LOCATION 3, PEAK= 2180.00 CFS, AT 3.30 HRS. TITLE = Auxiliary Spillway (Local)

INFLOW HYDROGRAPH PROVIDED IN LOCATION 5, PEAK= 6395.00 CFS, AT 3.00 HRS. TITLE = Freeboard (Local)

```
1SITES -----
XEQ 08/20/2020
          COV RES
                            WSID= COVRES
VER 2005.1.8
                Cove Res
```

TIME 06:12:11

SITE = STR1

SUBW= CR PASS= 1 PART= 3

AUX. CREST 5548.51 FT 6644.1 ACFT 0.00 AC 61.7 CFS

PS STORAGE 589.1 ACFT, BETWEEN AUX. CREST AND SED. ACCUM ELEVATIONS.

START ELEV 5546.26 FT 6203.0 ACFT 0.00 AC 9.7 CES

***** WARNING - AUXILIARY CREST LOWER THAN LOW POINT IN SITE.

NRCS-SDH INFLOW HYDROGRAPH INPUT, DA = 4.74 SQUARE MILES

PFΔK = 2180.0 CFS, AT 3.3 HRS.

NRCS-FBH INFLOW HYDROGRAPH INPUT, DA = 4.74 SQUARE MILES

PEAK = 6395.0 CFS, AT 3.0 HRS.

***** WARNING - MAXIMUM AUX. SURFACE PROFILE ELEVATION (5549.20) AND AUXILIARY CREST (5548.51) ELEVATION DO NOT MATCH. MAXIMUM AUX. SURFACE PROFILE ELEVATION USED IN WSPVRT PROCEDURE.

***** MESSAGE - INPUT(5549.14) TO INTERPOLATION ROUTINE IS BELOW ARRAY LIMIT(5549.20).

RATING TABLE DEVELOPED, SITE = STR1 : BY PROGRAM FOR PS AND AUX. SPILLWAYS AUX. RATING USED WSPVRT METHOD.

RATI	NG TABLE	NUMBER 2					
	ELEV.	Q-TOTAL	Q-PS	Q-AUX.	VOLUME	AREA	
	FEET	CFS	CFS	CFS	AC-FT	ACRE	
1	5545.50	0.00	0.00	0.00	6055.03	0.00	
2	5545.83	2.25	2.25	0.00	6120.52	0.00	
3	5546.17	6.37	6.37	0.00	6186.02	0.00	
4	5546.50	11.71	11.71	0.00	6251.52	0.00	
5	5546.84	18.03	18.03	0.00	6317.01	0.00	
6	5547.17	25.20	25.20	0.00	6382.51	0.00	
7	5547.51	33.12	33.12	0.00	6448.00	0.00	
8	5547.84	41.74	41.74	0.00	6513.50	0.00	
9	5548.18	50.99	50.99	0.00	6578.99	0.00	
10	5548.51	60.85	60.85	0.00	6644.49	0.00	
11	5549.14	80.67	80.67	0.00	6766.41	0.00	
12	5549.76	126.50	102.35	24.15	6888.71	0.00	
					FULL CONDUIT	T FLOW, ELEV = 5550.39 FT	
13	5550.39	223.05	125.67	97.38	7015.14	0.00	
14	5550.49	237.89	125.75	112.14	7036.88	0.00	
15	5550.60	255.98	125.81	130.16	7058.62	0.00	
16	5550.79	290.40	125.93	164.47	7097.77	0.00	
17	5551.02	332.53	126.08	206.45	7145.68	0.00	
18	5551.44	422.70	126.34	296.36	7232.64	0.00	
19	5551.97	551.57	126.67	424.90	7341.44	0.00	
20	5552.50	697.75	126.99	570.75	7450.25	0.00	
***	******	*********	******	******	*******	*******	

SLIMMARY OF ALIXILTARY SPILLWAY SURFACE CONDITTONS LISED IN COMPUTATIONS BY REACH

REACH	FROM STA (ft)	TO STA (ft)	SLOPE (%)	RETARDANCE CURVE INDEX	VEGETAL COVER FACTOR	MAINT. CODE +	ROOTING DEPTH (ft)	REACH LOCATION *
1	0.	75.	-25.6	1.000	**	**	**	INLET
2	75.	155.	0.0	1.000	**	**	**	CREST
3	155.	237.	38.5	1.000	0.00	1		EXIT !
4	237.	600.	9.9	1.000	0.00	1		EXIT
5	600.	1049.	6.3	1.000	0.00	1		EXIT
6	1049.	1170.	15.1	1.000	0.00	1		EXIT

- $\,$ + The minimum maintenance code value of 2 is used in INTEGRITY computations
- (the program changes values of 1 to 2 during computation). * Upper case indicates a reach of constructed spillway channel.

BTM WIDTH MAX ELEV VOL-MAX AREA-MAX AUX.-HP VOL-AUX. ROUTED

30.0 5548.67 6675.5 0.0 0.16 NRCS-SDH 31.0 PEAK - CFS DISCHARGE = Q-AUX. Q-TOT. 65.7 0.2 65.9

```
CRITICAL CRITICAL CRITICAL 25% OF Q
DEPTH VELOCITY SLOPE-SC SC
AUXILIARY FT FT/SEC FT/FT FT/FT
SPILWAY --- 0.01 0.57 0.148 0.308
```

AUXILIARY SPILLWAY DURATION FLOW = 8.7 HOURS

```
PLOT NRCS-SDH
                                         1 IN =
                                                   500. CFS
                                                                                                       EXIT SLOPE = 0.385
                                                 0.
                                                                   1000.
                                                                             1500.
                                                                                                  2500.
                                                          500.
                                                                                        2000.
                                                                                                            3000.
                                                                                                                       3500.
             Qout Elev
                            Vol
                                  Area ExtVel I
Time
        Qin
                                                                                Ι
 1.50
                8 5546.3 6203.0
                                    0.0
                                          0.00
1.80
          6
                8 5546.3
                          6203.0
                                    0.0
                                          0.00
         39
                8 5546.3
                          6203.4
                                          0.00
                                                 .I
 2.10
                                    0.0
 2.40
        194
                8 5546.3
                           6206.1
                                    0.0
                                          0.00
                                                     Ι
 2.70
        687
                9 5546.3
                          6216.8
                                    9.9
                                          9.99
                                                                Т
               11 5546.5
                          6242.0
                                          0.00
 3.00
       1365
                                    0.0
 3.30
       2027
               15 5546.7
                          6283.7
                                    0.0
                                          0.00
                                                                                              Х
 3.60
       2180
               20 5546.9
                          6335.4
                                    9.9
                                          9.99
               26 5547.2
 3.90
       1955
                          6386.1
                                    0.0
                                          0.00
 4.20
       1683
               31 5547.4
                          6430.5
                                    0.0
                                          0.00
                                                  .Р
                                                                                    Ι
 4.50
       1441
               36 5547.6
                          6468.4
                                    0.0
                                          0.00
                                                  .Р
                                                                               Ι
               40 5547.8
       1248
                          6500.8
                                          0.00
                                                                           Ι
 4.80
                                    0.0
                                                                     I
 5.10
       1107
               44 5547.9
                          6528.9
                                    0.0
                                          0.00
                                                  .Р
               47 5548.1
 5.40
       1001
                          6553.9
                                    0.0
                                          0.00
                                                  .Р
               51 5548.2
                                                                    Ι
 5.70
        924
                          6576.6
                                    0.0
                                          0.00
 6.00
        874
               54 5548.3
57 5548.4
                          6597.6
                                    0.0
                                          0.00
                                                  . Р
                                                                  I
                          6617.4
                                                  .Р
 6.30
        833
                                    0.0
                                          0.00
                                                                Ι
               60 5548.5
 6.60
        748
                          6635.5
                                    0.0
                                          0.00
 6.90
        589
               62 5548.5
                          6650.6
                                    0.0
                                          0.00
                                                             Ι
                                                         Ι
               64 5548.6
                          6661.6
                                    0.0
 7.20
        423
                                          0.00
                                                 . А
 7.50
               65 5548.6
                                                       Ι
        283
                          6668.8
                                    0.0
                                          0.00
                                                 .Α
               65 5548.7
66 5548.7
                                                 .A
.AI
 7.80
        180
                          6672.9
                                    0.0
                                          0.00
                                                    I
                          6674.9
 8.10
                                    0.0
                                          0.00
        112
 8.40
               66 5548.7
                          6675.5
                                    0.0
                                          0.00
                                                 .х
 8.70
         47
               66 5548.7
                          6675.4
                                    0.0
                                          0.00
                                                  .Α
               66 5548.7
                          6674.7
 9.00
         28
                                    0.0
                                          0.00
                                                  . A
 9.30
               66 5548.7
                           6673.6
                                          0.00
                                                  . А
         16
 9.60
          9
               65 5548.7
                          6672.3
                                    0.0
                                          0.00
                                                  . А
               65 5548.6
                          6670.8
9.90
          5
                                    0.0
                                          0.00
                                                  . A
               65 5548.6
10.20
                          6669.3
                                    0.0
                                          0.00
                                                  . А
10.50
          1
               65 5548.6
                          6667.8
                                    9.9
                                          0.00
                                                  . А
               64 5548.6
                          6666.2
10.80
                                    0.0
                                          0.00
                                                  . A
          1
               64 5548.6
                          6664.6
                                          0.00
11.40
          а
               64 5548.6
                          6663.1
                                    9.9
                                          9.99
                                                  . Δ
               64 5548.6
11.70
                          6661.5
                                    0.0
                                          0.00
          0
                                                  . А
12.00
               63 5548.6
                          6660.0
                                    0.0
                                          0.00
12.30
          0
               63 5548.6
                          6658.4
                                    0.0
                                          0.00
                                                  .A
.A
          0
               63 5548.6
                                    0.0
                                          0.00
                          6656.9
12.60
12.90
               63 5548.6
                          6655.4
                                    0.0
                                          0.00
13.20
          0
               62 5548.6
                          6653.8
                                    0.0
                                          0.00
                                                  . А
          0
               62 5548.6
                          6652.3
                                    0.0
                                          0.00
                                                  . А
13.50
13.80
               62 5548.5
                          6650.8
                                    0.0
                                          0.00
14.10
          0
               62 5548.5
                          6649.3
                                    0.0
                                          0.00
                                                  . А
               61 5548.5
                          6647.8
14.40
          0
                                    0.0
                                          0.00
                                                  . А
14.70
               61 5548.5
                          6646.3
                                    0.0
                                          0.00
               61 5548.5
                          6644.8
15.00
          0
                                    0.0
                                          0.00
                                                  . A
               61 5548.5
                          6643.3
                                                 .Р
15.30
          0
                                    0.0
                                          0.00
15.60
               60 5548.5
60 5548.5
                          6641.9
                                    0.0
                                          0.00
                                                  . Р
15.90
          0
                          6640.4
                                    0.0
                                          0.00
                                                  . Р
               60 5548.5
          0
                          6638.9
                                          0.00
                                                 .Р
16.20
                                    0.0
16.50
               60 5548.5
                          6637.5
                                    0.0
                                          0.00
               60 5548.5
16.80
          0
                          6636.0
                                    0.0
                                          0.00
                                                  . Р
               59 5548.5
17.10
          0
                          6634.5
                                    0.0
                                          0.00
17.40
               59 5548.5
                          6633.1
                                    0.0
                                          0.00
                                                  .Р
17.70
          а
               59 5548.4
                          6631.7
                                    9.9
                                          9.99
                                                  . Р
               59 5548.4
18.00
                          6630.2
                                    0.0
                                          0.00
18.30
               58 5548.4
                          6628.8
                                    0.0
                                          0.00
                                                  .Р
18.60
          0
               58 5548.4
                          6627.4
                                    0.0
                                          0.00
                                                  .Р
               58 5548.4
18.90
                          6626.0
                                    0.0
                                          0.00
19.20
               58 5548.4
                          6624.6
                                    0.0
                                          0.00
                                                  .Р
               58 5548.4
19.50
          0
                          6623.1
                                    0.0
                                          0.00
                                                 .Р
               57 5548.4
19.80
                          6621.7
                                    0.0
                                          0.00
20.10
               57 5548.4
                          6620.3
                                    0.0
                                          0.00
                                                  . Р
               57 5548.4
20.40
          0
                          6619.0
                                    0.0
                                          0.00
                                                  .Р
               57 5548.4
20.70
                          6617.6
                                    0.0
                                          0.00
21.00
               57 5548.4
                          6616.2
                                    0.0
                                          0.00
                                                  . Р
               56 5548.4
                          6614.8
                                          0.00
                                                  .Р
21.30
          0
                                    0.0
               56 5548.4
21.60
                          6613.4
                                    0.0
                                          0.00
21.90
               56 5548.3
                          6612.1
                                    0.0
                                          0.00
                                                  .Р
               56 5548.3
22.20
                          6610.7
                                    0.0
                                                  .Р
          0
                                          0.00
22.50
               56 5548.3
                          6609.4
                                    0.0
                                          0.00
22.80
               55 5548.3
                          6608.0
                                    0.0
                                          0.00
                                                  .Р
23.10
               55 5548.3
                          6606.7
                                                 .Р
          0
                                    0.0
                                          0.00
               55 5548.3
                           6605.3
23.40
23.70
          0
               55 5548.3
                          6694.9
                                    0.0
                                          0.00
                                                  . Р
               55 5548.3
24.00
          0
                          6602.7
                                    0.0
                                          0.00
                                                  .Р
               54 5548.3
                           6601.3
                                          0.00
24.60
               54 5548.3
                          6600.0
                                    0.0
                                          9.99
                                                  . Р
               54 5548.3 6598.7
                                                 .Р
24.90
          0
                                    0.0
                                          0.00
25.20
               54 5548.3
                           6597.4
25.50
               54 5548.3 6596.1
                                    9.9
                                          9.99
```

25.80	0	53 5548.3	6594.8	0.0	0.00	.P
26.10	0	53 5548.3	6593.5	0.0	0.00	.Р
26.40	0	53 5548.2	6592.2	0.0	0.00	.Р
26.70	0	53 5548.2	6590.9	0.0	0.00	.Р
27.00	0	53 5548.2	6589.6	0.0	0.00	.P
27.30	0	52 5548.2	6588.4	0.0	0.00	.Р
27.60	0	52 5548.2	6587.1	0.0	0.00	.P
27.90	0	52 5548.2	6585.8	0.0	0.00	.P
28.20	0	52 5548.2	6584.5	0.0	0.00	.Р
28.50	0	52 5548.2	6583.3	0.0	0.00	.Р
28.80	0	51 5548.2	6582.0	0.0	0.00	.Р
29.10	0	51 5548.2	6580.8	0.0	0.00	.Р
29.40	0	51 5548.2	6579.5	0.0	0.00	.Р
29.70	0	51 5548.2	6578.3	0.0	0.00	.P
30.00	0	51 5548.2	6577.1	0.0	0.00	.Р
30.30	0	51 5548.2	6575.8	0.0	0.00	.P
30.60	0	50 5548.2	6574.6	0.0	0.00	.P
30.90	0	50 5548.2	6573.4	0.0	0.00	.Р
31.20	0	50 5548.1	6572.2	0.0	0.00	.P
31.50	0	50 5548.1	6571.0	0.0	0.00	.P
31.80	0	50 5548.1	6569.8	0.0	0.00	.P
32.10	0	50 5548.1	6568.5	0.0	0.00	.P
32.40	0	49 5548.1	6567.3	0.0	0.00	.P
32.70	0	49 5548.1	6566.1	0.0	0.00	.P
33.00	0	49 5548.1	6565.0	0.0	0.00	.P
33.30	0	49 5548.1	6563.8	0.0	0.00	.P
33.60	0	49 5548.1	6562.6	0.0	0.00	.P
33.90	0	49 5548.1	6561.4	0.0	0.00	.P
34.20	0	48 5548.1	6560.2	0.0	0.00	.P
34.50	0	48 5548.1	6559.1	0.0	0.00	. P
34.80	0	48 5548.1	6557.9	0.0	0.00	.P
35.10	0	48 5548.1	6556.7	0.0	0.00	.P
35.40	0	48 5548.1	6555.6	0.0	0.00	.r .P
35.70	0	48 5548.1	6554.4	0.0	0.00	. P
	0					.P
36.00			6553.3 6552.1	0.0	0.00	.P
36.30	0			0.0	0.00 0.00	.P
36.60	0	47 5548.0	6551.0	0.0		.P
36.90	0	47 5548.0	6549.8	0.0 0.0	0.00	
37.20	0	47 5548.0	6548.7		0.00	.Р
37.50	0	47 5548.0	6547.6	0.0	0.00	.Р
37.80	0	46 5548.0	6546.4	0.0	0.00	.Р
38.10	0	46 5548.0	6545.3	0.0	0.00	.Р
38.40	0	46 5548.0	6544.2	0.0	0.00	.Р
38.70	0	46 5548.0	6543.1	0.0	0.00	.Р
39.00	0	46 5548.0	6542.0	0.0	0.00	.Р
39.30	0	46 5548.0	6540.9	0.0	0.00	.Р
39.60	0	45 5548.0	6539.8	0.0	0.00	.Р
39.90	0	45 5548.0	6538.7	0.0	0.00	.Р
40.20	0	45 5548.0	6537.6	0.0	0.00	.Р
40.50	0	45 5548.0	6536.5	0.0	0.00	.Р
40.80	0	45 5548.0	6535.4	0.0	0.00	.Р
41.10	0	45 5548.0	6534.3	0.0	0.00	.Р
41.40	0	45 5547.9	6533.2	0.0	0.00	.Р
41.70	0	44 5547.9	6532.1	0.0	0.00	.Р
42.00	0	44 5547.9	6531.1	0.0	0.00	.Р
42.30	0	44 5547.9	6530.0	0.0	0.00	.Р
42.60	0	44 5547.9	6528.9	0.0	0.00	.Р
42.90	0	44 5547.9	6527.9	0.0	0.00	.Р
43.20	0	44 5547.9	6526.8	0.0	0.00	.Р
43.50	0	43 5547.9	6525.7	0.0	0.00	.Р
43.80	0	43 5547.9	6524.7	0.0	0.00	.Р
44.10	0	43 5547.9	6523.6	0.0	0.00	.Р
44.40	0	43 5547.9	6522.6	0.0	0.00	.Р
44.70	0	43 5547.9	6521.6	0.0	0.00	.Р
45.00	0	43 5547.9	6520.5	0.0	0.00	.Р
45.30	0	43 5547.9	6519.5	0.0	0.00	.Р
45.60	0	42 5547.9	6518.5	0.0	0.00	.Р
45.90	0	42 5547.9 42 5547.9	6517.4	0.0	0.00	.Р
46.20	0		6516.4	0.0	0.00	.Р
46.50	0	42 5547.9	6515.4	0.0	0.00	.Р
46.80	0	42 5547.8	6514.4	0.0	0.00	.Р
47.10	0	42 5547.8	6513.4	0.0	0.00	.Р
47.40	0	42 5547.8	6512.4	0.0	0.00	.Р
47.70	0 a	41 5547.8 41 5547.8	6511.4	0.0	0.00	.Р .Р
48.00	0		6510.4	0.0	0.00 0.00	.Р .Р
48.30 48.60	0 0	41 5547.8 41 5547.8	6509.4 6508.4	0.0 0.0	0.00	.P
48.90		41 5547.8	6507.4	0.0	0.00	.P
48.90	0 a	41 5547.8	6506.4	0.0	0.00	.P
	0 a	41 5547.8		0.0		.P
49.50 49.80	0 a	41 5547.8	6505.4 6504.4	0.0	0.00	.P
	0 a				0.00	.P
50.10	0		6503.4	0.0	0.00	
50.40 50.70	0 a	40 5547.8 40 5547.8	6502.5 6501.5	0.0	0.00	.Р .Р
50.70	0 a	40 5547.8	6500.5	0.0 0.0	0.00 0.00	.P
	0 a					.P
51.30	0	40 5547.8	6499.6	0.0	0.00	
51.60	0	40 5547.8	6498.6	0.0	0.00	.P
51.90 52.20	0 0	40 5547.8 40 5547.8	6497.6 6496.7	0.0 0.0	0.00 0.00	.Р .Р
52.20	0	40 5547.8 39 5547.8	6495.7	0.0	0.00	.P
	U	JJ JJ+1.0	U-7J./	0.0	0.00	• 1
57 RA	a	39 55/17 7	6494 8	a a	a aa	D
52.80 53.10	0 0	39 5547.7 39 5547.7	6494.8 6493.8	0.0 0.0	0.00 0.00	.P .P

53.40	0	39 5547.7	6492.9	0.0	0.00	.P
53.70	0	39 5547.7	6491.9	0.0	0.00	.Р
54.00	0	39 5547.7	6491.0	0.0	0.00	.Р
54.30	0	39 5547.7	6490.1	0.0	0.00	.Р
54.60	0	39 5547.7	6489.1	0.0	0.00	.P
54.90	0	38 5547.7	6488.2	0.0	0.00	.Р
55.20	0	38 5547.7	6487.3	0.0	0.00	.P
55.50	0	38 5547.7	6486.4	0.0	0.00	.P
55.80	0	38 5547.7	6485.4	0.0	0.00	.Р
56.10	0	38 5547.7	6484.5	0.0	0.00	.Р
56.40	0	38 5547.7	6483.6	0.0	0.00	.Р
56.70	0	38 5547.7	6482.7	0.0	0.00	.Р
57.00	0	38 5547.7	6481.8	0.0	0.00	.Р
57.30	0	37 5547.7	6480.9	0.0	0.00	.P
57.60	0	37 5547.7	6480.0	0.0	0.00	.Р
57.90	ø	37 5547.7	6479.1	0.0	0.00	.P
58.20	ø	37 5547.7	6478.2	0.0	0.00	.P
58.50	ø	37 5547.7	6477.3	0.0	0.00	.P
58.80	ø	37 5547.7	6476.4	0.0	0.00	.P
59.10	0	37 5547.7	6475.5	0.0	0.00	.P
59.40	0	37 5547.6	6474.6	0.0	0.00	.Р
59.70	ø	37 5547.6	6473.7	0.0	0.00	.P
60.00	ø	36 5547.6	6472.9	0.0	0.00	.P
60.30	0	36 5547.6	6472.0	0.0	0.00	.P
60.60	0	36 5547.6	6471.1	0.0	0.00	.P
60.90	0	36 5547.6	6470.2	0.0	0.00	.P
61.20	0	36 5547.6	6469.4	0.0	0.00	.P
61.50	0	36 5547.6	6468.5	0.0	0.00	.P
61.80	0	36 5547.6	6467.7	0.0	0.00	.P
62.10	0	36 5547.6	6466.8	0.0	0.00	.P
62.40	0	35 5547.6	6465.9	0.0	0.00	.P
62.70	0	35 5547.6	6465.1	0.0	0.00	.P
63.00	0	35 5547.6	6464.2	0.0	0.00	.г .Р
63.30		35 5547.6				.P
	0 0		6463.4	0.0	0.00 0.00	.г .Р
63.60 63.90			6462.5	0.0 0.0		.Р
64.20	0	35 5547.6 35 5547.6	6461.7		0.00	.Р
	0		6460.9	0.0	0.00	.P
64.50	0	35 5547.6	6460.0	0.0	0.00	
64.80	0	35 5547.6	6459.2	0.0	0.00	.Р
65.10	0	34 5547.6	6458.4	0.0	0.00	.Р
65.40	0	34 5547.6	6457.5	0.0	0.00	.P .P
65.70	0	34 5547.6	6456.7	0.0	0.00	
66.00	0	34 5547.5	6455.9	0.0	0.00	.Р
66.30	0	34 5547.5	6455.1	0.0	0.00	.Р
66.60	0	34 5547.5	6454.2	0.0	0.00	.Р
66.90	0	34 5547.5	6453.4	0.0	0.00	.Р
67.20	0	34 5547.5	6452.6	0.0	0.00	.Р
67.50	0	34 5547.5	6451.8	0.0	0.00	.Р
67.80	0	34 5547.5	6451.0	0.0	0.00	.Р
68.10	0	33 5547.5	6450.2	0.0	0.00	.Р
68.40	0	33 5547.5	6449.4	0.0	0.00	.Р
68.70	0	33 5547.5	6448.6	0.0	0.00	.Р
69.00	0	33 5547.5	6447.8	0.0	0.00	.Р
69.30	0	33 5547.5	6447.0	0.0	0.00	.Р
69.60	0	33 5547.5	6446.2	0.0	0.00	.Р
69.90	0	33 5547.5	6445.4	0.0	0.00	.Р
70.20	0	33 5547.5	6444.6	0.0	0.00	.Р
70.50	0	33 5547.5	6443.8	0.0	0.00	.Р
70.80	0	33 5547.5	6443.1	0.0	0.00	.Р
71.10	0	32 5547.5	6442.3	0.0	0.00	.Р
71.40	0	32 5547.5	6441.5	0.0	0.00	.Р
71.70	0	32 5547.5	6440.7	0.0	0.00	.Р
72.00	0	32 5547.5	6439.9	0.0	0.00	.Р
72.30	0	32 5547.5	6439.2	0.0	0.00	.Р
72.60	0	32 5547.5	6438.4	0.0	0.00	.Р
72.90	0	32 5547.5	6437.6	0.0	0.00	.Р
73.20	0	32 5547.5	6436.9	0.0	0.00	.Р
73.50	0	32 5547.4	6436.1	0.0	0.00	.Р
73.80	0	32 5547.4	6435.4	0.0	0.00	.Р
74.10	0	31 5547.4	6434.6	0.0	0.00	.Р
74.40	0	31 5547.4	6433.8	0.0	0.00	.Р
74.70	0	31 5547.4	6433.1	0.0	0.00	.Р
75.00	0	31 5547.4	6432.3	0.0	0.00	.Р
75.30	0	31 5547.4	6431.6	0.0	0.00	.Р
75.60	0	31 5547.4	6430.8	0.0	0.00	.Р
75.90	0	31 5547.4	6430.1	0.0	0.00	.Р
76.20	0	31 5547.4	6429.4	0.0	0.00	.Р
76.50	0	31 5547.4	6428.6	0.0	0.00	.Р
76.80	0	31 5547.4	6427.9	0.0	0.00	.Р
77.10	0	31 5547.4	6427.1	0.0	0.00	.Р
77.40	0	31 5547.4	6426.4	0.0	0.00	.Р
77.70	0	30 5547.4	6425.7	0.0	0.00	.Р
78.00	0	30 5547.4	6425.0	0.0	0.00	.Р
78.30	0	30 5547.4	6424.2	0.0	0.00	.Р
78.60	0	30 5547.4	6423.5	0.0	0.00	.Р
78.90	0	30 5547.4	6422.8	0.0	0.00	.Р
79.20	0	30 5547.4	6422.1	0.0	0.00	.Р
79.50	0	30 5547.4	6421.3	0.0	0.00	.Р
79.80	0	30 5547.4	6420.6	0.0	0.00	.Р
80.10	0	30 5547.4	6419.9	0.0	0.00	.Р .Р
80.40 80.70	0 0	30 5547.4 30 5547.4	6419.2 6418.5	0.0 0.0	0.00 0.00	.P
55.76	U	JU JJ+/.4	0-10.3	5.6	0.00	• 1"

```
29 5547.4 6417.8
29 5547.4 6417.1
                                           0.00
0.00
81.00
                                                   .Р
81.30
                                      0.0
                29 5547.3
                            6416.4
                                            0.00
81.90
                29 5547.3
                           6415.7
                                      0.0
                                            0.00
                                                    . Р
                29 5547.3
82.20
           0
                           6415.0
                                      0.0
                                            0.00
                                                    .Р
                29 5547.3
                            6414.3
                                      0.0
                                            0.00
82.80
           0
                29 5547.3
                           6413.6
                                      0.0
                                            0.00
                                                    . Р
                29 5547.3
                           6412.9
                                                    .Р
83.10
           0
                                      0.0
                                            0.00
83.40
           0
                29 5547.3
                            6412.2
                                      0.0
                                            0.00
83.70
           0
                29 5547.3
                           6411.5
                                      0.0
                                            0.00
                29 5547.3
                           6410.8
                                                   .Р
84.00
           0
                                      0.0
                                            0.00
                29 5547.3
                            6410.2
                                      0.0
84.60
           0
                28 5547.3
                           6409.5
                                      0.0
                                            0.00
                                                    . Р
                28 5547.3
 84.90
           0
                            6408.8
                                            0.00
                                                   .Р
                                      0.0
 85.20
           0
                28 5547.3
                            6408.1
                                      0.0
                                            0.00
 85.50
           0
                28 5547.3
                            6497.4
                                     9.9
                                            9.99
                28 5547.3
 85.80
                            6406.8
                                      0.0
                                            0.00
86.10
           0
                28 5547.3
                            6406.1
                                      0.0
                                            0.00
                                                    .Р
86.40
           а
                28 5547.3
                            6405.4
                                     9.9
                                           9.99
 86.70
                28 5547.3
                            6404.8
                                      0.0
                                            0.00
87.00
           0
                28 5547.3
                            6404.1
                                      0.0
                                            0.00
                                                    .Р
87.30
           0
                28 5547.3
                           6403.4
                                     0.0
                                           0.00
                                                    .Р
                28 5547.3
87.60
                            6402.8
                                      0.0
                                            0.00
           0
 87.90
           0
                28 5547.3
                            6402.1
                                      0.0
                                            0.00
                                                    .Р
                27 5547.3
88.20
           0
                           6401.4
                                     0.0
                                           0.00
                                                    .Р
                27 5547.3
 88.50
                            6400.8
                                      0.0
                                            0.00
 88.80
           0
                27 5547.3
                            6400.1
                                      0.0
                                            0.00
                                                    .Р
                27 5547.3
                           6399.5
                                                    .Р
89.10
           0
                                     0.0
                                           0.00
                27 5547.3
 89.40
           0
                           6398.8
                                      0.0
                                            0.00
                27 5547.3
27 5547.3
89.70
           0
                           6398.2
                                      0.0
                                            0.00
                                                    .Р
           0
                           6397.5
 90.00
                                      0.0
                                           0.00
                27 5547.2
                           6396.9
 90.30
                                      0.0
                                            0.00
                27 5547.2
27 5547.2
 90.60
           0
                           6396.3
                                     0.0
                                            0.00
                                                    .Р
 90.90
           0
                           6395.6
                                      0.0
                                           0.00
                            6395.0
 91.20
                27 5547.2
                                            0.00
91.50
           0
                27 5547.2
                           6394.3
                                     0.0
                                            0.00
                                                    .Р
                27 5547.2
91.80
           0
                           6393.7
                                      0.0
                                            0.00
                26 5547.2
                            6393.1
                                            0.00
 92.40
           0
                26 5547.2
                           6392.4
                                     0.0
                                            0.00
                                                    .Р
                26 5547.2
                           6391.8
92.70
           0
                                     0.0
                                           0.00
                                                    .Р
                26 5547.2
                            6391.2
 93.00
                                            0.00
93.30
           0
                26 5547.2
                           6390.6
                                      9.9
                                            0.00
                                                    . Р
                26 5547.2
                           6389.9
                                                    .Р
93.60
           0
                                      0.0
                                           0.00
                26 5547.2
                            6389.3
 94.20
           a
                26 5547.2
                           6388.7
                                      9.9
                                            9.99
                                                    . Р
                26 5547.2
                           6388.1
                                                    . P
94.50
           0
                                      0.0
                                            0.00
 94.80
                26 5547.2
                            6387.5
                                            0.00
                26 5547.2
26 5547.2
95.10
           0
0
                            6386.9
                                     0.0
                                            0.00
                                                    . Р
 95.40
                           6386.2
                                      0.0
                                            0.00
 95.70
                26 5547.2
                            6385.6
                                      0.0
                                            0.00
96.00
           0
                26 5547.2
25 5547.2
                            6385.0
                                     0.0
                                            0.00
                                                    . Р
 96.30
                            6384.4
                                      0.0
                                            0.00
 96.60
                25 5547.2
                            6383.8
                                      0.0
                                            0.00
96.90
           0
                25 5547.2
                           6383.2
                                     0.0
                                           0.00
                                                   .Р
 97.20
                25 5547.2
                           6382.6
                                           0.00
                                     0.0
         Qin Qout Elev
                              Vol
                                    Area ExtVel
                                                                                1500.
                                                                                          2000.
                                                                                                     2500.
                                                                                                               3000.
                                                                                                                          3500.
                                                            500.
                                                                     1000.
        END NRCS-SDH PLOT
ROUTED
             BTM WIDTH MAX ELEV VOL-MAX AREA-MAX AUX.-HP
                                                                    VOL-AUX.
RESULTS
                 FT
                            FT
                                      ACFT
                                                 AC
                                                             FT
                                                                      ACFT
NRCS-FBH
                  30.0 5552.00
                                      7347.2
                                                   0.0
                                                             3.49
                                                                      702.7
          PEAK - CFS
                             Q-PS
                                       Q-AUX.
                                                 Q-TOT.
          DISCHARGE =
                            126.7
                                       432.6
                                                 559.2
                         CRITICAL
                                   CRITICAL
                                               CRITICAL 25% OF Q
                                                           Sc
FT/FT
                          DEPTH
                                   VELOCITY
                                               SLOPE-Sc
          AUXILIARY
                            FT
                                     FT/SEC
                                                FT/FT
          INTEGRITY ANALYSIS - REACH SURFACE PERFORMANCE SUMMARY
           (The auxiliary spillway began flow at time = and peaked at time = 7.5 hours.)
            REACH 3: FROM STATION 155. TO 237. ON 38.5% SLOPE.
               Non-vegetated conditions implied: flow concentration
                assumed with minimal flow: Time = 4.2 hours.
            REACH 4: FROM STATION
                                       237. TO
                                                    600. ON
               Non-vegetated conditions implied: flow concentration assumed with minimal flow: Time = 4.2 hours.
```

REACH 5: FROM STATION

600. TO 1049. ON

Non-vegetated conditions implied: flow concentration

REACH 6: FROM STATION 1049. TO 1170. ON 15.1% SLOPE.

assumed with minimal flow: Time =

6.3% SLOPE.

4.2 hours.

Non-vegetated conditions implied: flow concentration assumed with minimal flow: Time = 4.2 hours.

INTEGRITY ANALYSIS - HEADCUT EROSION DAMAGE SUMMARY

The most upstream headcut began at station and progressed upstream to station 153.

The final height of the headcut was 6.9 ft.

The deepest headcut is also the furthest upstream.

THE HYDROGRAPH WAS NOT ADJUSTED FOR THE EFFECTS OF EROSION.

DURATION ATTACK DIST. FROM MOST U/S FLOW 0F/B HEADCUT TO U/S EDGE AUXILIARY HRS ACFT/FT AUX. CREST, FT SPILLWAY --- 61.5 12.1 78.

EXIT CHANNEL FLOW SUPERCRITICAL: MAX VELOCITY= 24.1 FT/SEC

EXIT SLOPE = 0.385 FT/FT

FLOW DEPTH = 0.6 FT

>>>> MINIMUM FLOW IN AUXILIARY SPILLWAY FROM TR60 (510. CFS).

12.90

13.20

13.50

14.10

14.40

14.70

15.00

15.30

15.90

0

0

0

a

0

357 5551.1

348 5551.1

339 5551.1

331 5551.0

324 5551.0

317 5550.9

310 5550.9

303 5550.9

297 5550.8

290 5550.8

284 5550.8 7090.6

7169.2

7160.4 7152.0

7143.7

7135.6

7127.7

7119.9

7112.4 7104.9

7097.7

0.0 18.97

0.0 18.68

0.0 18.39

0.0 18.11

0.0 17.62

0.0 17.37

0.0 16.63

0.0 17.86

0.0 17.12

0.0 16.88

0.0 16.38

Α

Α

ROUTED RESULTS MIN. AUX.	BTM WIDTH FT 30.0	MAX ELEV FT 5552.28	VOL-MAX ACFT 7405.2	AREA-MAX AC 0.0	AUXHP FT 3.77	VOL-AUX. ACFT 760.7
	PEAK - CFS DISCHARGE =	Q-PS 126.9	Q-AUX. 510.4	Q-TOT. 637.3		
	AUXILIARY	CRITICAL DEPTH FT	CRITICAL VELOCITY FT/SEC		25% OF Q Sc FT/FT	

SPILLWAY ---1.99 7.57 0.008 0.011 PLOT NRCS-FBH 1 IN = 1000. CFS EXIT SLOPE = 0.385 4000. 5000. 2000. 3000. 0. 1000. 6000. 7000. Time Qin Qout Elev 0.90 а 8 5546.3 6203.0 0.0 0.00 8 5546.3 6203.0 1.20 8 0.0 0.00 8 5546.3 .I 1.80 129 8 5546.3 6205.4 0.0 0.00 8 5546.3 6210.6 0.0 0.00 . I 2.10 306 824 9 5546.4 6224.4 0.00 2325 4867 13 5546.6 22 5547.0 0.0 2.70 6263.1 0.00 Ι 3.00 6351.9 Ι 0.00 3.30 6395 39 5547.7 6490.7 0.0 0.00 3.60 3.90 6123 61 5548.5 86 5549.2 6644.7 0.0 0.00 Ι 5053 6781.4 0.0 Ι 3.25 4.20 4063 129 5549.8 6891.7 0.0 8.04 Ι 4.50 3364 196 5550.2 6979.8 0.0 12.35 Ι 4.80 2855 250 5550.6 7051.3 0.0 Ι 14.90 5.10 2500 302 5550.9 7110.9 0.0 17.07 Ι 349 5551.1 5.40 2228 7161.4 0.0 18.71 Ι 5.70 394 5551.3 7205.1 0.0 Ι 2039 20.09 6.00 1913 436 5551.5 477 5551.7 7243.8 0.0 21.24 Ι 6.30 1819 7278.8 0.0 22.29 Ι 513 5551.8 6.60 7309.0 0.0 23.13 1614 540 5551.9 555 5552.0 6.90 1240 7331.4 0.0 23.72 Ι 7.20 Ι 851 7343.7 0.0 24.05 Α 7.50 559 5552.0 7347.2 540 0.0 24.15 IX 7.80 332 555 5552.0 7344.1 0.0 24.06 Ι . I A 8.10 201 546 5552.0 7337.1 9.9 23.87 535 5551.9 7327.6 0.0 113 23.62 8.70 62 522 5551.9 7316.6 0.0 23.34 9.00 34 508 5551.8 7305.1 0.0 23.02 Α 18 495 5551.7 7293.3 0.0 22.70 9.30 9.60 9 481 5551.7 7281.5 0.0 22.37 5 467 5551.6 22.03 9.90 7269.9 0.0 453 5551.6 10.20 7258.6 0.0 21.70 10.50 440 5551.5 7247.6 0.0 21.36 0 428 5551.5 7236.8 21.02 10.80 0.0 416 5551.4 11.10 7226.4 0.0 20.71 11.40 406 5551.4 7216.2 0.0 20.42 395 5551.3 11.70 0 7206.3 0.0 20.13 Α 385 5551.3 7196.7 0.0 12.00 19.84 12.30 12.60 376 5551.2 366 5551.2 7187.3 7178.1 0.0 19.55 19.26 0 0.0 Α

16.20	0	278 5550.7	7083.7	0.0	16.13	. /
16.50	ø	272 5550.7	7076.9	0.0	15.88	
16.80	ø	266 5550.7	7070.2	0.0	15.63	
17.10	0	260 5550.6	7063.7	0.0	15.38	
			7057.3			
17.40	0	255 5550.6		0.0	15.13	
17.70	0	250 5550.6	7051.1	0.0	14.89	. A
18.00	0	245 5550.5	7045.0	0.0	14.65	. А
18.30	0	240 5550.5	7039.0	0.0	14.41	. A
18.60	0	235 5550.5	7033.2	0.0	14.20	. A
18.90	0	231 5550.4	7027.4	0.0	14.00	. A
19.20	0	228 5550.4	7021.7	0.0	13.79	. A
19.50	0	224 5550.4	7016.2	0.0	13.59	. A
19.80	0	220 5550.4	7010.7	0.0	13.41	. A
20.10	0	216 5550.3	7005.3	0.0	13.24	
20.40	0	212 5550.3	7000.1	0.0	13.06	. A
20.70	0	208 5550.3	6994.9	0.0	12.89	. A
21.00	0	204 5550.3	6989.8	0.0	12.71	. А
21.30	0	200 5550.2	6984.8	0.0	12.54	. A
21.60	0	196 5550.2	6979.9	0.0	12.36	. A
21.90	0	193 5550.2	6975.2	0.0	12.18	. A
22.20	0	189 5550.2	6970.5	0.0	12.01	. A
22.50	0	185 5550.1	6965.8	0.0	11.83	. A
22.80	0	182 5550.1	6961.3	0.0	11.65	
23.10	0	179 5550.1	6956.9	0.0	11.46	. A
23.40	0	175 5550.1	6952.5	0.0	11.28	. А
23.70	0	172 5550.1	6948.2	0.0	11.10	. A
24.00	0	169 5550.0	6944.0	0.0	10.91	. A
24.30	0	166 5550.0	6939.9	0.0	10.73	. A
24.60	0	163 5550.0	6935.9	0.0	10.54	. A
24.90	0	159 5550.0	6931.9	0.0	10.35	. А
25.20	ø	157 5550.0	6928.0	0.0	10.16	. A
25.50	ø	154 5549.9	6924.2	0.0	9.97	. A
25.80	0	151 5549.9	6920.4	0.0	9.78	. A
26.10	0	148 5549.9	6916.8	0.0	9.58	.А
26.40	0	145 5549.9	6913.1	0.0	9.38	.А
26.70	0	142 5549.9	6909.6	0.0	9.18	.Α
27.00	0	140 5549.9	6906.1	0.0	8.98	.А
27.30	0	137 5549.8	6902.7	0.0	8.77	. А
27.60	0	135 5549.8	6899.4	0.0	8.56	. А
27.90	0	132 5549.8	6896.1	0.0	8.34	.A
28.20	0	130 5549.8	6892.9	0.0	8.12	.A
						. A
28.50	0	127 5549.8	6889.7	0.0	7.89	
28.80	0	126 5549.8	6886.6	0.0	7.77	. А
29.10	0	125 5549.7	6883.5	0.0	7.69	.А
29.40	0	123 5549.7	6880.5	0.0	7.61	.А
29.70	0	122 5549.7	6877.5	0.0	7.53	.Α
30.00	0	121 5549.7	6874.5	0.0	7.46	.Α
30.30	0	120 5549.7	6871.5	0.0	7.38	. А
30.60	0	119 5549.7	6868.6	0.0	7.30	.A
30.90	0	118 5549.6	6865.7	0.0	7.22	.A
	0	117 5549.6				.A
31.20			6862.8	0.0	7.13	
31.50	0	116 5549.6	6859.9	0.0	7.05	. А
31.80	0	115 5549.6	6857.1	0.0	6.97	.А
32.10	0	114 5549.6	6854.3	0.0	6.88	.А
32.40	0	113 5549.6	6851.5	0.0	6.80	.Α
32.70	0	112 5549.6	6848.7	0.0	6.71	.А
33.00	0	110 5549.5	6846.0	0.0	6.62	. А
33.30	0	109 5549.5	6843.3	0.0	6.54	. А
33.60	0	108 5549.5	6840.6	0.0	6.45	. A
33.90	0	107 5549.5	6838.0	0.0	6.36	.A
34.20	ø	107 5549.5	6835.4	0.0	6.27	.A
34.50	0		6832.8	0.0	6.17	. А
34.80	0	105 5549.5	6830.2	0.0	6.08	. А
35.10	0	104 5549.5	6827.6	0.0	5.98	.А
35.40	0	103 5549.4	6825.1	0.0	5.88	.А
35.70	0	102 5549.4	6822.6	0.0	5.78	.Α
36.00	0	101 5549.4	6820.1	0.0	5.68	.А
36.30	0	100 5549.4	6817.6	0.0	5.58	.Α
36.60	0	99 5549.4	6815.2	0.0	5.47	. А
36.90	0	98 5549.4	6812.8	0.0	5.36	. А
37.20	0	97 5549.4	6810.4	0.0	5.25	.A
37.50	0	96 5549.4	6808.0	0.0	5.14	.A
37.80	0		6805.7	0.0	5.02	. А
38.10	0	95 5549.3	6803.3	0.0	4.90	.А
38.40	0	94 5549.3	6801.0	0.0	4.78	.А
38.70	0	93 5549.3	6798.7	0.0	4.65	. А
39.00	0	92 5549.3	6796.5	0.0	4.52	.Α
39.30	0	91 5549.3	6794.2	0.0	4.39	.A
39.60	0	90 5549.3	6792.0	0.0	4.22	.Α
39.90	0	89 5549.3	6789.8	0.0	4.04	. А
40.20	ø	89 5549.2	6787.6	0.0	3.85	.A
40.50	0	88 5549.2	6785.4	0.0	3.66	.A
40.80	0	87 5549.2	6783.3	0.0	3.45	.A
41.10	0		6781.2	0.0	3.23	. А
41.40	0	85 5549.2	6779.1	0.0	2.99	. А
41.70	0	85 5549.2	6777.0	0.0	2.74	.А
42.00	0	84 5549.2	6774.9	0.0	2.46	. А
42.30	0	83 5549.2	6772.9	0.0	2.14	.Α
42.60	0	82 5549.2	6770.9	0.0	1.77	.А
42.90	0	82 5549.2	6768.9	0.0	1.29	.Α
43.20	0	81 5549.1	6766.9	0.0	0.00	. А
43.50	ø	80 5549.1	6764.9	0.0	0.00	.A
	-	- · -				

43.80	0	80 5549.1	6762.9	0.0	0.00	. А
44.10	0	80 5549.1	6761.0	0.0	0.00	. А
44.40	0	79 5549.1	6759.0	0.0	0.00	. А
44.70	0	79 5549.1	6757.1	0.0	0.00	. А
45.00	0	79 5549.1	6755.1	0.0	0.00	. А
45.30	0	79 5549.1	6753.2	0.0	0.00	. А
45.60	0	78 5549.1	6751.3	0.0	0.00	. А
45.90	0	78 5549.1	6749.4	0.0	0.00	. А
46.20	0	78 5549.0	6747.5	0.0	0.00	. А
46.50	0	77 5549.0	6745.6	0.0	0.00	. А
46.80	0	77 5549.0	6743.7	0.0	0.00	. А
47.10	0	77 5549.0	6741.8	0.0	0.00	. А
47.40	0	76 5549.0	6740.0	0.0	0.00	.A
47.70	0	76 5549.0	6738.1	0.0	0.00	. А
48.00	0	76 5549.0	6736.2	0.0	0.00	. А
48.30	0	75 5549.0	6734.4	0.0	0.00	. А
48.60	0	75 5549.0	6732.5	0.0	0.00	.A
48.90	0	75 5549.0	6730.7	0.0	0.00	. А
49.20	0	75 5548.9	6728.9	0.0	0.00	. А
49.50	0	74 5548.9	6727.1	0.0	0.00	. А
49.80	0	74 5548.9	6725.2	0.0	0.00	. А
50.10	0	74 5548.9	6723.4	0.0	0.00	. А
50.40	0	73 5548.9	6721.6	0.0	0.00	.A
50.70	0	73 5548.9	6719.8	0.0	0.00	.A
51.00	0	73 5548.9	6718.1	0.0	0.00	. А
51.30	0	73 5548.9	6716.3	0.0	0.00	. А
51.60	0	72 5548.9	6714.5	0.0	0.00	. А
51.90	0	72 5548.9	6712.8	0.0	0.00	. А
52.20	0	72 5548.9	6711.0	0.0	0.00	. А
52.50	0	71 5548.8	6709.2	0.0	0.00	. А
52.80	0	71 5548.8	6707.5	0.0	0.00	. А
53.10	0	71 5548.8	6705.8	0.0	0.00	. А
53.40	0	71 5548.8	6704.0	0.0	0.00	. А
53.70	0	70 5548.8	6702.3	0.0	0.00	. А
54.00	0	70 5548.8	6700.6	0.0	0.00	. А
54.30	0	70 5548.8	6698.9	0.0	0.00	. А
54.60	0	69 5548.8	6697.2	0.0	0.00	. А
54.90	0	69 5548.8	6695.5	0.0	0.00	.A
55.20	0	69 5548.8	6693.8	0.0	0.00	. А
55.50	0	69 5548.8	6692.1	0.0	0.00	.A
55.80	0	68 5548.8	6690.5	0.0	0.00	.A
56.10	0	68 5548.7	6688.8	0.0	0.00	.A
56.40	0	68 5548.7	6687.1	0.0	0.00	. А
56.70	0	68 5548.7	6685.5	0.0	0.00	. А
57.00	0	67 5548.7	6683.9	0.0	0.00	. А
57.30	0	67 5548.7	6682.2	0.0	0.00	. А
57.60	0	67 5548.7	6680.6	0.0	0.00	. А
57.90	0	66 5548.7	6679.0	0.0	0.00	. А
58.20	0	66 5548.7	6677.3	0.0	0.00	. А
58.50	0	66 5548.7	6675.7	0.0	0.00	. А
58.80	0	66 5548.7	6674.1	0.0	0.00	. А
59.10	0	65 5548.7	6672.5	0.0	0.00	.А
59.40	0	65 5548.6	6670.9	0.0	0.00	. А
59.70	0	65 5548.6	6669.3	0.0	0.00	. А
60.00	0	65 5548.6	6667.8	0.0	0.00	. А
60.30	0	64 5548.6	6666.2	0.0	0.00	. А
60.60	0	64 5548.6	6664.6	0.0	0.00	. А
60.90	0	64 5548.6 64 5548.6	6663.0	0.0	0.00	.Α
61.20	0		6661.5	0.0	0.00	. А
61.50	0		6659.9	0.0	0.00	.A .A
61.80	0		6658.4	0.0	0.00	. A
62.10	0 0	63 5548.6 63 5548.6	6656.9 6655.3	0.0	0.00	
62.40				0.0	0.00	. А
62.70	0 0	62 5548.6 62 5548.6	6653.8 6652.3	0.0	0.00	. А
63.00				0.0 0.0	0.00 0.00	. А
63.30	0 0	62 5548.5 62 5548.5	6650.8		0.00	.Α
63.60 63.90	0		6649.3 6647.8	0.0 0.0	0.00	. A . A
		61 5548.5 61 5548.5				
64.20 64.50	0 0	61 5548.5	6646.3 6644.8	0.0 0.0	0.00 0.00	. A . A
64.80	0	61 5548.5	6643.3	0.0	0.00	. P
65.10		60 5548.5	6641.8	0.0	0.00	.г .Р
65.40	0 0	60 5548.5	6640.4	0.0	0.00	.г .Р
65.70	0	60 5548.5	6638.9	0.0	0.00	. P
66.00	0	60 5548.5	6637.4	0.0	0.00	.P
66.30	0	60 5548.5	6636.0	0.0	0.00	.г .Р
66.60	0	59 5548.5	6634.5	0.0	0.00	. P
66.90	0	59 5548.5	6633.1	0.0	0.00	.P
67.20	0	59 5548.4	6631.6	0.0	0.00	.P
67.50	0	59 5548.4	6630.2	0.0	0.00	.P
67.80	0	58 5548.4	6628.8	0.0	0.00	. P
68.10	0	58 5548.4	6627.4	0.0	0.00	.г .Р
68.40	0	58 5548.4	6625.9	0.0	0.00	.P
68.70	0	58 5548.4	6624.5	0.0	0.00	.P
69.00	0	58 5548.4	6623.1	0.0	0.00	.Р
69.30	0	57 5548.4	6621.7	0.0	0.00	.Р
69.60	0	57 5548.4	6620.3	0.0	0.00	.P
69.90	0	57 5548.4	6618.9	0.0	0.00	.Р
70.20	0	57 5548.4	6617.6	0.0	0.00	.P
70.50	0	57 5548.4	6616.2	0.0	0.00	.P
70.80	0	56 5548.4	6614.8	0.0	0.00	.Р
71.10	0	56 5548.4	6613.4	0.0	0.00	.Р

71.40 0 56 5548.3 6612.1 0.0 0.00 .P 71.70 0 56 5548.3 6610.7 0.0 0.00 .P

Time Qin Qout Elev Vol Area ExtVel I I I I I I I I I I I 0. 1000. 2000. 3000. 4000. 5000. 6000. 7000.

END NRCS-FBH PLOT

.....

Inflow Hyd 1 PSH-Peak = 39.99 CFS at 143.00 hrs., Location Point

Inflow Hyd 1 SDH-Peak = 65.90 CFS at 8.10 hrs., Location Point

Inflow Hyd 1 FBH-Peak = 559.24 CFS at 7.20 hrs., Location Point HYDOUT 1 STR1

1SITES....JOB NO. 1 COMPLETE.

COVRES COV RES

0 SUBWATERSHED(S) ANALYZED.

1 STRUCTURE(S) ANALYZED.

3 HYDROGRAPHS ROUTED AT LOWEST SITE.

0 TRIALS TO OBTAIN BOTTOM WIDTH FOR SPECIFIED STRESS OR VELOCITY.

SITES.....COMPUTATIONS COMPLETE

SUMMARY TABLE 1 SITES VERSION 2005.1.8

STR1 CR 4.74 0. 0.00 4.74 TR60 C

PASS DIA./ AUX.CREST BTM. MAX. MAX. EMB. INTEGR.* EXIT* TYPE NO. WIDTH WIDTH HP ELEV VOL. DIST. (CY) (FT) (FT/SEC) (IN/FT) (FT) (FT) (FT) (FT) 1 30.0 5548.5 30.0 3.8 5552.3 0. 78. 24.1 MIN. AUX.

* INTEGRITY DIST. AND EXIT VEL. ARE BASED ON THE ROUTED HYDROGRAPH AND WILL NOT RELATE TO THE MAX. ELEV. (TOP OF DAM), WHICH IS SET BY MINIMUM DESIGN CRITERIA.

SITES.....SUMMARY TABLE 1 COMPLETED.

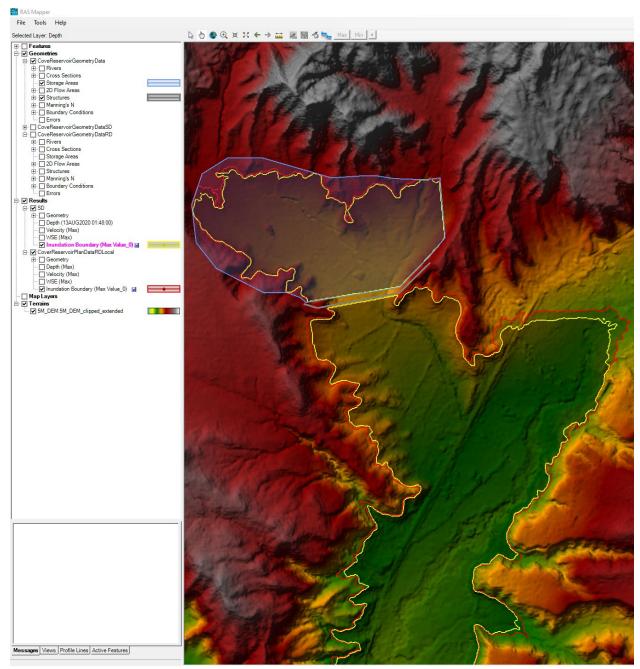
NRCS SITES VERSION 2005.1.8 ,01/01/2005 COVRES FILES

 $\begin{array}{lll} \mbox{INPUT} & = \mbox{c:} \mbox{USDA}\mbox{SITES}\mbox{080620-PSH-ASHL-FBHL.d2c} \\ \mbox{OUTPUT} & = \mbox{c:} \mbox{USDA}\mbox{SITES}\mbox{080620-PSH-ASHL-FBHL.OUT} \\ \mbox{DATED} & \mbox{08}/20/2020 & \mbox{06:} 12:11 \\ \end{array}$

GRAPHICS FILES GENERATED

OPTION "L" = c:\USDA\SITES\080620-PSH-ASHL-FBHL.DRG DATED 08/20/2020 06:12:11

OPTION "P" = c:\USDA\SITES\080620-PSH-ASHL-FBHL.DHY DATED 08/20/2020 06:12:11

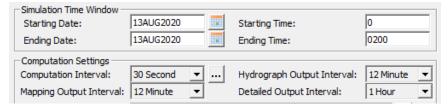

OPTION "E" = c:\USDA\SITES\080620-PSH-ASHL-FBHL.DEM DATED 08/20/2020 06:12:11

AUX.GRAPHICS = c:\USDA\SITES\080620-PSH-ASHL-FBHL.DG* DATED 08/20/2020 06:12:11

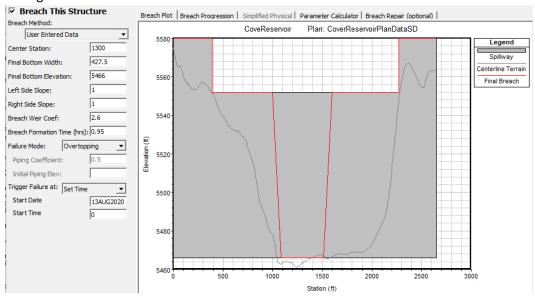
Breach Analysis

HEC-RAS Graphical Output with Inundation Boundaries - Sunny Day (yellow) and Rainy Day (red)

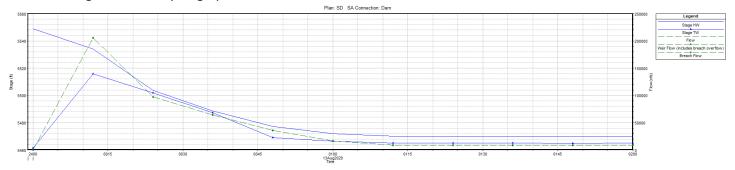
Sunny Day


Unsteady Flow Data

St	orage/2D Flow	Areas	Boundary Condition
1	CoveReservoir	BCLine: USBoundaryCondition	Flow Hydrograph
2	Downstream2D	BCLine: DSBoundaryCondition	Normal Depth

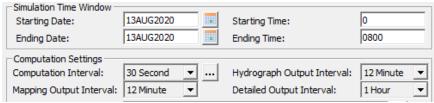

Flow Hydrograph = No Storm

		Storage Area/2D Flow Area	Initial Elevation
	1	SA: CoveReservoir	5549
ľ	2	2D: Downstream2D	

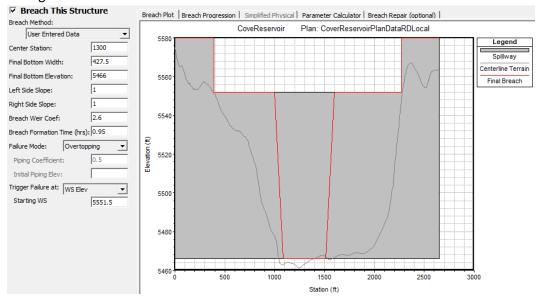

Unsteady Flow Analysis

Storage Area Connection Breach Data

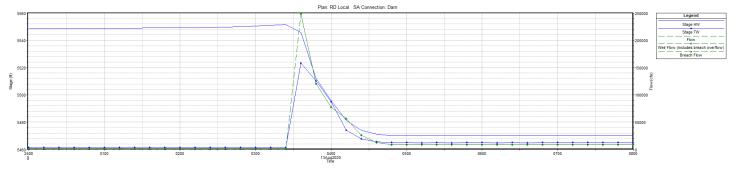
Stage and Flow Hydrograph


Rainy Day

Unsteady Flow Data

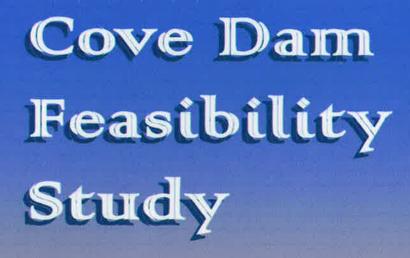

St	orage/2D Flow Areas	Boundary Condition	
1	CoveReservoir BCLine: USBoundaryCondition	Flow Hydrograph	
2	Downstream2D BCLine: DSBoundaryCondition	Normal Depth	Flow H
			FIOW IT
	Storage Area/2D Flow Area	Initial Elevation	
1	SA: CoveReservoir	5549]
7	2D: Downstream2D		1

Flow Hydrograph = FBH-L

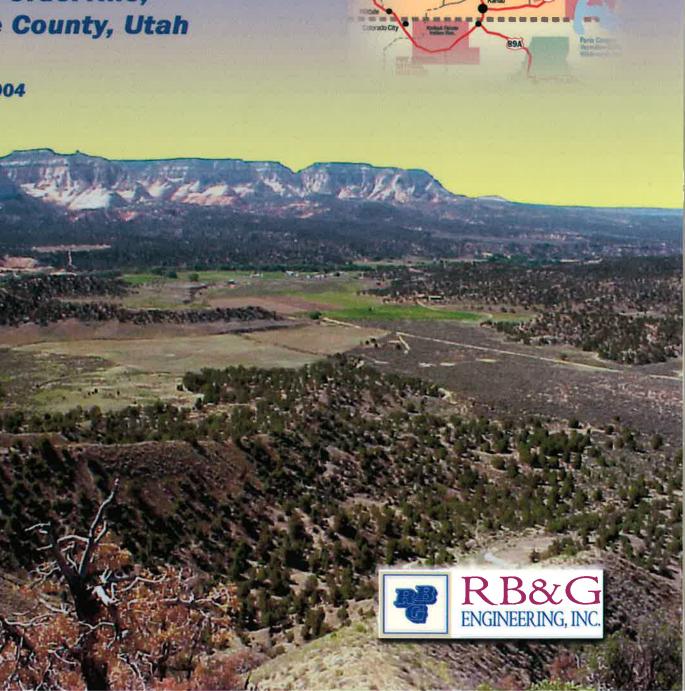

Unsteady Flow Analysis

Storage Area Connection Breach Data

Stage and Flow Hydrograph



NRCS Cove Reservoir Project


APPENDIX E-13COVE DAM FEASIBILITY STUDY

Draft Plan-EA October 2020

Near Orderville, Kane County, Utah

June 2004

June 16, 2004

Kane County Water Conservancy District 76 North Main Street Kanab, UT 84741

Attn: Mike Noel

Subject: Cove Dam

Feasibility Study

Gentlemen:

A Feasibility Study has been completed for the proposed Cove Dam near Orderville, Kane County, Utah. The investigation has been conducted in accordance with a proposal submitted to your organization for the work, and the results of the study are summarized in the report transmitted herewith.

We appreciate the opportunity of providing this service for you. If there are any questions relating to the information contained herein, please call.

Sincerely,

RB&G ENGINEERING, INC.

Bradford E. Price, P.E.

bep/jag

Feasibility Study

Cove Dam

near Orderville Kane County, Utah

June 14, 2004

TABLE OF CONTENTS

EXE	CUTIVE SUMMARY	1
I.	INTRODUCTION	2
1.	PROJECT DESCRIPTION	2
2.	PURPOSE AND SCOPE	
3.	PREVIOUS STUDIES	3
II.	GEOLOGIC INVESTIGATIONS	3
1.	REGIONAL GEOLOGY	3
2.	SITE GEOLOGY	
3.	SEISMIC CONSIDERATIONS	
4.	GEOLOGIC HAZARDS	
III.	FIELD AND LABORATORY TESTING PROCEDURES	6
IV.	FOUNDATION INVESTIGATION	7
1.	SOIL PROFILE.	
2.	BEDROCK PROFILE	
3.	GROUNDWATER	
4.	PERMEABILITY	
5.	LABORATORY TESTING	
Α	0	
Б		
C		
L		
E	Slake Durability	12
V.	BORROW INVESTIGATION	12
1.	IMPERVIOUS BORROW	12
A	Laboratory Testing	12
	(1) Atterberg Limits	
	(2) Mechanical Analyses	
	(3) Natural Moisture Content	
	(4) Soil Moisture-Density Relation (Proctor) Tests (5) Dispersive Clay Tests	13
	(5) Dispersive Clay Tests	
2.	GRANULAR BORROW MATERIALS	
3.	RIPRAP	
VI.	FEASIBILITY ANALYSIS AND CONCLUSIONS	
1.	EARTHFILL EMBANKMENT CROSS SECTION	
2.	STABILITY ANALYSIS	
3.	SETTLEMENT ANALYSIS	
3. 4.	FOUNDATION TREATMENT	
4. A		
B		
(
5.	OPINION OF PROBABLE COST	
5. 6.	ADDITIONAL STUDIES REQUIRED FOR FINAL DESIGN	
٠.		エノ

COVE DAM

Kane County Water Conservancy District

Feasibility Study – Executive Summary

This report summarizes the results of a feasibility study performed for the proposed Cove Reservoir to be located about 1 mile southwest of Orderville, Utah. The purpose of the reservoir is to provide off-stream storage for the district to aid in water distribution for municipal and agricultural purposes. Water will be delivered to the off-stream reservoir via pipeline.

Surficial deposits in the study area consist of Quaternary alluvial deposits overlying the Tropic Shale Formation. This formation consists predominantly of dark gray shale with some gray sandstone. At the site, the formation also contains thin layers of grayish-white bentonite and minor to very minor gypsum lenses, stringers, and fracture infill. Bedrock in the upper 25 to 50 feet of the abutments is highly fractured and will require a grout curtain to reduce seepage through the abutments.

Based upon the results of field and laboratory testing, it is our opinion that a homogeneous clay earthfill embankment with an internal filter and drainage system will be the most efficient type of structure for this site. It is anticipated that clay fill can be obtained from required excavations and the reservoir basin. Filter, drain, riprap bedding, and riprap material must be imported from off-site sources. Sources have been identified within a 5 mile radius of the site.

A maximum dam height of between 100 and 110 feet is available at the site. Assuming 10 feet of freeboard, this results in an available capacity of between 6800 and 8800 acre feet. Our opinion of probable cost for a 100 foot high dam 10.7 million dollars, increasing to 14.5 million dollars for a 110 foot high structure. This results in a cost per acre foot of \$1,578 for the 100 foot high structure and \$1,644 for the 110 foot high structure. These values do not include the cost of land or piping to bring water to the reservoir.

COVE DAM

Kane County Water Conservancy District

Feasibility Study

I. INTRODUCTION

1. PROJECT DESCRIPTION

The proposed Cove Dam and Reservoir is located about 1 mile southwest of Orderville, Utah at the approximate location shown on the vicinity map in Figure 1. The reservoir site is situated in a natural off-stream drainage basin and will be enclosed by a single dam near the mouth of the basin. The drainage basin is located ½ mile west of the East Fork Virgin River. A new diversion structure and pipeline will route water into the reservoir. A site plan of the reservoir is shown in Figure 2. The purpose of the project is to provide water storage for Kane County Water Conservancy District to aid in water distribution for municipal and agricultural purposes.

2. PURPOSE AND SCOPE

The purpose and scope of this study was to (1) perform sufficient surface and subsurface investigations at the reservoir site to determine the feasibility of construction of the dam and reservoir, (2) perform sufficient field and laboratory investigations to identify borrow sources for the dam embankment, (3) evaluate dam type options, (4) provide recommendations relative to the best option for this site, and (5) provide preliminary cost estimates for the selected sections and appurtenant structures required to meet the safety, storage, and operation requirements of the owner.

Consideration has been given to potential borrow sources for earthfill, rockfill, and roller compacted concrete type structures. Borrow sources for impervious (clay/silt) type material, granular (sand/gravel) type material, and rock for use as riprap were identified within the basin or in the surrounding area. The work has been performed in accordance with the proposal and is discussed under the following headings:

- Geologic Investigations
- Field and Laboratory Testing Procedures
- Foundation Investigation
- Borrow Investigation
- Feasibility Analysis and Conclusions

3. PREVIOUS STUDIES

The following studies were reviewed for this report:

"Memorandum", State of Utah - Division of Water Resources; Engineering Geology Section; Oct. 6, 1997; Author: Ben Everitt, Engineering Geologist

"Proposed Cove Canyon Dam and Reservoir Near Orderville, Utah; Reconnaissance-Level Evaluation", June 1996; Franson-Noble & Associates, Inc.

II. GEOLOGIC INVESTIGATIONS

1. REGIONAL GEOLOGY

The Orderville area is located within the Grand Staircase section of the Colorado Plateau Physiographic Province. The Grand Staircase contains a series of terraces and cliffs, which rise northward from the Grand Canyon to the south to the High Plateaus to the north. The Hurricane Fault bounds the area to the west, the Kiabab Monocline bounds the area to the east (Stokes, 1987).

The Grand Staircase section is typified by a series of alternating step-like cliffs and flat areas. The upward steps in the staircase include the Vermillion Cliffs, White Cliffs, Gray Cliffs, and Pink Cliffs. The cliffs consist of more competent material while the lowlands between them consist of generally softer more erodible deposits (Stokes, 1987).

The age of the deposits exposed above the Grand Canyon range from the Triassic age, 245 million years ago near the Vermillion Cliffs, to the younger Tertiary deposits of the Pink Cliffs to the north, deposited 15 million years ago. A large portion of the sediments in this section were derived from continental deposits

The Orderville area is located within the less tectonically active Colorado Plateau Province. Bedrock in the Orderville area shows evidence of some ancient normal faulting as well as younger Quaternary faults. This general region has been less disrupted by compressional forces from the Sevier Orogeny, which was more prominent across the northwestern side of the state.

The area is located within the western edge of the Intermountain Seismic Belt (ISB). The ISB is a zone of seismic activity which trends from northern Arizona up through northern Montana in the U.S.A.

The study area is located east of the general transition zone between the Basin and Range Province and the Colorado Plateau Province. The area is located on the western edge of the potentially active Sevier Fault. The Sevier Fault is the eastern most major extensional fault in southern Utah.

2. SITE GEOLOGY

Figure 3 is a portion of a geologic map of Kane County showing the location of the study area. As shown on the map, surficial deposits in the study area consist of Quaternary alluvial deposits overlying bedrock. Bedrock throughout the reservoir basin and proposed dam abutments consists of the Cretaceous age Tropic Shale Formation (Doelling, etal, 1989, Doelling, 1999). No competent outcrops of Tropic Shale were observed at the site from which strike and dip could be measured. Based on information from drill holes, and topographic and structural geology maps, bedrock in the area appears to dip 2 to 3° down toward the northeast (Doelling, etal, 1989). The strike of the bedrock taken from a structural geologic map is about North 30° West. Interpretations taken from topographic and geologic maps show the strike to be about North 60° West.

The following descriptions of the surficial and rock units in the study area are taken from "The Geology of Kane County, Utah, Geology, Mineral Resources and Geologic Hazards, by Hellmut H. Doelling and Fritzhugh D. Davis"... published in 1987 and Interim geologic map of the Kanab 30'X60" Quadrangle..., Open-File Report 366,1999. Deposits are listed from youngest to oldest, with personal comments relative to the study area in italics.

Quaternary

- Qa Alluvium sand and silty clay with lenses of sandy silt and gravel sediments consist of unconsolidated clay, silt, sand and gravel, deposited in stream bed and flood-plains. (During this investigation sand and gravel deposits appeared very limited and discontinuous. Deposits may be considered for embankment material).
- Qag Alluvial gravel poor to well sorted gravel and sand with some silt and clay interbeds. (Exposures are predominate terrace deposits along the east side of the East Fork of the Virgin River which trends southeast along the east side of the highway. Sand and gravel may be considered for granular borrow source).

Cretaceous

- Ks Straight Cliffs Formation Yellow-gray very fine to fine grained, med to thick bedded, cliff forming, calcareous sandstone with interbedded less resistant sandstone, shale and mudstone. (This unit is exposed north and northwest of the site. The unit is well exposed due to faulting on the north side of Orderville. The formation is exposed as a yellow cliff forming cap rock above the Tropic Shale. Competent material may be suitable for rip rap but appears to have many interbedded weak layers).
- Kt Tropic Shale Formation- Dark gray, drab marine shale with some gray sandstone. (This unit forms the bedrock for the dam abutments and reservoir basin. At this site the formation also contains several grayish-white bentonite layers which are exposed along the south (right) side of the reservoir basin, septarian nodules/concretions are also common locally. Some minor gypsum lenses, stringers and fracture infilling were noted during this study).
- Kd Dakota Formation Interbedded sandy shale, carbonaceous shale, sandstone, conglomerate and coal. *Jurassic*
- Jc Carmel formation sandstone, siltstone, limestone, shaly limestone and gypsum. Divided into members.
- Jcw Winsor and Wiggler Wash Members Reddish or yellow slope forming silty sandstone.
- Jcp Paria River Member Gypsum, reddish siltstone and sandstone, with some limestone at top. (south of site seen as a white gypsum cliff along highway).
- Jcc Crystal Creek Member Brown banded sandstone. (South of site this unit exposes a small fault zone in a road cut off of highway).
- Jck Co-op Creek Member Thin to medium bedded light gray limestone and tan limestone shale. (Unit forms ledges south of sewer lagoon, off of highway and was used as rip rap for lagoon. This unit is also exposed just east of the highway on the east side of the Sevier fault on the northeast end of Orderville. This may be a source of rip rap).

3. SEISMIC CONSIDERATIONS

A detailed seismic evaluation for the site has not been completed as part of the Feasibility Study. However, the Utah Dam Safety Map for the *No Fault Specific* seismic event with a 5,000 year return interval indicates that the extreme event could generate a Peak Ground Acceleration (PGA) of about 0.29g. A preliminary seismic evaluation finds that the nearest seismic source is the southern section of the Sevier (Toroweap) Fault, located about 1.9 miles (3 km) east of the site. This fault is Quaternary in age (Late Pleistocene 10-130 k years ago) with no documented Holocene movement. No recurrence interval information is currently available for this fault, however an estimated slip rate of 0.2-1mm/yr has been given by others (Anderson and Christenson, 1989; Hecker, 1993; Black and others, 2003). This section of the fault is about 55 miles (88 km) long and may be capable of generating a Maximum Credible Earthquake (MCE) with a magnitude of about 7.2 to 7.4. Due to the close proximity of the fault, a 7.2 to 7.4 earthquake could generate Peak Horizontal Ground Acceleration (PGA) values of between 0.62g to 0.65g.

4. GEOLOGIC HAZARDS

Geologic hazards which should be considered at this site include seismic, slope stability, and potential embankment and foundation hazards. These hazards are discussed below as follows:

Seismic

As mentioned previously, ground shaking during a moderate to large seismic event near the site is a potential hazard. While the activity rate of the Sevier Fault is not fully understood, evidence suggests that it has the potential to generate a large magnitude earthquake. Since the site is located a couple of miles west of the fault surface, fault rupture during a seismic event is unlikely. Hazards include tectonic subsidence and deformation. Tectonic deformation should be addressed during the design of the dam.

Liquefaction

Current and previous studies have identified some scattered alluvial sand and gravel deposits in the basin which may have a potential for liquefaction. Information to date indicates that the deposits are relatively localized and discontinuous. It is possible that loose sand deposits exist beneath the dam footprint, which will require mitigation. Sufficient investigation should be performed during final design to determine if mitigation measures are required.

Non-seismic Slope Failure

A review of the site did not find any evidence of rock fall, debris flow or landslide deposits. The stability of abutment slopes under saturated sudden draw down conditions should be addressed during design of the dam.

Foundation and Embankment Hazards

Several geologic hazard maps indicated that the Tropic Shale Formation and the alluvial material in the basin has a potential for swelling and shrinking with changes in moisture content (bentonite layers have very high potential) (Doelling etal, 1989; Mulvey, 1992). It

5

should be noted that during site visits between April and June (2004), relatively large polygonal desiccation cracks were observed within the alluvial material covering the basin and abutments. These cracks were observed to be up to 1 inch wide and 1 foot deep. In many places the cracks were difficult to see due to the popcorn texture of the soil at the surface.

Doelling's map also mentions that the Tropic Shale has a high sulfate content which may react with concrete (Doelling etal, 1989). For this project, site specific testing should be conducted to verify the sulfate content in the area. Gypsum is moderately soluble and may dissolve over time when exposed to water. Dissolution of the gypsum may gradually create voids within the foundation of the reservoir. During this preliminary investigation relatively little visible gypsum was observed in the test borings or test pits. Additional testing should be performed to determine the percent of soluble salts in the embankment and foundation materials. Test pits within the basin also encountered some collapsible soils. Testing results are discussed later in this report.

Based on observations at the site the bedrock contact beneath alluvium in the basin may be somewhat undulating. Three small knolls are located within the center of the basin in an east-west direction. Test Pit 04-5 was excavated in the eastern knoll and encountered bedrock at a depth of about 4.5 feet. It is assumed that the other knolls also have shallow bedrock. These exposures indicate that bedrock may also be located at varying depths beneath the foundation of the dam. Depending on the final design of the dam, variations in the depth of bedrock could have an effect on differential settlement of the structure. Additional investigations will be needed to better define the bedrock contact beneath the dam.

III. FIELD AND LABORATORY TESTING PROCEDURES

The borings were drilled using a CME 55 rotary drill rig with a tri-cone rock bit and NW casing to advance the boring and water as the drilling fluid through the over-burden. Continuous coring was performed in bedrock using an NQ size wireline system. In addition, test pits were excavated with a 310 SE John Deere backhoe. Sampling of over-burden in the borings was performed at about five-foot intervals, while sampling in the test pits was performed at approximately three-foot intervals or at each significant change of material type. Both disturbed and undisturbed samples were obtained during the field investigations. Disturbed samples from the borings were obtained by driving a 2-inch split spoon sampling tube through a distance of 18 inches using a 140-pound weight dropped from a distance of 30 inches. The number of blows to drive the sampling spoon through each 6 inches of penetration is shown on the boring logs. The sum of the last two blow counts, which represents the number of blows to drive the sampling spoon through 12 inches, is defined as the standard penetration value. The standard penetration value, corrected for overburden and hammer energy, provides a good indication of the in-place density of sandy material; however, it only provides an indication of the relative stiffness of the cohesive material, since the penetration resistance of materials of this type is a function of the moisture content.

Undisturbed samples in the borings were obtained by pushing a thin-walled sampling tube into the subsurface material using the hydraulic pressure on the drill rig. Undisturbed samples in the test pits were recovered by cutting block samples or by pushing consolidation rings into undisturbed benches

excavated into the side walls of the test pit. The location at which the undisturbed samples were obtained is shown on the boring and test pit logs.

Miniature vane shear tests, which provide an indication of the undrained shearing strength of cohesive materials, were performed on samples of the clay soil during the field investigations. The results of these tests are shown on the boring logs as the torvane value in tons per square foot (tsf).

Each sample obtained in the field was classified in the laboratory according to the Unified Soil Classification System. The symbol designating the soil type according to this system, is presented on the boring or test pit log. A description of the Unified Soil Classification System is presented in the appendix, and the meaning of the various symbols, shown on the log sheet, can be obtained from this figure.

Laboratory tests performed during this investigation to define the characteristics of the subsurface material throughout the proposed site and at the identified granular and rock borrow sources included in-place dry unit weight, natural moisture content, moisture-density (proctor) tests, Atterberg Limits, mechanical analyses, direct shear tests, laboratory permeability tests, dispersive clay tests, slaking tests, specific gravity tests, and consolidation tests. Testing was performed following procedures outlined in the American Society for Testing and Materials (ASTM) standards.

IV. FOUNDATION INVESTIGATION

Prior to beginning the subsurface investigation, a site reconnaissance was made to determine the optimal alignment for the dam. Topographically, the ridges at the southern end of the valley appear to provide the most efficient alignment for the dam enclosure. It was apparent that the ridges are relatively narrow and, to provide adequate abutment support, it was our opinion that the alignment shown on Figures 2 and 4 should be used for the embankment.

The characteristics of the subsurface material at the site were evaluated by drilling five borings to depths ranging from 39 to 101 feet and excavating two test pits to depths of about twelve feet. The drill hole and test pit locations are shown in Figure 4. The logs for the borings and test pits are presented in Test Hole Log section of this report. All five drill holes were completed within or very near the footprint of the proposed dam.

Both the drill holes and the test pits were used in evaluating the characteristics of the overburden material at this site. Bedrock core was recovered from four of the borings to assess the competency and condition of the foundation bedrock. Photographs of the core from the drill holes are included in the Test Hole Log section of this report.

Three holes were drilled within the footprint of the dam and one hole was drilled on each of the abutments at the locations shown in Figure 4. The test holes are also shown on the profile presented in Figure 5.

DH 04-1, 04-2 and 04-4 were drilled vertical and DH 04-3 and DH 04-5 were drilled at an angle of 60 degrees from horizontal. The percent recovery and Rock Quality Designation (RQD), along with the results of field permeability tests are shown on the logs and in profile view on Figure 5.

While the drill logs indicate the angles and direction the hole was drilled, the core is not classified as being "Oriented"; hence, the actual direction of bedding and fractures seen in the core can not always be determined. Terms on the drill logs such as vertical fractures and angles of bedding, refer to how they appear relative to the cored sample and not to actual vertical and horizontal at the surface.

Test Pit 04-1 was completed between the right abutment and the maximum section beneath the upstream shell portion of an earthfill type structure at approximately elevation 5463 feet. Test Pit 04-7 was completed on the centerline alignment at the maximum section of the proposed structure midway between DH 04-4 and DH 04-2 at elevation 5458 feet.

1. SOIL PROFILE

It will be observed from DH 04-1, 04-2 and 04-4 that the depth of soil overburden on the valley floor varies at these particular locations from 20 to 47 feet. Deeper channels may also be present which were not encountered by these borings. It should also be noted that TP 04-5 excavated on the small knoll at the upstream toe near the maximum section encountered heavily weathered shale bedrock at a depth of only four feet.

The soil overburden sampled from the drill holes and test pits consists predominantly of lean clay with interbedded layers and lenses of fat clay, sandy silt, and silty sand with pockets of gravel. The overburden is a combination of weathered material from the underlying Tropic Shale formation and alluvial material washed down from the surrounding slopes. The silt and clay deposits were heterogeneously layered with some sections of the test pits showing distinct layers several inches in thickness and other sections of the test pits showing thin closely spaced lenses less than an inch in thickness. When combined, these layers generally exhibit the characteristics of lean clay with medium plasticity and good workability. The silt and clay deposits were visually observed to have a low to moderate mineral content. A close examination of the sidewall of these test pits showed that the interbedded layers of silty sand were generally fine grained and from one to six inches in thickness. Gravel particles tended to be sandstone or shale in origin with sub-angular to sub-rounded edges. Generally the pockets of gravel were fine grained with a size range of 1/4 to 1 inch. The gravel layers which made up these scattered deposits were observed to be from one to three feet in thickness. A few cobbles and boulders were encountered with maximum particle size of about 12 inches. A pin-hole type structure was readily evident in the silt and clay type deposits in the test pits. The moisture content of the samples varied from dry to very dry.

Standard Penetration Test (SPT) values ranged from 6 to 55 indicating the material is in a firm to hard condition. Thirteen disturbed samples were recovered and seven undisturbed samples were recovered from the bore holes. Some of the undisturbed samples recovered were not extracted intact due the very dry condition of the soil.

Provo, Utah

The overburden on the abutments was removed during construction of the access roads for DH 04-3 and DH 04-5. Drilling began directly in the weathered bedrock. It is estimated from the access road cut that the depth of overburden prior to its removal was between 1 and 3 feet.

2. BEDROCK PROFILE

The quality of the bedrock is characterized by the percent of core recovered, along with the rock quality designation (RQD). The RQD is the percent of material within a cored interval that is twice as long as the cored diameter (segment at least 4 inches long). The core generally consisted of gray mudstone (Tropic Shale Formation) with occasional bentonite layers. It will be noted from the boring logs and Figure 5 that the percent recovery and RQD ranged from 63 to 100% in DH 04-1 and DH 04-2 located on the valley floor.

In DH 04-3 on the right abutment, the bedrock in the upper 25 feet was highly weathered and fractured, with the percent recovery ranging from 78 to 100 and the RQD varying from 18 to 65. Below 25 feet, the percent recovery ranged from 69 to 100 and the RQD varied from 42 to 100 with the layer between 32 and 38 feet having 0 RQD. Minor gypsum coating was observed on some joints in the upper 70 feet. Bentonite layers, approximately 1.5 feet thick, were encountered at 25, 75 and 95 feet.

In DH 04-5 on the left abutment, the bedrock in the upper 40 feet was highly fractured, with the percent recovery ranging from 0 to 96 and an RQD of 0. Below 40 feet, the bedrock was relatively competent with the percent recovery ranging from 80 to 100 and the RQD varying from 60 to 100. A few random gypsum stringers were observed in the core between 28 and 46 feet. Bentonite layers ranging in thickness from 0.5 to 2 feet were encountered at 71, 77 and 89 feet.

3. GROUNDWATER

Ground water was not encountered in the test pits. Temporary monitoring wells consisting one inch PVC pipe were installed in each of the drill holes completed in April/May 2004. Each of the wells was bailed out upon completion of drilling. On June 3, 2004 the wells were bailed out again and ground water levels were recorded. The results are shown on the following table:

Water Table Readings - Recorded June 3, 2004

Drill	and a family in	Depth		Elevation		Water Table	
Hole	Orientation	Angle	Vertical	Тор	Bottom	Depth	Elevation
04-1	Vertical		90	5454	5364	46.8'	5407.2
04-2	Vertical	-	39	5458	5419	17.0'	5441.0
04-3	60° Dip	100.5	87	5546	5445.5	71.0'	5484.5
04-4	Vertical	ê	41	5458	Caved at 29'	Dry @ 29'	•
04-5	60° Dip	101	87.5	5542.5	5441.5	36.0'	5511.3

Provo, Utah

The groundwater level at each bore hole is also shown on the Geologic Profile in Figure 5 and it will be observed that the gradient is toward the center of the basin.

4. PERMEABILITY

Permeability tests were conducted in both the soil overburden and the foundation bedrock. The test results are shown on the boring logs and the profile view in Figure 5. Permeability calculations are included in the appendix. It will be observed from Figure 5 that the permeability of the silt and clay overburden varied from 0 to 189 ft/yr. It will also be observed that the permeability of the Tropic Shale Formation is relatively low except within the upper 50 feet of the abutments in the more heavily fractured rock. Permeability tests in the upper 50 feet on the abutments in DH 04-3 and DH 04-5 show rates varying from 300 to 6,000 ft/yr. Below a depth of 50 feet in DH 04-3 on the right abutment, the permeability ranged from 0 to 394 ft/yr. Below a depth of 45 feet in DH 04-5 on the left abutment, the permeability ranged from 0 to 5 ft/yr.

5. LABORATORY TESTING

Laboratory tests performed to define the characteristics of the dam foundation included (1) Atterberg Limits, (2) in-place density, (3) consolidation (4) direct shear, and (5) slake durability. The results of the mechanical analyses, Atterberg Limits, dry unit weight and moisture content tests are summarized on the logs and in Table 1, Summary of Test Data contained in the Laboratory Testing Section of this report. The results of all tests are discussed below as follows:

A. Atterberg Limits

Fourteen Atterberg Limits tests were completed on soil samples recovered from the drill holes and test pits within the foundation area to determine the plasticity characteristics. It will be observed from Table 1 that the liquid limit varied from 20 to 58 while the plasticity index ranged from 5 to 34. Thirteen of the 14 samples classify as lean clay, with one sample classifying as fat clay.

Eight sections of bedrock core were pulverized from TP 5 at 6 and 9 feet, DH 04-1 at 53 and 73 feet, DH 04-2 at 26 feet, DH 04-3 at 14 feet and DH 04-5 at 41 and 48 feet to define the characteristics of the Tropic Shale mudstone. The liquid limit of these samples ranged from 43 to 82 while the plasticity index varied from 24 to 50. Six of the eight samples classify as fat clay, with two classifying as lean clay.

B. In-Place Density

The in-place dry density was determined for nine samples obtained at select locations, and the results of these tests are also included in Table 1, Summary of Test Data. It will be observed that the in-place density varied from 82.0 to 120.3 pcf.

C. Consolidation Tests

The compressibility, collapse and expansive characteristics of the clay were evaluated by performing eight consolidation tests on undisturbed samples recovered from DH 04-1, DH 04-2 and TP 7. The results of the consolidation tests are presented in the Laboratory Testing Section of this report. During the performance of the consolidation tests, each sample was loaded at the natural moisture content until a load intensity of 0.28 tsf had been reached. At this point in the loading cycle, each sample was permitted to absorb water without any increase in the load intensity. Soils having collapsible characteristics settle without any increase in the load when they become wet or saturated. It will be observed from these figures that the two samples from Test Pit 7 at 3 and 9 feet in depth exhibited some slight collapse characteristics.

Expansive soils always experience an increase in void ratio on absorbing water. It will be observed that five of the eight samples from the drill holes swelled when water was added. A summary of the Atterberg Limits and percent swell/collapse for each of the samples tested is shown on the following table.

	Depth (ft)	Soil Type	Atterberg Limits		Dry Unit	Moisture	The line
Test Hole			Liquid Limit	Plastic Index	Weight (pcf)	Content (%)	Percent Swell (%)
DH 1	5-6.5	CL-1	32	14	120.3	9.8	1.4
DH 1	15-16.5	CL-2	37	19	119.4	8.7	3.1
DH 1	25-26.5	CL-2	34	18	112.4	14.3	1.2
DH 1	35-36.5	CL-2	49	31	105.2	17.5	1.6
DH 1	45-46	CH	50	34	100.7	23.1	0
DH 2	15-16.5	CH	58	34	111.8	19.3	4.3
-						Percent Collapse (%)	
TP 7	3-4	CL-ML	26	6	86.9	6.5	1.2
TP 7	9-10	CL-1	33	15	89.6	9.1	< 0.5

D. Direct Shear

To obtain an indication of the drained shear strength of the cohesive material, two consolidated drained direct shear tests were performed on samples from TP 7 at 6 feet. One test was performed on an undisturbed block of the lean clay, and one test was performed on a re-molded sample compacted to a density of approximately 98% of the maximum density as determined by ASTM D 698. The results are presented in the Laboratory Testing Section of this report. A summary of the results from the direct shear tests are shown in the following table:

Test Hole	Depth (ft)	Soil Type	Condition	Friction Angle • (degrees)	Cohesion (psf)
TP 7	6	CL-2	Undisturbed	29.9	144
TP 7	6	CL-2	Remolded	30.2	288

E. Slake Durability

Slaking tests were performed in accordance with ASTM D 4644 on the weathered shale / mudstone. The results of the test are shown in the following table:

Test Hole	Depth (ft)	Classification	Location	Slake Durability Index (%)
04-1	53	CH	MAX. SECTION	34.2
04-1	73	CH	MAX. SECTION	6.7
04-2	26	CH	TOE LEFT ABUTMENT	2.9
04-3	14	CH	RIGHT ABUTMENT	0.0
04-5	41	CL-2	LEFT ABUTMENT	3.4
04-5	48	CL-2	LEFT ABUTMENT	2.4

V. BORROW INVESTIGATION

1. IMPERVIOUS BORROW

Based upon the geologic studies, test holes located within the foundation footprint and observation of soils within gullies throughout the basin, sufficient impervious material appears to exist with the reservoir basin to construct an earthen embankment. In addition to the drill holes and test pits performed in the foundation area, 11 additional test pits were excavated throughout the basin at locations as shown in Figure 2. The test pit logs are included in the Test Hole Log Section and it will be observed that the soil profile in 10 of the 11 pits consists predominately of dry, hard lean clay with some interbedded silt and sand. Test Pit 13, located at the upper end of the basin, encountered silty sand with clay layers to a depth of 12 feet.

Information on material type and material distribution for test pits from the 1997 Engineering Memorandum (included in the appendix) was considered satisfactory and, as such, these areas within the basin were not covered with test pits during this investigation.

A. Laboratory Testing

Laboratory tests performed to define the characteristics of the impervious borrow included (1) Atterberg Limits, (2) mechanical analysis, (3) in-place density and natural moisture content, (4) soil moisture-density relation (proctor), (6) direct shear, (8) dispersive clay, and (9) laboratory permeability. The results of the mechanical analyses, Atterberg Limits, dry unit weight and moisture content tests are summarized on the logs and in Table 1, Summary of Test Data. The results of all tests are discussed below as follows:

(1) Atterberg Limits

Twenty six Atterberg Limits tests were completed on soil samples recovered from the drill holes and test pits within the foundation and reservoir basin area to determine the

plasticity characteristics. It will be observed from Table 1 that the liquid limit varied from 20 to 58 while the plasticity index ranged from 5 to 34. Twenty five of the 26 samples classify as lean clay, with one sample classifying as fat clay.

(2) Mechanical Analyses

Mechanical analyses were completed on twenty-six samples of the soil overburden recovered from the reservoir basin. The clay and silt samples contained 0% percent gravel and between 0 and 47% sand. The percent finer than a No. 200 sieve ranged from 53 to 100, with an average of 90%. A sand layer encountered in TP 3 from 0 to 1 feet had 25% gravel and 2% silt. A sand layer encountered in TP 4 at 5.5 feet had 0% gravel and 18% silt.

(3) Natural Moisture Content

The natural moisture content of twenty six samples was determined with values ranging from 3.4 to 23.1%. It will be noted that the natural moisture content of the samples from the test pits, which varied from 3 to 12 in depth, were all below 10%.

(4) Soil Moisture-Density Relation (Proctor) Tests

Three proctor tests were completed on samples of the lean clay / silty clay obtained from TP 04-1 at 3 feet, and TP 04-7 at 3 and 6 feet. The tests were completed in accordance with procedures outlined in ASTM D 698. The proctor curves are included in the Laboratory Testing Section. It will be noted that the maximum dry unit weight varies from 114 to 116 pcf and the optimum moisture content ranges from 14 to 16%.

(5) Dispersive Clay Tests

The dispersive characteristics of the impervious material were evaluated by performing pinhole tests on nine samples. The results of these tests are shown on Table 1 in the Laboratory Testing Section. Tests were conducted on samples from the test pits in the reservoir basin. The following table is a summary of the classification categories:

DISPERSIVE CLAY CHARACTERISTICS BY PIN HOLE TEST METHOD

CATEGORY	DESCRIPTION		
D1, D2	DISPERSIVE		
ND 3, ND 4	SLIGHTLY TO MODERATELY DISPERSIVE		
ND 2, ND 1	NON-DISPERSIVE		

It will be observed from the Summary of Test Data that 5 of the 9 samples classified as ND 2: non-dispersive, with the remaining 4 samples classifying as ND 3: slightly dispersive.

(6) Laboratory Permeability Tests

Constant head laboratory permeability tests were performed on three remolded samples of the lean clay obtained from the test pits in the reservoir basin. TP 1 at 3 feet, and TP 7 at 3 and 6 feet. The samples were placed in the permeability mold at 98% compaction and saturated using back-pressure techniques. The results of the tests are shown in the following table.

Test Hole	Depth (ft)	Soil Type	Coefficient of Permeability (ft/yr)
04-1	3	CL-1	0.09
04-7	3	CL-ML	0.23
04-7	6	CL-2	0.07

2. GRANULAR BORROW MATERIALS

Work performed during the investigation for granular borrow included identification of potential borrow areas, and limited laboratory testing of select soil samples to determine material properties. As stated above, no significant granular borrow sources were identified within the reservoir basin. Two commercially available granular borrow sources were identified within about 1 mile of the site as shown in Figure 3. The first site, referred to as Rose Pit, and is located across Highway 89 and just east of the Virgin River adjacent to Orderville. The second source is referred to as the Tate Pit and is located just east of the town of Mt. Carmel. Bucket samples of bank run material were collected from both the Rose and Tate gravel pits for laboratory testing. The sidewall of the cuts was also observed for variation in material layering. It was noted that in both of the cuts the sidewalls showed clay layers up to 6 feet thick interbedded among the sand and gravel deposits.

Gradation tests were completed on the bulk samples, and gradation curves are shown in the Laboratory Testing section of this report. The material in the Rose Pit classified as a well-graded gravel with silt and sand (GW-GM), while the material in Tate Pit classified as a poorly graded gravel with sand (GP).

Specific gravity and absorption tests were conducted these samples. The results of the tests show the gravelly sand at the Rose Pit to have an apparent specific gravity of 2.67 with absorption of 1.6%. The sandy gravel at the Tate Pit has an apparent specific gravity of 2.67 with absorption of 2.3%.

3. RIPRAP

No significant rock borrow sources were identified within the immediate vicinity of the reservoir basin. The most likely potential source of rock for use as riprap is a basalt formation near the town of Glendale or the limestone rock just south of the Orderville sewer lagoons. This same

limestone unit is also exposed at the northeast end of town. Potential riprap sources are identified in Figure 3.

Specific gravity and absorption tests were conducted both the limestone and basalt rock samples. The results of the tests show the basalt rock with an apparent specific gravity of 2.68 and an absorption of 0.9%. The limestone rock has an apparent specific gravity of 2.65 with an absorption of 0.8%.

Further testing of the rock material intended for use as riprap will be required during the final design stage of this project; however, it appears that either the limestone or basalt rock will serve satisfactorily as slope protection.

VI. FEASIBILITY ANALYSIS AND CONCLUSIONS

Based upon the information summarized in the previous sections, it is our opinion that a reservoir can be constructed at this site with a maximum storage capacity of about 8800 acre feet covering an area of 210 acres. We believe that an earthfill dam will be the most efficient structure for the reservoir. This opinion is based upon (1) the characteristics of the foundation material, (2) an adequate source of embankment material within the basin and (3) the lack of a good source of gravel and rock in close proximity to the site for construction of an RCC or rockfill type structure. Detailed analyses have, therefore, been limited to an earthfill type embankment.

1. EARTHFILL EMBANKMENT CROSS SECTION

The plan view and maximum section for the proposed embankment are presented in Figures 4 and 6. It will be observed from Figure 6 that a homogeneous embankment with an internal chimney filter/drain is proposed. Zone I will consist of relatively impervious material from foundation excavation and the reservoir basin. The material will be predominately lean clay. Material within the borrow is several percent below optimum moisture for placement and prewetting of the borrow areas will be required. Excavation methods will require mixing to blend silt and sand layers with the clay to achieve at least 50% minus No. 200 material. An 8 foot wide chimney filter/drain has been located downstream of centerline and will be designed as a crack stopper to protect the lean clay from piping and to intercept water, preventing saturation of the downstream embankment. Slope protection will be required, with rock riprap and bedding planned for the upstream slope and seeding planned for the downstream slope.

A 6 inch surface course of untreated road base is recommended to cap the crest of the dam to provide a finished surface. The crest should be sloped at 2% downward toward the reservoir to prevent ponding of rainwater.

A crest width of 25 feet has been assumed, with an upstream slope of 3 horizontal to 1 vertical and downstream slope of 2 horizontal to 1 vertical based upon the nature of the materials. It is

anticipated that a freeboard of between 7 and 10 feet will be required above the spillway level to provide protection from wave action and deformation associated with potential seismic activity. A conservative freeboard of 10 feet has been assumed for the feasibility study.

2. STABILITY ANALYSIS

Preliminary slope stability analyses were performed using strength parameters based upon limited field and laboratory testing. The analyses for the dam were performed for the upstream and downstream slopes for steady-state reservoir full conditions and the upstream slope for sudden draw-down conditions.

The stability analyses were performed using the slope stability program UTEXAS2, developed by Stephen Wright at the University of Texas for the U.S. Corps of Engineers. Spencer's Method satisfies both force and moment equilibrium and is considered to be a satisfactory procedure for solving limiting equilibrium problems. The factor of safety is determined by dividing the forces resisting movement by those causing movement.

The phreatic surface was modeled for steady state seepage using a reservoir full condition and for sudden drawdown as shown on Figure 6. The results of the stability analyses are shown in Figure 6 and summarized in the following table:

Analysis	FACTOR OF SAFETY	REQUIRED MINUMUM FACTOR OF SAFETY		
Downstream Slope Steady State	1.51	1.5		
Upstream Slope Steady State	2.18	1.5		
Upstream Slope Sudden Drawdown	1.2	1.2		

Based upon the results of the preliminary stability analyses, it is our opinion that the proposed cross section will be adequate, with minor adjustments.

3. SETTLEMENT ANALYSIS

A settlement analysis was performed for the maximum section using the results of consolidation tests performed on undisturbed samples obtained from Drill Hole 04-1, 04-2 and Test Pit 04-7 and the computer model EMBANK. A settlement of 48 inches was computed at the center of the maximum section with about 1 inch at the upstream and downstream toes. Eighteen of the 48 inches occurs in the upper 10 feet where collapsible type soils were encountered. Based upon field observations as discussed previously, it is expected that the foundation bedrock will have an irregular surface which could lead to differential movement. It is our opinion that the embankment cannot tolerate this magnitude of settlement without adverse effects (i.e. cracking). It is recommended that excavation of the dam footprint be performed such that settlement is limited to less than 6 inches. This will require excavation of a portion of the overburden as shown in the cross section on Figure 6.

4. FOUNDATION TREATMENT

It is recommended that a portion of the overburden soil be excavated as discussed above to limit settlement. The excavated material can be used as embankment fill. Pre-wetting of this soil should be performed prior to excavation to allow for utilization as fill. A cutoff trench will be required extending through the weathered mudstone and into competent rock.

The field investigations revealed significant fracturing of the bedrock at select locations – principally on the abutments. The results of the permeability tests show that significant seepage loss can be expected through the bedrock abutments. Due to the nature of the foundation bedrock, it is believed that a majority of the seepage will be a result of secondary permeability through fractures and joints, rather than primary permeability. To mitigate the potential harmful effects of large seepage losses, we anticipate that final design to include the following:

A. Impervious Clay Cut-Off Trench

We recommend that an impervious clay cut-off trench extend through the overburden soil and weathered bedrock and be seated a minimum of 5 feet into competent bedrock. Fractures and joints beneath the impervious cut-off and sand filter should be cleaned for a depth of at least twice the width of the fracture opening and filled with dental grout. The base of the cutoff should not be exposed for more than ~24 hours to prevent air slacking and cracking of the mudstone.

B. Grout Curtain

Based on the permeability test results and the condition of the recovered bedrock core, we recommend a foundation grouting program for the abutments. To assess the costs of such a program, a preliminary grout curtain design has been completed. The grout curtain will be located beneath the centerline of an earthfill type structure and will consist of a triple row grout curtain placed up both abutments as shown in Figure 5.

C. Downstream Filter and Drain

A downstream filter and drainage blanket is recommended beneath the downstream side of the dam as shown in Figure 6. This mitigates potential for piping of embankment material and facilitates drainage of seepage which may bypass the cut-off.

A collector toe drain is recommended for the entire length of the dam. In addition to the toe drain, interceptor finger drains should be placed at select locations throughout the downstream footprint of the dam to identify areas where seepage occurs and carry the seepage to the downstream toe drain. Manholes should be placed at the intersection of each finger drain with the toe drain to allow monitoring.

5. OPINION OF PROBABLE COST

Based upon results of the preliminary investigation and the proposed embankment cross section discussed above, a cost analysis has been performed which represents our opinion of probable cost (OPC) associated with construction of the dam embankment. The cost is shown in the following tables below. The value does not include the cost of land or piping to bring water to the reservoir. It should be recognized that the quantity of foundation excavation and, hence, earthfill is based on limited borings across the valley floor and that these quantities may vary significantly when additional data is obtained. The cost assumes that sand, gravel and riprap will be available from sources identified within a 5 mile radius of the site. Although hydraulic analysis and spillway design was beyond the scope of this study, it is assumed that the spillway can be designed to pass around the right abutment.

OPC FOR	TOP OF	DAM FI	FVATION	5550 FEET
OFUTOR	I OF OF	DAIN LL	LVALION	3330 FEET

Item	Quantity	Unit Unit Price		Total Price	
Mobilization & Demobilization (10%)	1	Lump Sum	-	\$	750,345.00
Earthfill, Zone I – Dam Embank.	1,401,650	CU. YD.	\$ 3.00	\$	4,204,950.00
Earthfill, Zone II – Filter / Drain	69,500	CU. YD.	\$ 25.00	\$	1,737,500.00
Rock Riprap	23,700	CU. YD.	\$ 30.00	\$	711,000.00
Grout Curtain	25,000	LIN. FT.	\$ 30.00	\$	750,000.00
Outlet Pipe & Appurtenant Structures	500	LIN. FT.	\$ 200.00	\$	100,000.00
		SUBTOTAL		\$	8,253,795.00
Engineering / Contingencies			d at 30% for ity Stage)	\$	2,476,138.00

TOTAL \$ 10,729,934.00

OPC FOR TOP OF DAM ELEVATION 5560 FEET

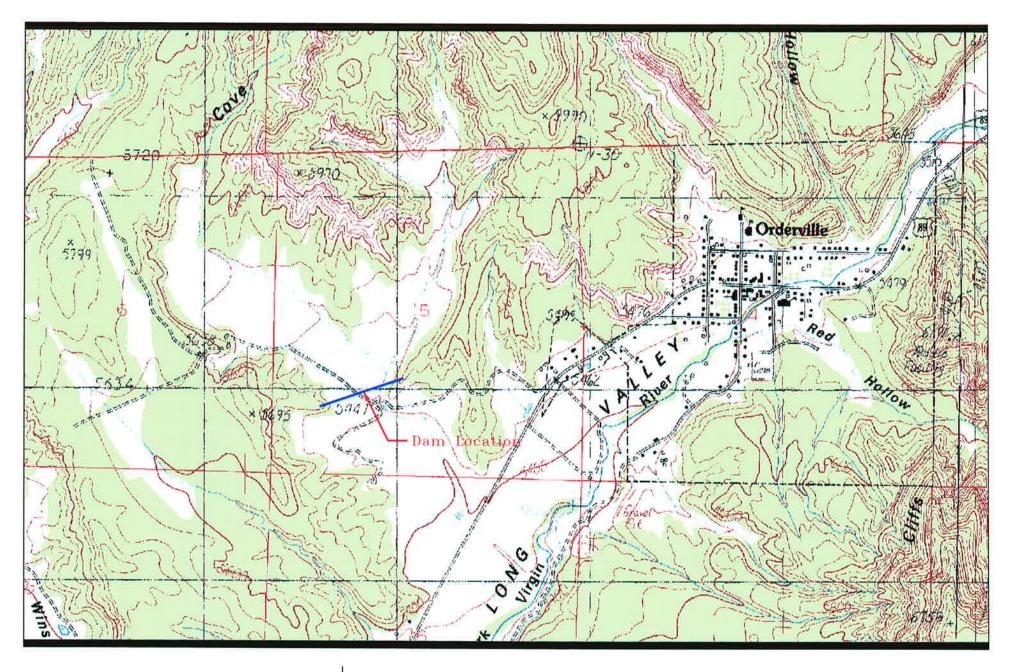
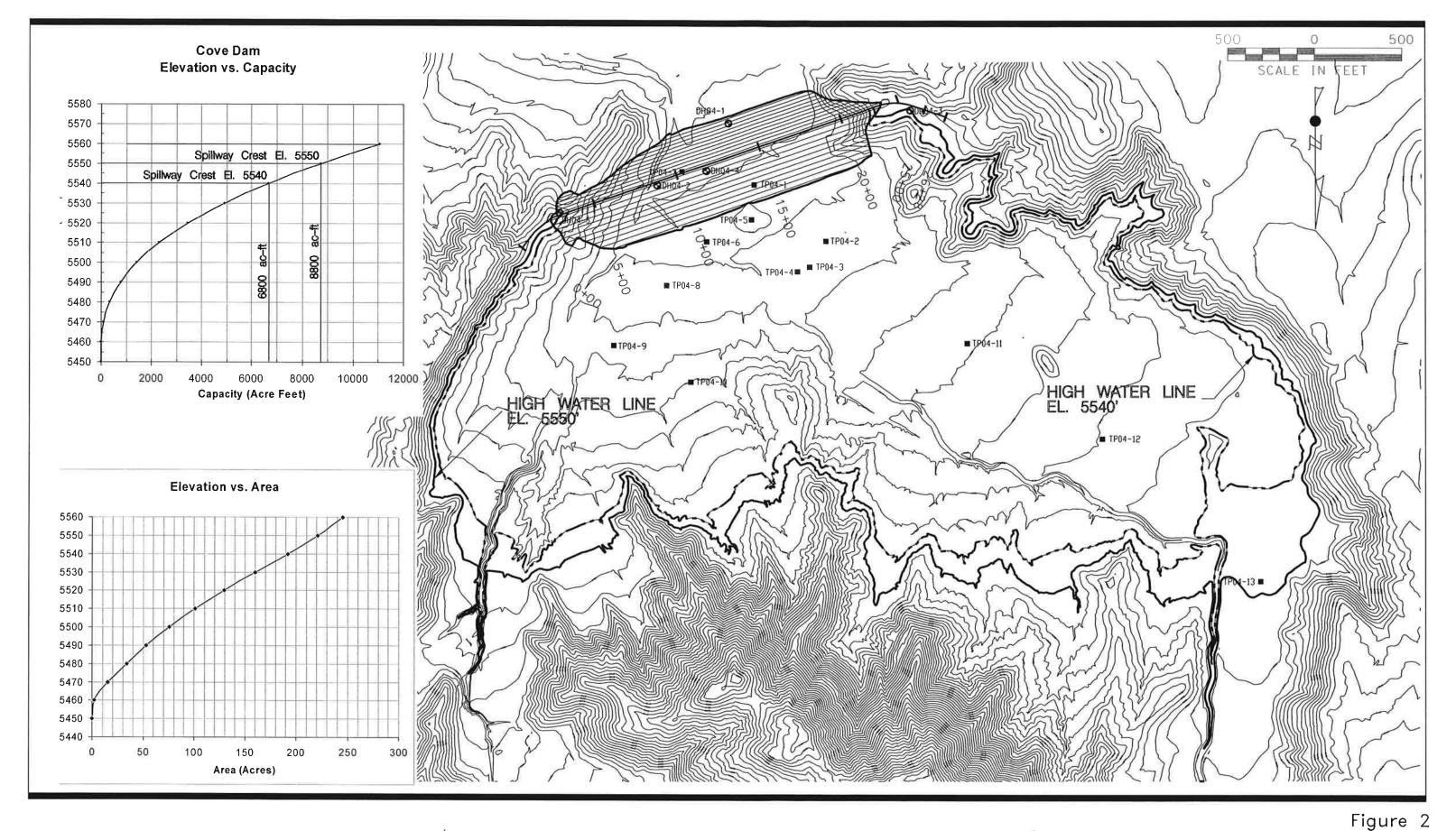
Item	Quantity	Unit	Unit Price		Total Price	
Mobilization & Demobilization (10%)	1	Lump Sum		\$	1,011,460.00	
Earthfill, Zone I – Dam Embank.	2,026,200	CU. YD.	\$ 3.00	\$	6,078,600.00	
Earthfill, Zone II – Filter / Drain	91,400	CU. YD.	\$ 25.00	\$	2,285,000.00	
Rock Riprap	29,700	CU. YD.	\$ 30.00	\$	891,000.00	
Grout Curtain	25,000	LIN. FT.	\$ 30.00	\$	750,000.00	
Outlet Pipe & Appurtenant Structures	550	LIN. FT.	\$ 200.00	\$	110,000.00	
***************************************		SUBTOTAL		\$	11,126,060.00	
Engineering / Contingencies		(Estimated at 30% for Feasibility Stage)		\$ 3,337,818.00		
		TOTAL		\$	14,463,878.00	

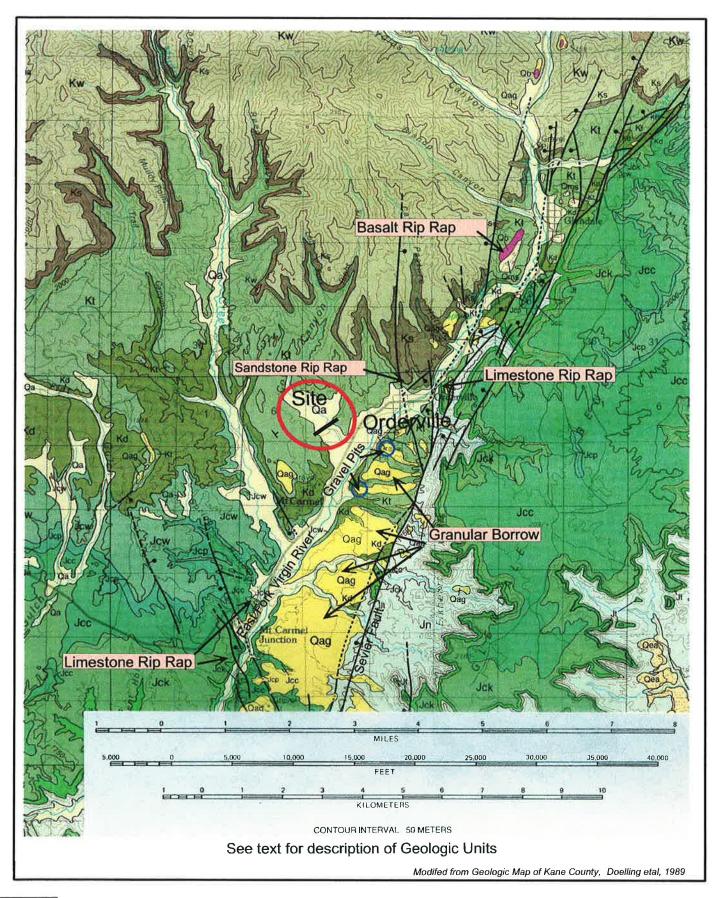
Assuming 10 feet of freeboard, a storage capacity of 6800 ac ft is obtained with the top of dam at elevation 5550 feet, resulting in a cost per acre foot of \$1,578. A capacity of 8800 ac ft is obtained with the top of dam at elevation 5560 feet, resulting in a cost per acre foot of \$1,644.

6. ADDITIONAL STUDIES REQUIRED FOR FINAL DESIGN

Work required to complete the reservoir design includes the following:

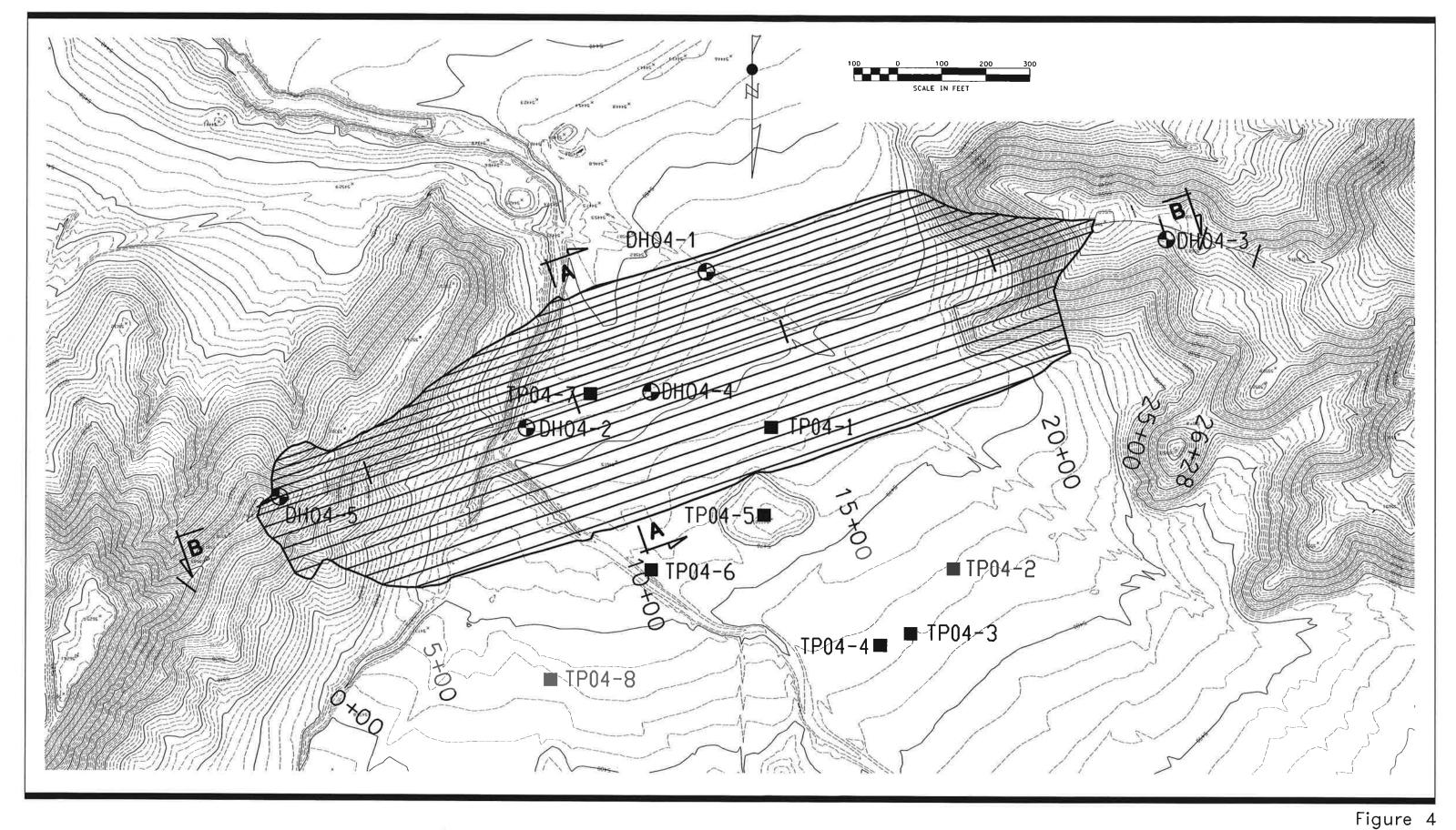
- Hydrologic analysis for freeboard, spillway and outlet work design.
- Outlet works and spillway design.(It appears that the spillway can be efficiently designed to pass around the right abutment.)
- Additional foundation investigation-anticipated to include about one boring every two hundred feet along the embankment alignment.
- Additional borrow investigations to verify that at least 1.5 times the quantity of materials needed for construction exist within the proposed borrow areas.
- Additional laboratory testing to evaluate properties of foundation and embankment materials. These tests will include triaxial shear, and sulfate tests.
- Final stability, seepage, and settlement analyses.
- Final embankment design
- Final design report.
- Preparation of plans and specifications.

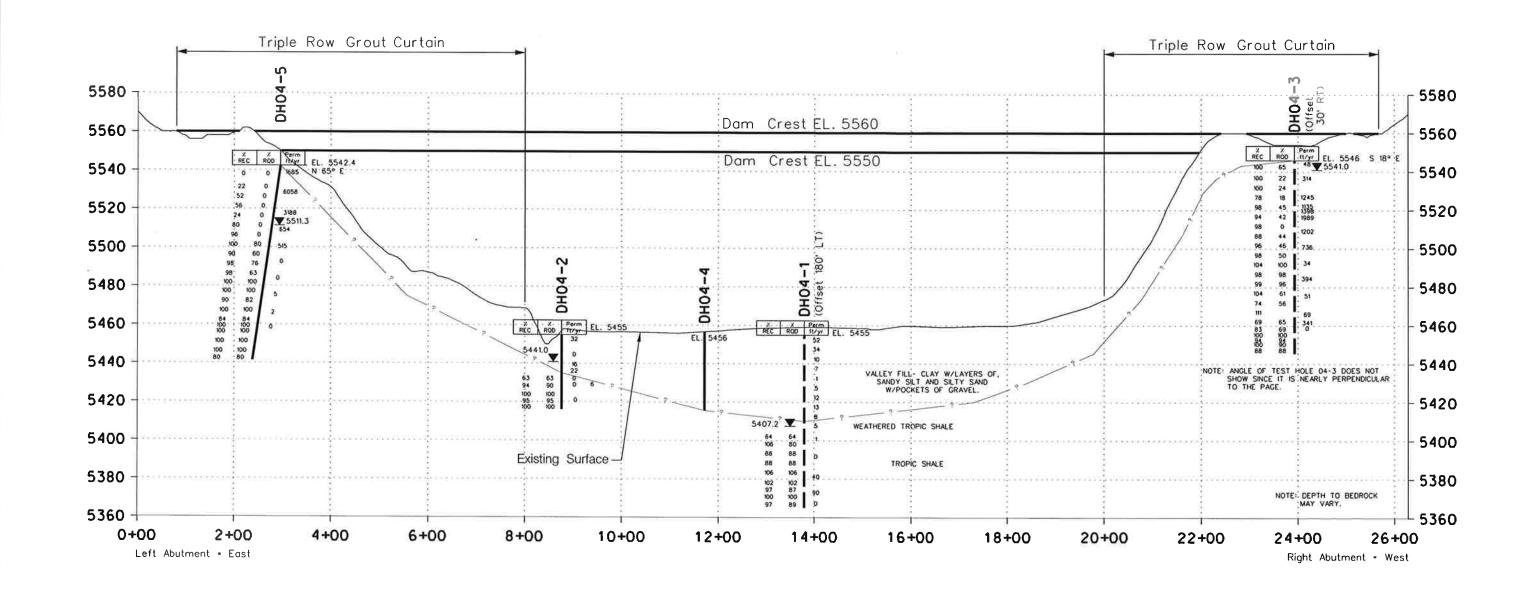




Figure 1 SITE PLAN

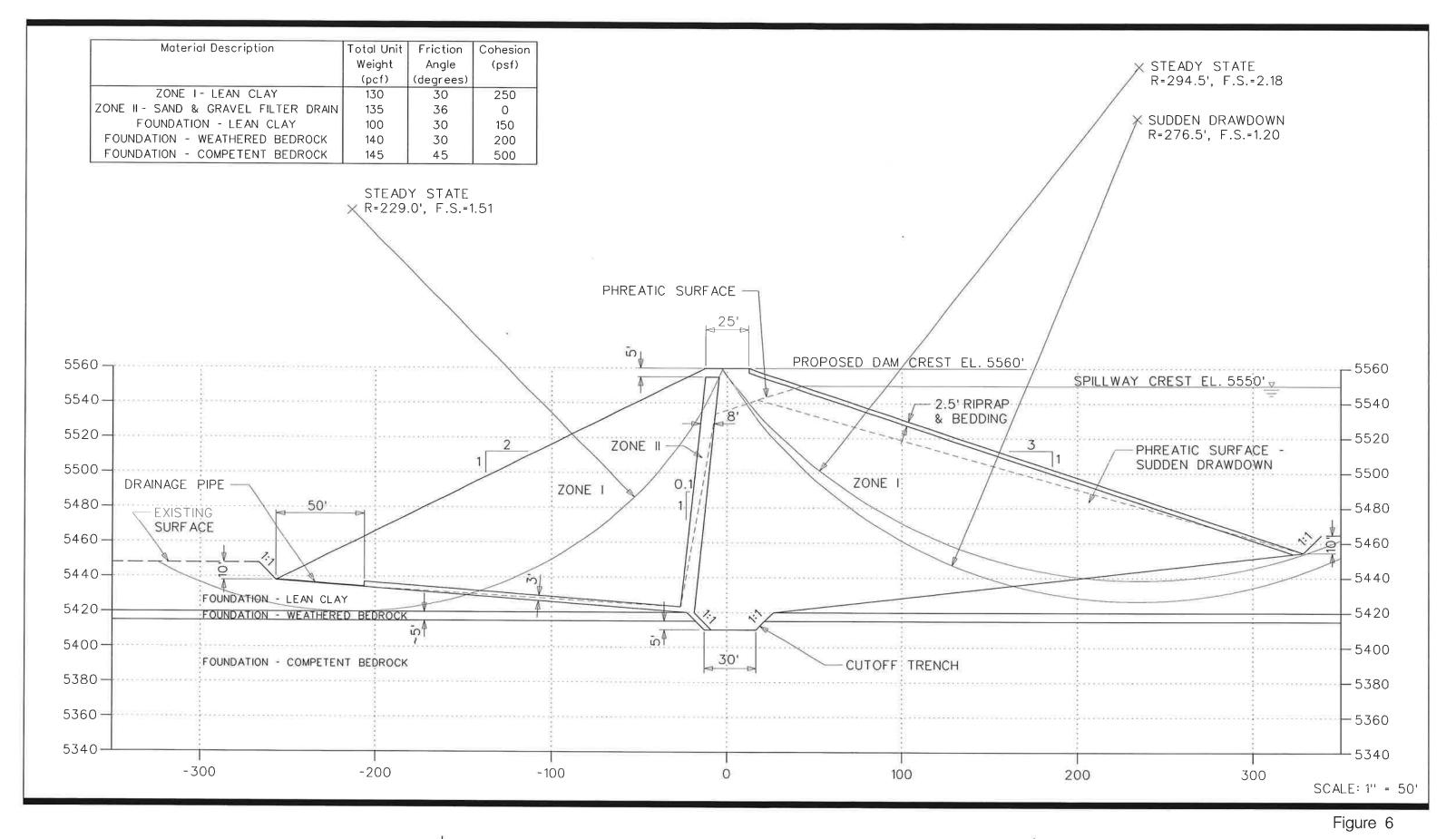
Cove Dam

Orderville, Utah



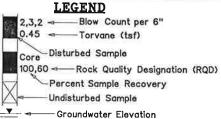

RB&G ENGINEERING INC. Provo, Utah Figure 3
Project
Location

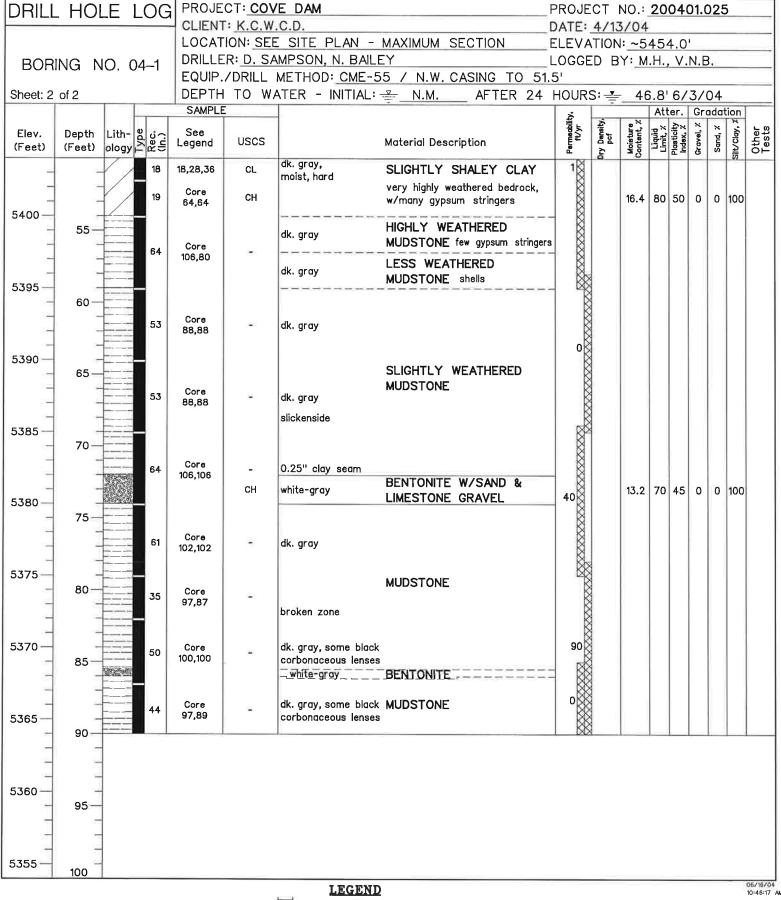
Geologic Map of Cove Dam Area with Potential Borrow Sources Cove Dam Site, Feasibility Study Orderville, Kane County, Utah


Cove Dam Orderville, Utah Dam Plan View,
Test Pit and Drill Hole
Locations

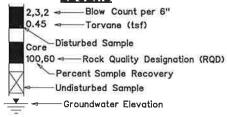
GEOLOGIC CROSS-SECTION (PROFILE)

Note: Exaggerated Vertical Scale, Scale: 1"-50' Vertical 1"-200' Horizontal




DRILL HOLE LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 4/13/04 LOCATION: SEE SITE PLAN - MAXIMUM SECTION ELEVATION: ~5454.0' DRILLER: D. SAMPSON, N. BAILEY LOGGED BY: M.H., V.N.B. BORING NO. 04-1 EQUIP./DRILL METHOD: CME-55 / N.W. CASING TO 51.5' Sheet: 1 of 2 DEPTH TO WATER - INITIAL: 🚣 N.M. AFTER 24 HOURS: 🛬 46.8' 6/3/04 SAMPLE Atter. Gradation Plasticity Index, % Sand, X Cith- S. C. C. Density Elev. Depth See USCS Legend Material Description (Feet) (Feet) It. brown, 52 5,3,3 CL-ML SILTY CLAY W/SAND dry, firm calcareous 120.3 5450 Pushed It. brown, 8 CL-1 LEAN CLAY 9.8 32 14 0 10 90 CT 1.00+ dry, hard 10 5445 10 It. brown, 7,9,11 CLAY W/SAND dry, very stiff 5440 15 Pushed It. brown, SANDY CLAY 12 CL-2 119.4 8.7 37 19 0 17 83 CT 1.00+ dry, hard 112.4 5435 20 SILTY CLAY W/SILTY It. brown, 9,12,17 CL,SM dry, very stiff SAND LENSES & LAYERS 5430 25 Pushed It. brown, 12 CL-2 14.3 34 18 0 6 94 CT 1.00+ dry, hard 5425 med. to It. brown, 30 6 8,12,13 CL dry, very stiff, w/white stringers LEAN CLAY 5420 35 Pushed med. brown, 18 CL-2 105.2 17.5 49 31 0 3 97 CT 1.00+ moist, very stiff 5415 40 med. brown, 4,6,8 18 moist to slightly wet, CL 5410 grayish-med. brown, LEAN TO FAT CLAY Pushed 12 CL-2/CH moist, stiff, 100.7 23.1 50 34 0 6 94 CT 0.72 W/SOME SAND w/white stringers 5405 TROPIC SHALE FORMATION

RB&G ENGINEERING INC.



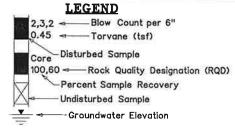
UC - Unconfined Compression Test CT - Consolidation Test



RB&G **ENGINEERING** INC. Provo, Utah

UC - Unconfined Compression Test CT - Consolidation Test

RB&G
ENGINEERING
INC.
Provo, Utah



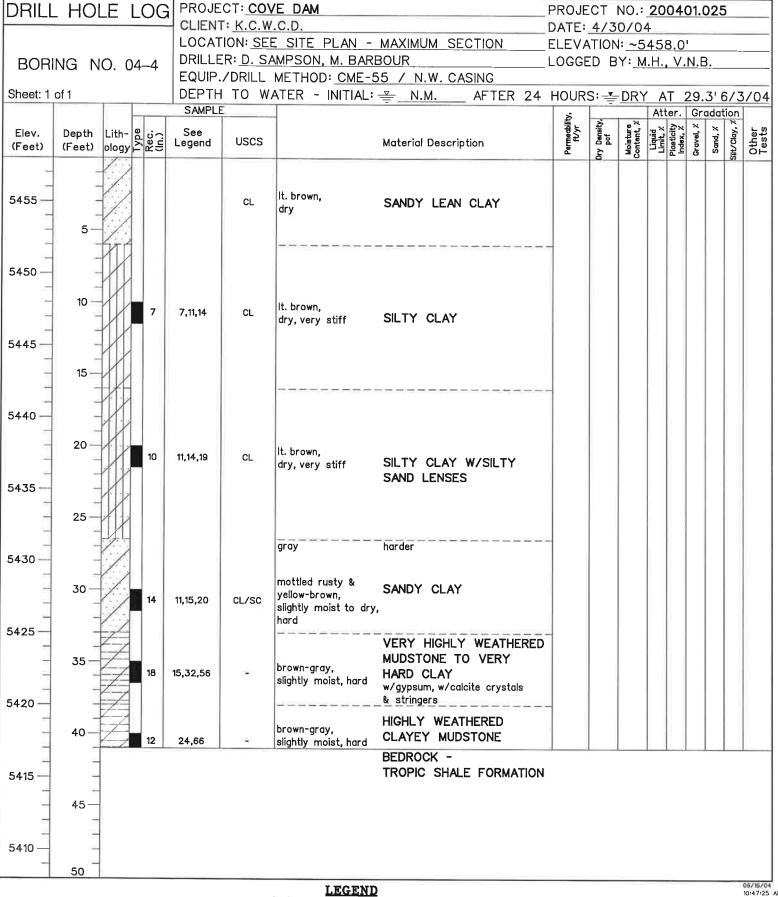
UC - Unconfined Compression Test CT - Consolidation Test

PROJECT: COVE DAM DRILL HOLE LOG PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 4/26/04 LOCATION: SEE SITE PLAN - RIGHT ABUTMENT ELEVATION: ~5546.0' DRILLER: D. SAMPSON, M. BARBOUR LOGGED BY: M.H., V.N.B. BORING NO. 04-3 EQUIP./DRILL METHOD: CME-55 / N.Q. CORE AT 60° FROM HORIZONTAL, TREND S18°E Sheet: 1 of 2 DEPTH TO WATER - INITIAL: - N.M. AFTER 24 HOURS: -71.0' 6/3/04 SAMPLE Atter. Gradation Lith- 호 양당 Liquid Limit, % Plasticity Index, % Gravel, % Sand, X Elev. Depth See Silvoloy USCS Legend Material Description (Feet) (Feet) 5545 CLAY/VERY WEATHERED 48 gray-brown MUDSTONE gray-brown to Core brown-gray 100,65 gypsum 5540 Core gray-brown 314 100,22 SILTY MUDSTONE 5535 calcareous coating, very highly Core gray-brown, СН weathered & fractured, multiple 13.7 54 33 0 0 100 100,24 dry angle - haphazard, some gypsum coating on joints, shaley & friable 5530 Core 1245 78,18 Core 5525 59 1135 98,45 25 gray-white, BENTONITE some rust staining SHALEY MUDSTONE brown 100% water loss 398 Core dk. gray w/white SILTSTONE/MUDSTONE 56 94,42 bedding 1989 5520 30 interbedded dk. gray Core 736 59 & brown, 98,0 SILTY MUDSTONE 35 gypsum bedding calcareous 5515 interbedded dk. gray Core 53 & brown w/white 88,44 40 stratification 5510 clay seam Core 58 MUDSTONE 96,46 dk. gray w/brown, some rust stains. some shells, 5505 slow slaking Core 98.50 50

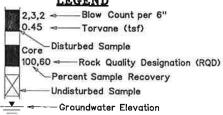
RB&G
ENGINEERING
INC.
Provo, Utah

UC - Unconfined Compression Test

CT - Consolidation Test

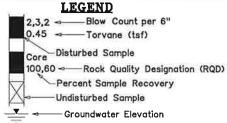

DRILL HOLE LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 4/26/04 LOCATION: SEE SITE PLAN - RIGHT ABUTMENT ELEVATION: ~5546.0' DRILLER: D. SAMPSON, M. BARBOUR LOGGED BY: M.H., V.N.B. BORING NO. 04-3 EQUIP./DRILL METHOD: CME-55 / N.Q. CORE AT 60° FROM HORIZONTAL, TREND S18°E Sheet: 2 of 2 DEPTH TO WATER - INITIAL: — N.M. AFTER 24 HOURS: ₹ 71.0' 6/3/04 SAMPLE Atter. Gradation Plasticity Index, X Sand, X Densit pcf Type (In.) See Elev. Depth Lith-USCS Material Description Legend (Feet) (Feet) ology 394 dk. gray more competent, 5500 MUDSTONE no bedding, shells, Core 104,100 open joint at 53.4' 55 to 53.7', 0.2" clay seam 5495 Core some white bedding, 98,98 60 trace of gypsum Core 5490 99,96 rust stain & coating SILTY MUDSTONE Core 62 104.61 very hard septarian nodule 5485 Core gray, high slaking SHALE 74,56 75 69 BENTONITE 5480 core is stuck in inner barrel Core 62 and has not been removed. 111.? 80 may contain bentonite 100% water loss 5475 Core 41 dk. gray 69.65 MUDSTONE 85 calcareous, some slaking, 40° slickenside some It. gray wavy bedding Core 5470 29 0.25" clay seam 83,69 90 Core 60 dk. gray 100,100 clay seam, not calcareous Core 5465 94,94 95 Core It. gray BENTONITE 100,100 OLCANIC ASH black & white Core 42 dk. gray MUDSTONE 88,88 5460 100 LEGEND 04:02:52 F

RB&G ENGINEERING INC. Provo. Utah



UC - Unconfined Compression Test CT - Consolidation Test

RB&G **ENGINEERING** INC. Provo, Utah



UC - Unconfined Compression Test CT - Consolidation Test

DRILL HOLE LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 5/4/04 LOCATION: SEE SITE PLAN - LEFT ABUTMENT ELEVATION: ~5542.41 DRILLER: D. SAMPSON, M. BARBOUR LOGGED BY: M.H., V.N.B. BORING NO. 04-5 EQUIP./DRILL METHOD: CME-55 / N.Q. CORE AT 60° FROM HORIZONTAL, TREND N65°E DEPTH TO WATER - INITIAL: - N.M. AFTER 24 HOURS: ₹ 35.0' 6/3/04 Sheet: 1 of 2 SAMPLE Atter. Gradation Gravel, 7. Permeabili⁷ ft/yr Plasticity Index, % Sand, X Lith- a o C Other Tests See Sill Clay, Elev. Depth USCS Material Description Legend (Feet) (Feet) 5540 VERY HIGHLY WEATHERED Core 0 0,0 TROPIC SHALE FORMATION 5535 VERY HIGHLY WEATHERED CLAYEY MUDSTONE TO Core 13 brown-gray 22.0 6058 CLAY W/MUDSTONE **FRAGMENTS** 5530 MUDSTONE RUBBLE Core 52,0 W/CLAY MATRIX 3188 5525 20 Core 56,0 MUDSTONE BROKEN TO RUBBLE 25 5520 Core brown-gray 24,0 30 Core brown-gray, 48 80,0 calcareous 5515 654 35 Core MOTTLED & MIXED LAYERS 58 96.0 OF DARK GRAY & BROWN 5510 MUDSTONE more compotent, w/random gypsum stringers, near vertical fractures at 33' to 38', some Core brown-gray, 60 CL-2 43 26 0 91 4.7 9 100,80 dry friable shaley layers 1" to 2" 515 thick 5505 Core w/clay seams, shells 0 90,60 dk. gray, CL-2 12.6 47 24 2 98 0 dry, shells CALCAREOUS MUDSTONE 5500 50

RB&G ENGINEERING INC. Provo, Utah

UC - Unconfined Compression Test

CT - Consolidation Test

PROJECT: COVE DAM DRILL HOLE LOG PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 5/4/04 LOCATION: SEE SITE PLAN - LEFT ABUTMENT ELEVATION: ~5542.4' DRILLER: D. SAMPSON, M. BARBOUR LOGGED BY: M.H., V.N.B. BORING NO. 04-5 EQUIP./DRILL METHOD: CME-55 / N.Q. CORE AT 60° FROM HORIZONTAL, TREND N65°E Sheet: 2 of 2 DEPTH TO WATER - INITIAL: <u>→ N.M.</u> AFTER 24 HOURS: 🛬 35.0' 6/3/04 SAMPLE Atter. Gradation ermeability ft/yr Liquid Limit, % Plasticity Index, % Gravel, % Fith- ag of C. Sand, X Other Tests Denaid Elev. Depth See Silt/Clay, USCS Legend Material Description (Feet) (Feet) 占 Core 59 dk. gray 98,76 5495 55 Core 54 dk. gray 98,63 60 SHALEY MUDSTONE Core dk. gray, 5490 100,100 few shells friable, very slow slaking dk. gray, Core 65 60 no gypsum, 100,100 w/big white shells 5485 Core 70 54 90,B2 SHALE TO BENTONITE 5480 CALCAREOUS MUDSTONE Core dk. gray w/few 75 60 100,100 white lenses dk. to it. gray, very soft SHALEY BENTONITE 5475 dk. gray Core 80 50 dk. gray 84.84 Core 12 5470 100,100 CALCAREOUS MUDSTONE 85 Core 60 100,100 very soft 5465 SHALEY BENTONITE 90 Core 60 dk. gray 100,100 CALCAREOUS MUDSTONE 95 5460 Core 52 100,100 LIMESTONE Core CALCAREOUS MUDSTONE 100 dk. gray 80,80 5455 W/SHELLS LEGEND

RB&G ENGINEERING INC. 2,3,2 Blow Count per 6"
0.45 Torvane (tsf)

Core Disturbed Sample
100,60 Rock Quality Designation (RQD)

Percent Sample Recovery
Undisturbed Sample

Groundwater Elevation

UC - Unconfined Compression Test
CT - Consolidation Test

Bottom

Depth Cored 51.5 to 90 feet

NQ Core Dia. 1.875 in. Length of Core Box 2 ft.

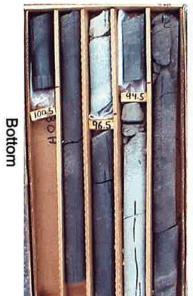
RB&G ENGINEERING INC. Provo, Utah Figure Project Location Core Photos, Drill Hole # 04-1 Center Section Cove DamSite Feasibility Study Orderville, Kane County, Utah

Bottom

Depth Cored 21.5 to 39 feet

NQ Core Dia. 1.875 in. Length of Core Box 2 ft.

RB&G ENGINEERING INC. Provo, Utah


Figure *Project* Location Core Photos, Drill Hole # 04-2 Center Section Cove DamSite Feasibility Study Orderville, Kane County, Utah

near toest slope @ ceft abut ment :

04-2

Drilled with a dip of 60°, Trend S 18°E 4.4 to 100.5 feet

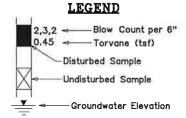
NQ Core Dia. 1.875 in. Length of Core Box 2 ft.

RB&G ENGINEERING INC. Provo, Utah

Figure Project Location Core Photos, Drill Hole # 04-3 Right Abutment Cove Dam Site Feasibility Study Orderville, Kane County, Utah

Drilled with a dip of 60° , Trend N 65° E 8.5 to 101 feet

NQ Core Dia. 1.875 in. Length of Core Box 2 ft.



RB&G ENGINEERING INC. Provo, Utah Figure Project Location Core Photos, Drill Hole # 04-5 Left Abutment Cove Dam Site Feasibility Study Orderville, Kane County, Utah

PROJECT NO.: 200401.025 TEST PIT LOG PROJECT: COVE DAM CLIENT: K.C.W.C.D. DATE: 6/1/04 LOCATION: SEE SITE PLAN ELEVATION: ~5463.0' LOGGED BY: M. STILSON PIT NO. 04-1 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE DEPTH TO WATER - INITIAL: - DRY AFTER 24 HOURS: - DRY Sheet: 1 of 1 SAMPLE Atter. Gradation Denaity pcf Gravel, % Silt/Clay, Other Tests Depth Lith- 00 (Feet) ology Elev. Туре USCS Material Description (Feet) 5460 -3 Rings 1" fine silty Block CL-1 4.8 26 12 0 3 97 sand layer Bucket 5 LEAN CLAY Ring CL-2 It. brown to brown, dry, hard, 95.1 6.4 35 16 0 2 98 Block some pinhole structure, 1" fine silty minor mineral stringers sand layer 5455 -Ring CL-2 31 15 0 26 74 Block 10 1" fine silty sand layer 1" fine silty Bag CL sand layer 5450 -15 5445 20 06/15/04 11:02:09 AM

RB&G **ENGINEERING** Provo. Utah

UC - Unconfined Compression Test

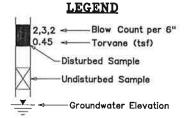
CT - Consolidation Test SG - Specific Gravity Test

TEST PIT LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 6/2/04 LOCATION: SEE SITE PLAN ELEVATION: ~5474.0' LOGGED BY: M. STILSON PIT NO. 04-2 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE DEPTH TO WATER - INITIAL:

DRY AFTER 24 HOURS:

THE CONTROL OF Sheet: 1 of 1 DRY SAMPLE Atter. Gradation Gravel, % Sand, % Densit) pcf Depth Lith- occurrence (Feet) Other Tests Elev. Type USCS Material Description (Feet) CL Bag 5470 LEAN CLAY W/FINE SAND It. brown to brown, very dry, hard, CL-2 Bag 40 20 0 2 98 sand intermixed throughout entire depth of test pit, some distinct pockets but no continuous layers, some pinhole structure, macro-hole structure in upper 3', trace minerals 5465 CL Bag 10 Bag CL-1 5.8 31 13 0 12 88 5460 -15-5455 20

06/11/04 10:58:58 AM


UC - Unconfined Compression Test

CT - Consolidation Test SG - Specific Gravity Test

TEST PIT LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 6/2/04 LOCATION: SEE SITE PLAN ELEVATION: ~5476.0' LOGGED BY: M. STILSON PIT NO. 04-3 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE DEPTH TO WATER - INITIAL: #_ DRY___ AFTER 24 HOURS: #_ Sheet: 1 of 1 NOT MEASURED SAMPLE Atter. Gradation Sand, X Lith- 8 Other Tests Denait Elev. Depth USCS Type Material Description (Feet) (Feet) Bag SP 25 73 2 SAND W/GRAVEL 5475 medium grained sand, fine grained gravel CL Bag 2" silty sand layer 5470 -Bag CL LEAN CLAY W/SAND It. brown to brown, dry, hard, intermixed, fine, some pinhole structure, some silt lenses, calcite stringers CL Bag SP-SM 2" sand w/silt layer 5465 -2" silty sand layer Bag CL 15 5460 -20

RB&G **ENGINEERING** INC. Provo. Utah

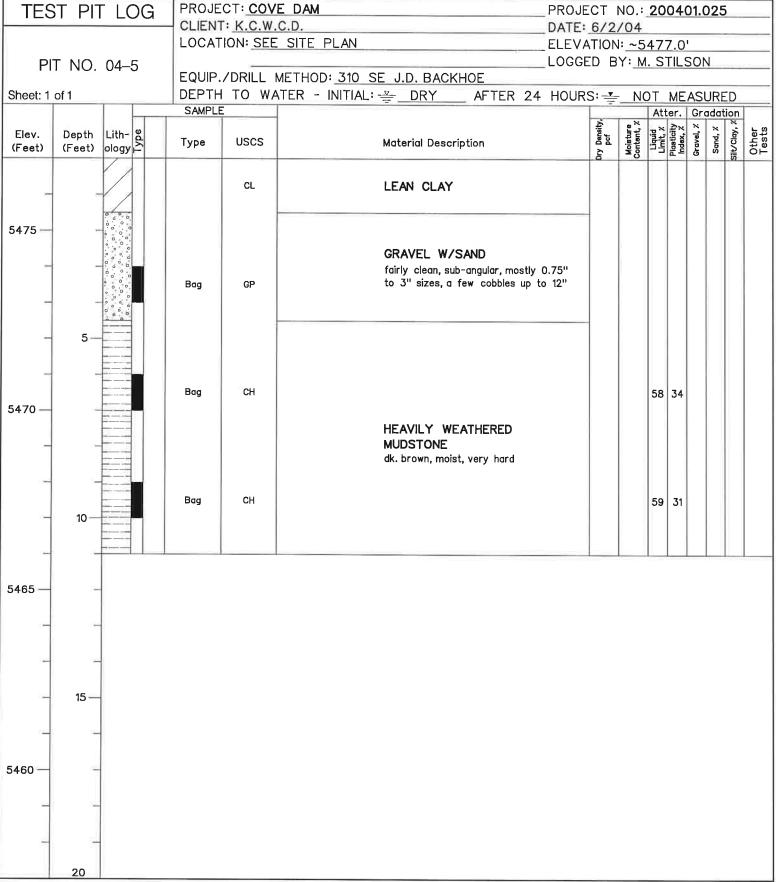
UC - Unconfined Compression Test

SG - Specific Gravity Test

CT - Consolidation Test

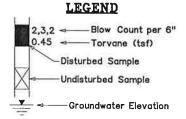
TEST PIT LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 6/2/04 LOCATION: SEE SITE PLAN ELEVATION: ~5475.0' LOGGED BY: M. STILSON PIT NO. 04-4 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE DEPTH TO WATER - INITIAL:

DRY AFTER 24 HOURS:
NOT MEASURED Sheet: 1 of 1 SAMPLE Atter. Gradation Denaity, pcf Sand, X Other Tests Depth Lith-Elev. USCS Type **Material Description** (Feet) Bag CL 5470 -SM 2" sand layer at 5.5' 0 82 18 LEAN CLAY It. brown to brown, dry, hard, Bag CL some small sand pockets, pinhole structure, trace minerals Bag CL 5465 -10 5460 -15 -20

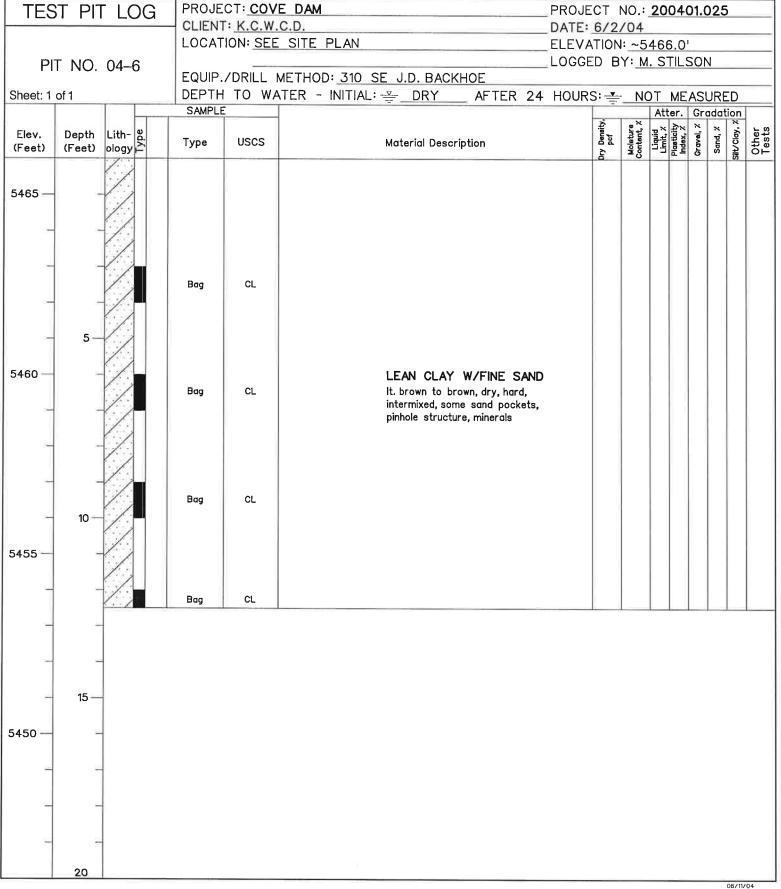


2,3,2 Blow Count per 6" 0.45 Torvone (tsf) Disturbed Sample Undisturbed Sample

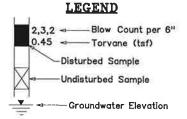
06/15/04 11:02:45 AM


UC - Unconfined Compression Test

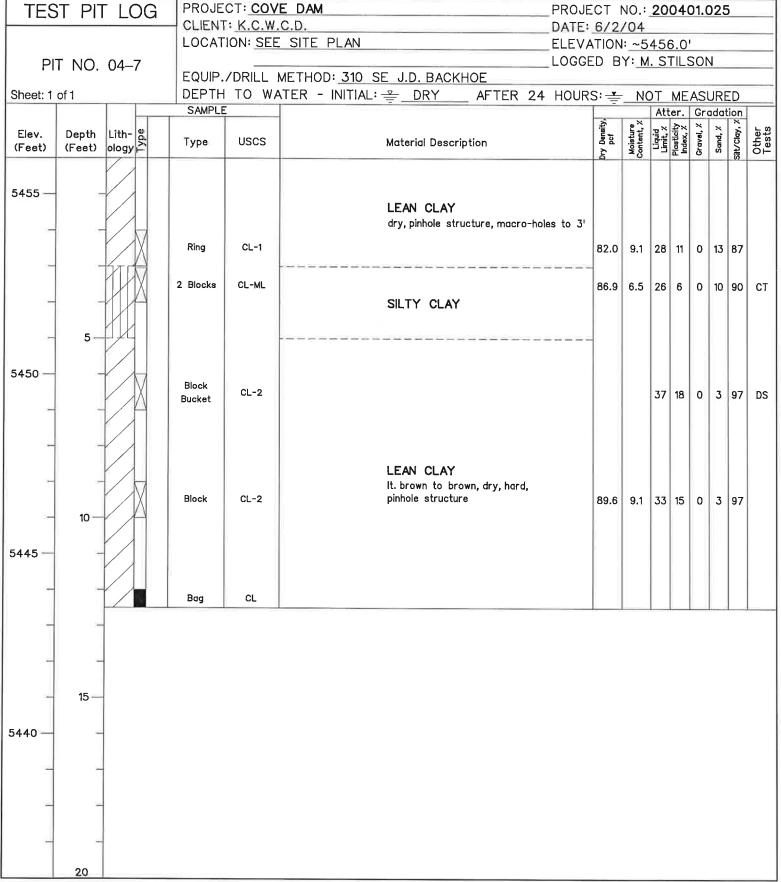
CT - Consolidation Test SG - Specific Gravity Test

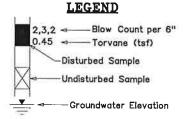


06/15/04 11:03:01 AM


UC - Unconfined Compression Test

CT = Consolidation Test




UC - Unconfined Compression Test

CT - Consolidation Test

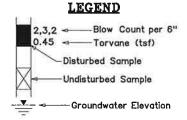
RB&G ENGINEERING INC.

06/14/04 03:09:18 PM

UC - Unconfined Compression Test

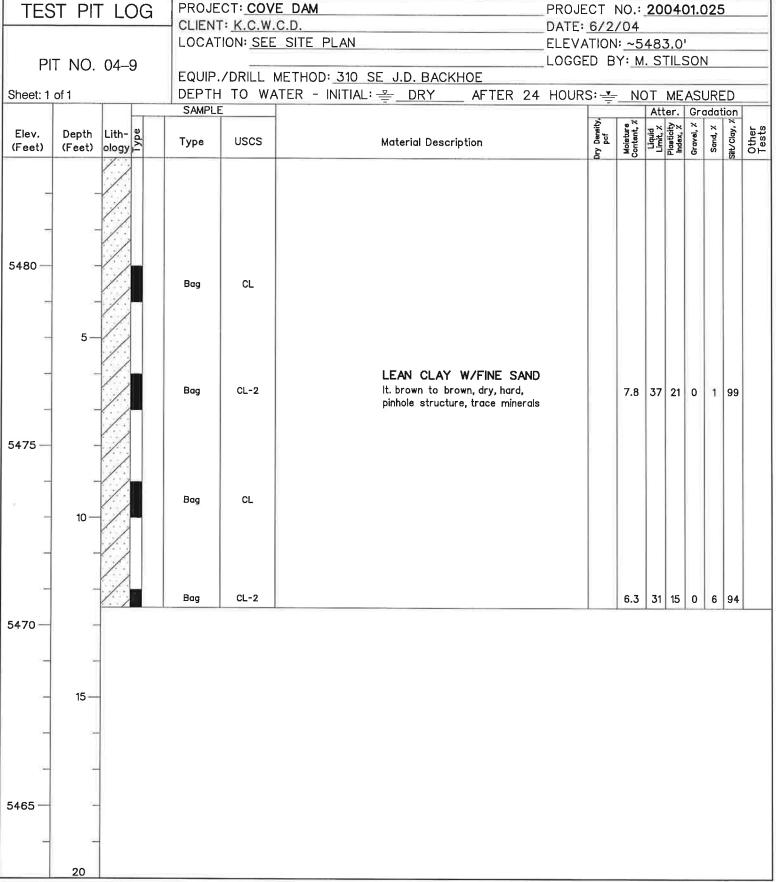
CT - Consolidation Test

SG = Specific Gravity Test DS = Direct Shear Test

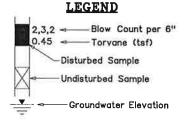

TEST PIT LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 6/2/04 LOCATION: SEE SITE PLAN ELEVATION: ~5475.0' LOGGED BY: M. STILSON PIT NO. 04-8 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE DEPTH TO WATER - INITIAL:

— DRY AFTER 24 HOURS:

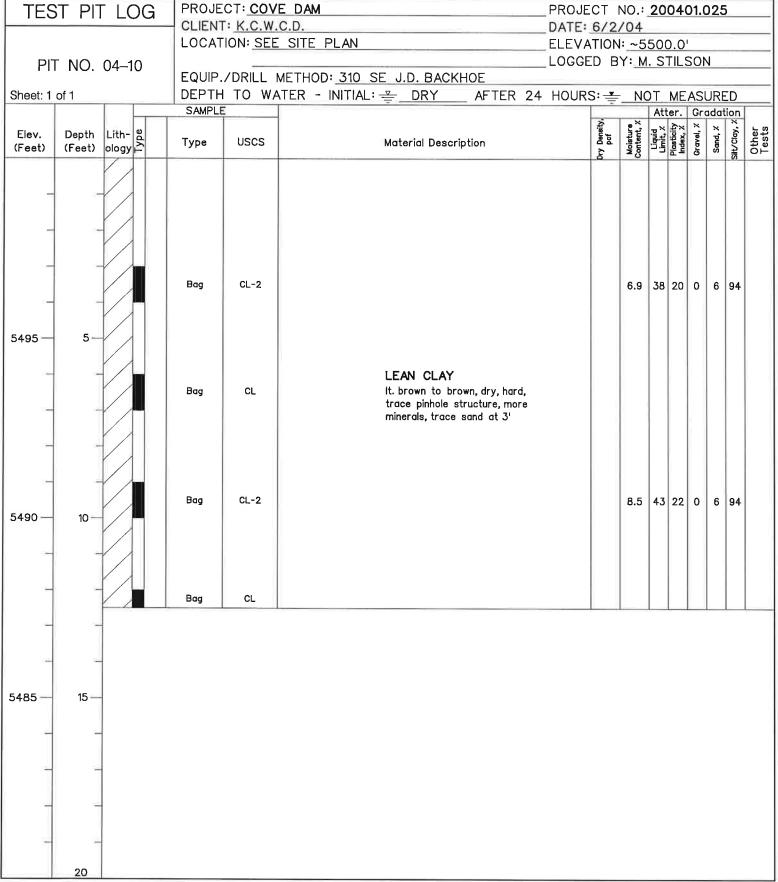
— NOT MEASURED Sheet: 1 of 1 SAMPLE Atter. Gradation Liquid Limit, X Plasticity Index, X Gravel, X Other Tests Depth Lith-Elev. USCS Type Material Description (Feet) SILTY CLAY W/SAND It. brown to brown, dry, hard, pinhole structure CL-1 33 14 0 6 94 Bag 6.9 5470 -Bag LEAN CLAY It. brown to brown, dry, hard, pinhole structure, minerals Bag CL-2 6.7 46 25 0 2 98 5465 -10 CL Bag 5460 -15 -20



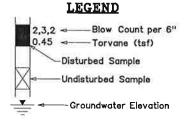
06/11/04 11:00:17 AM


UC - Unconfined Compression Test

CT - Consolidation Test


RB&G ENGINEERING INC. Provo. Utah

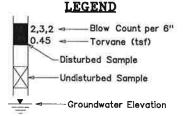
06/11/04 11:00:31 AM


UC - Unconfined Compression Test

CT = Consolidation Test SG = Specific Gravity Test

RB&G **ENGINEERING** Provo. Utah

UC - Unconfined Compression Test

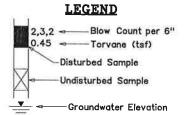

CT - Consolidation Test

TEST PIT LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 6/2/04 LOCATION: SEE SITE PLAN ELEVATION: ~5498.0' LOGGED BY: M. STILSON PIT NO. 04-11 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE Sheet: 1 of 1 DEPTH TO WATER - INITIAL: = DRY AFTER 24 HOURS:

<u>→ NOT MEASURED</u> SAMPLE Atter. Gradation Liquid Limit, % Plasticity Index, % Sand, X Other Tests Densit pof Lith-Elev. Depth USCS Type Material Description (Feet) (Feet) ology 5495 CL-ML SILTY CLAY W/SAND 0 43 57 20 5 It. brown to brown, dry, hard, pinhole structure, fine sand - intermixed Bag CL-ML 5490 -LEAN CLAY W/SAND Bag CL-2 It. brown to brown, dry, hard, 5.7 34 16 0 17 83 pinhole structure, fine sand - intermixed 10 SILTY CLAY W/SAND It. brown to brown, dry, hard, pinhole structure, fine sand - intermixed Bag CL-ML 5485 -15 5480

RB&G **ENGINEERING** Provo. Utah

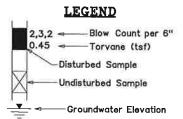
06/11/D4 11:01:01 AM


UC - Unconfined Compression Test

CT - Consolidation Test

TEST PIT LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 6/2/04 LOCATION: SEE SITE PLAN ELEVATION: ~5520.01 LOGGED BY: M. STILSON PIT NO. 04-12 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE DEPTH TO WATER - INITIAL: #_ DRY __ AFTER 24 HOURS: #_ NOT MEASURED Sheet: 1 of 1 SAMPLE Atter. Gradation Sand, X Other Tests Lith- 8 Elev. Depth USCS Type Material Description (Feet) (Feet) ology SILTY CLAY W/SAND It. brown to brown, dry, hard Bag CL-ML 5515 -Bag/ SANDY SILT ML NP 0 47 53 shows layering 4.4 Block It. brown to brown, dry, hard SILTY CLAY W/SAND CL-ML Bag It. brown to brown, dry, hard 5510 10 LEAN CLAY It. brown to brown, dry, hard Bag CL-2 7.2 36 16 0 2 98 5505 15

RB&G ENGINEERING INC.


06/11/04 11:01:14 AM

UC - Unconfined Compression Test
CT - Consolidation Test

TEST PIT LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 6/2/04 LOCATION: SEE SITE PLAN ELEVATION: ~5548.01 LOGGED BY: M. STILSON PIT NO. 04-13 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE DEPTH TO WATER - INITIAL: # DRY Sheet: 1 of 1 AFTER 24 HOURS: 🛬 NOT MEASURED SAMPLE Atter. Gradation Liquid Limit, % Plosticity Index, % Density, pcf Sand, X Other Tests Lith- & Elev. Depth USCS Туре Material Description (Feet) (Feet) ology 6" clay layer Bag SM 8" clay layer 5515 SILTY SAND W/CLAY LAYERS Bag SM It. brown to brown, dry 12" clay layer SM Bag 5510 -Bag SM 5505 -15 -

RB&G ENGINEERING INC. Provo. Utah

06/11/04 11:01:30 AM

UC - Unconfined Compression Test
CT - Consolidation Test

Laboratory Testing

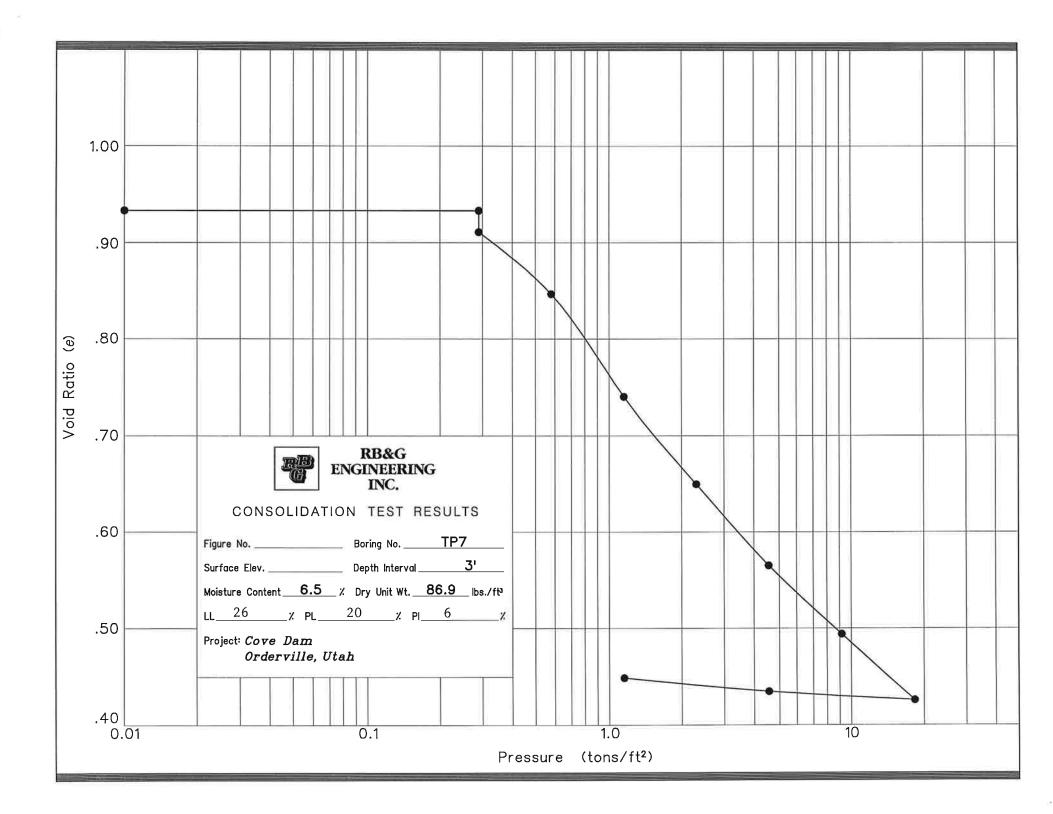
Table 1

SUMMARY OF TEST DATA

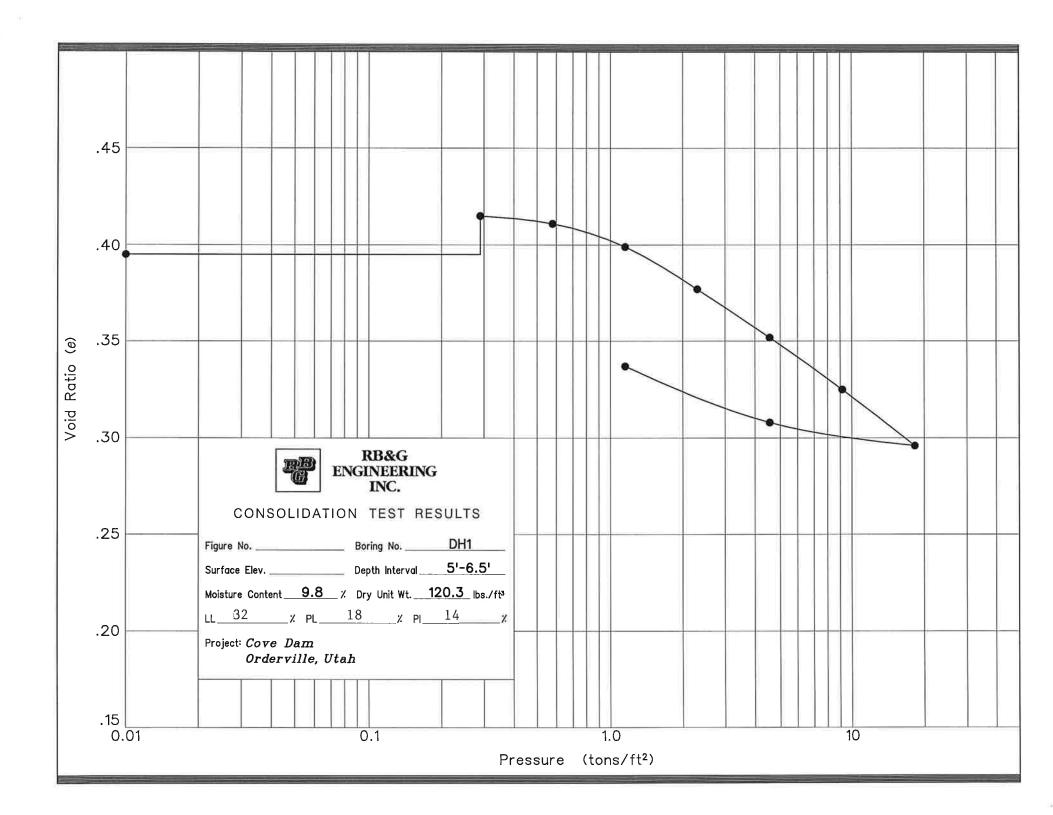
PROJECT LOCATION

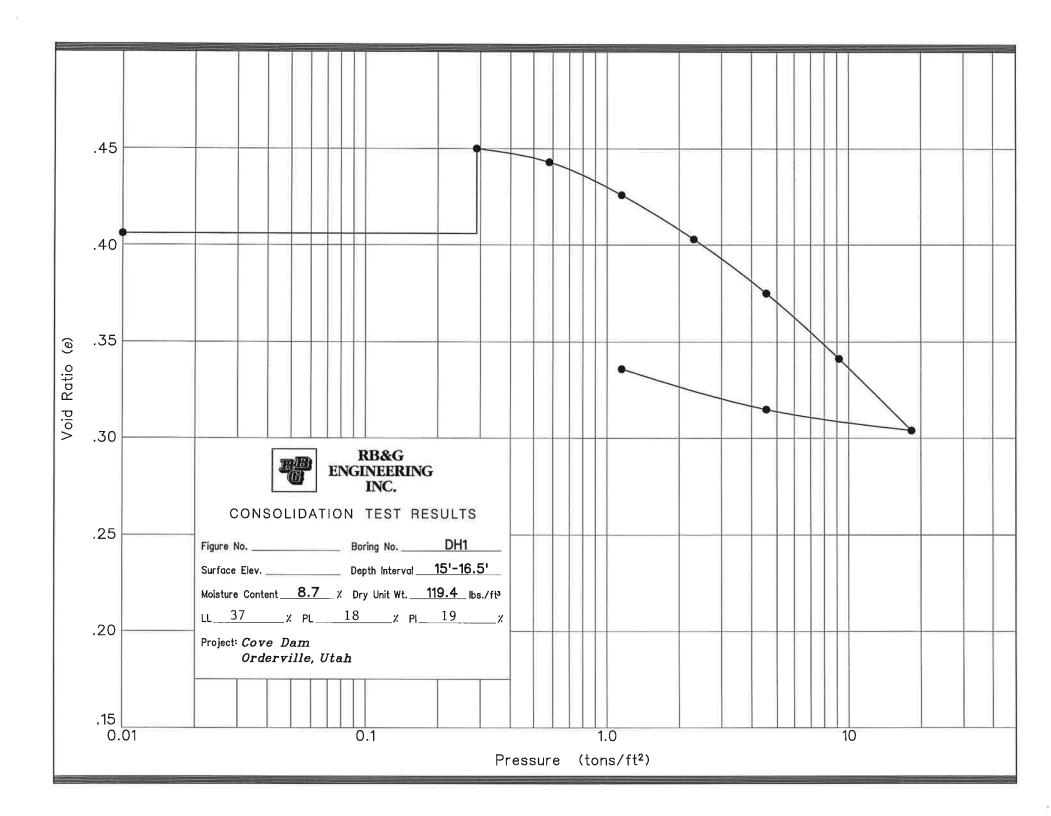
Cove Dam

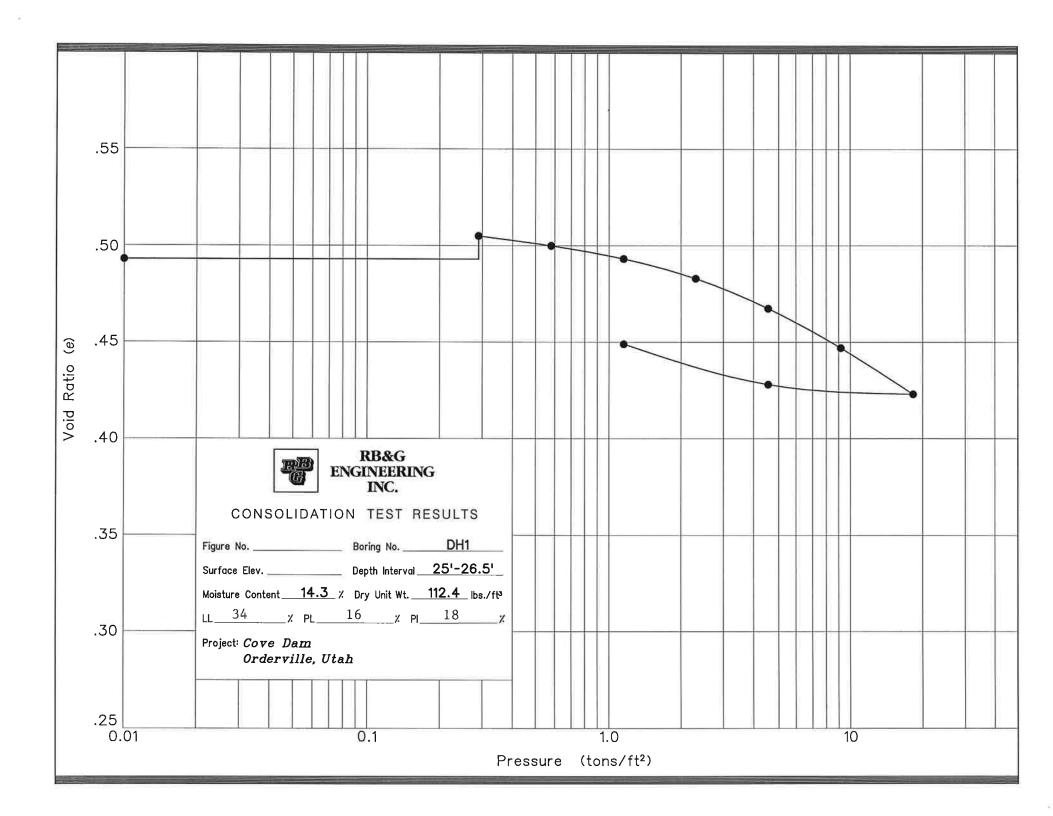
Kane County, Utah

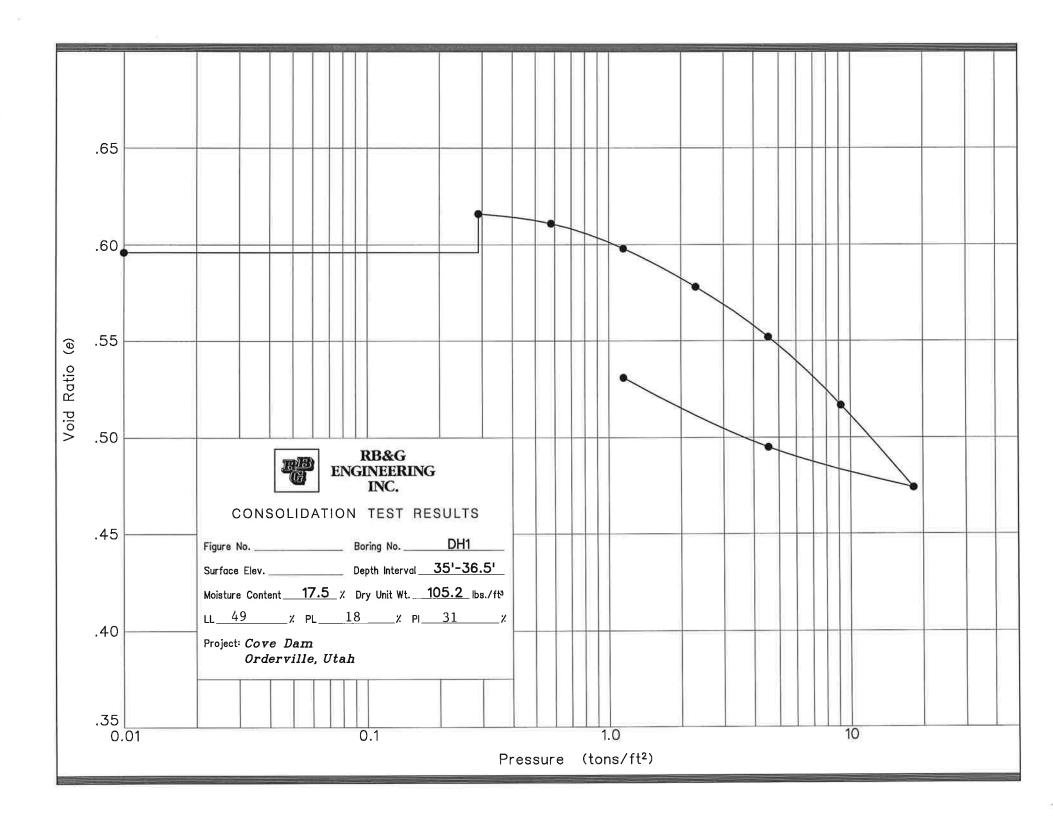

PROJECT NO.

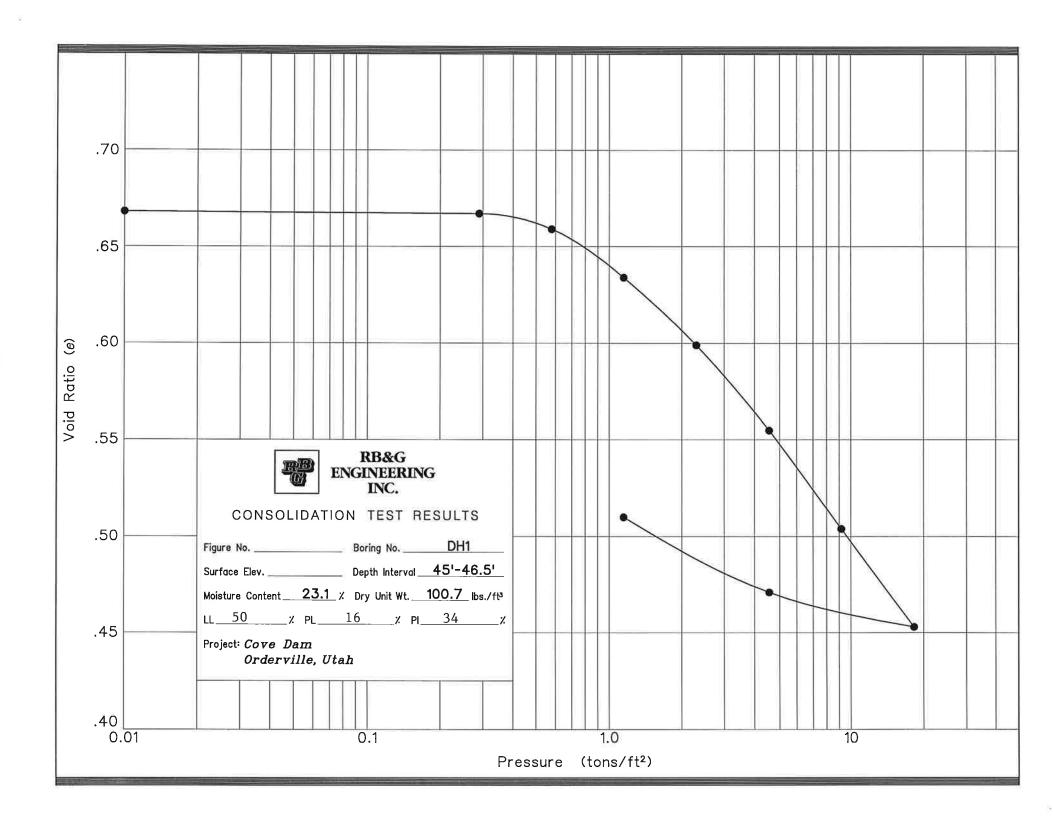

200401-025

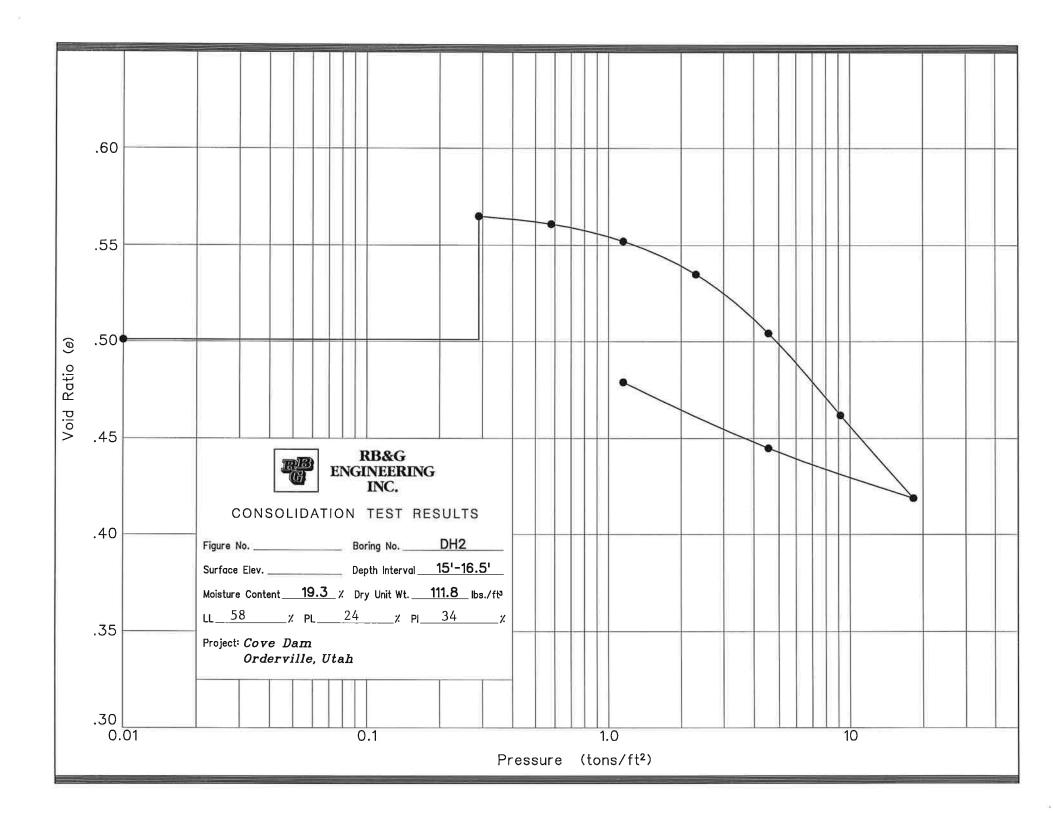

FEATURE

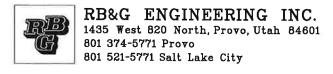

	DEPTH		IN-P	LACE		АТ	TERBERG L	IMITS	MECH	ANICAL AN	ALYSIS	UNIFIED
HOLE NO.	BELOW GROUND SURFACE (ft)	MATERIAL	DRY UNIT WEIGHT (pcf)	MOISTURE (%)	PINHOLE TEST RESULTS	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	PLASTICITY INDEX (%)	PERCENT GRAVEL	PERCENT SAND	PERCENT SILT & CLAY	SOIL CLASSIFICATION SYSTEM (modified)
DH-1	5-6	Soil	120.3	9.8		32	18	14	0	10	90	CL-1
	15-16.5	Soil	119.4	8.7		37	18	19	0	17	83	CL-2
	25-26.5	Soil	112.4	14.3		34	16	18	0	6	94	CL-2
	35-36.5	Soil	105.2	17.5		49	18	31	0	3	97	CL-2
	45-46	Soil	100.7	23.1		50	16	34	0	6	94	CL-2/CH
	53	Bedrock		16.4		82	30	50	0	0	100	СН
	73	Bedrock		13.2		70	25	45	0	0	100	CH
DH-2	6.5-8	Soil		12.2		45	14	31	0	2	98	CL-2
	15-16.5	Soil	111.8	19.3		58	24	34	0	0	100	СН
	26	Bedrock		13.5		70	23	47	0	0	100	СН
DH-3	14	Bedrock		13.7		54	21	33	0	0	100	СН
DH-5	41	Bedrock		4.7		43	17	26	0	9	91	CL-2
	48	Bedrock		12.6		47	23	24	0	2	98	CL-2
TP-1	3-4	Soil		4.8	ND2	26	16	12	0	3	97	CL-1
	6-7	Soil		6.4	ND2	35	19	6	0	2	98	CL-2
	9-10	Soil		3.4	ND3	31	16	15	0	26	74	CL-2
TP-2	6-7	Soil		8.6		40	20	20	0	2	98	CL-2
	12-12.5	Soil		5.8	ND3	31	18	13	0	12	88	CL-1
TP-3	0-1	Soil							25	73	2	SP
TP-4	5.5	Soil							0	82	18	SM
TP-5	6	Bedrock				58	24	34				CH
	9	Bedrock				59	28	31				СН
TP-7	2	Soil	82.0	9,1	ND2	28	17	11	0	13	87	CL-1
	2-3	Soil	86.9	6.5	ND3	26	20	6	0	10	90	CL-ML
	6-7	Soil		4.0	ND2	37	19	18	0	3	97	CL-2
	9-10	Soil	89.6	9.1		33	18	15	0	3	97	CL-2
TP-8	3-4	Soil		6.9	ND3	33	19	14	0	6	94	CL-1
	9-10	Soil		6.7	ND2	46	21	25	0	2	98	CL-2
TP-9	6-7	Soil		7.8		37	16	21	0	1	99	CL-2
	12-12.5	Soil		6.3		31	16	15	0	6	94	CL-2
TP-10	3-4	Soil		6.9		38	18	20	0	6	94	CL-2
	9-10	Soil		8.5		43	21	22	0	6	94	CL-2
TP-11	3-4	Soil		4.4		20	15	5	0	43	57	CL-ML
	9-10	Soil		5.7		34	18	16	0	17	83	CL-2
TP-12	6-7	Soil		4.4				NP	0	47	53	ML
	12-12.5	Soil		7.2		36	20	16	0	2	98	CL-2


NP=Nonplastic

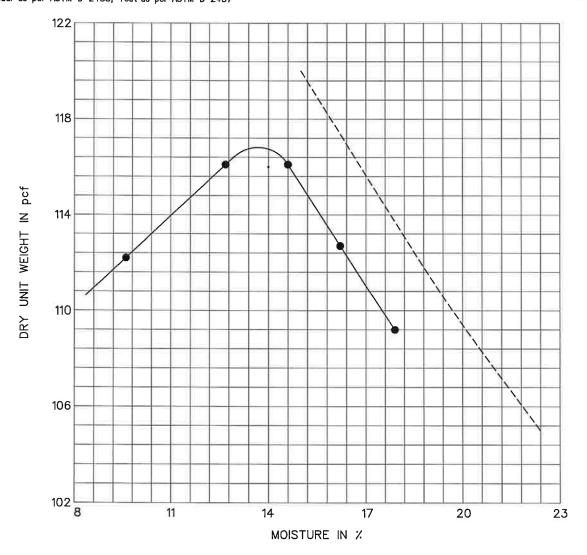










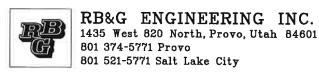

PROJECT NO.	200401.025	

	MOISTURE-DENSITY F	RELATIO	V (PRO	CTOR)	
Project	COVE DAM			Date	6/9/04
Location	ORDERVILLE, UTAH / TEST PIT NO. 1 A	T 3'		Technician	G. PEASLEE
Material Description	LT. BROWN TO BROWN LEAN CLAY	USCS	CL-1	Method	ASTM D 698

Procedure Used ¹	Α
Classification Procedure ²	Test

¹ A-No. 4 Sieve, B-¾" Sieve, C-¾" Sieve ² Visual as per ASTM D 2488, Test as per ASTM D 2487

Maximum Dry Density (pcf)	116.0
Optimum Moisture Content (%)	14.0
Modified Maximum Density (pcf)	
Modified Optimum Moisture Content (%)	


	14.0	OVERSIZE CORRECTION-ASTM D 4	1718
)		Specific Gravity of Soil +3/4	
tent (%)		Percent Oversize	

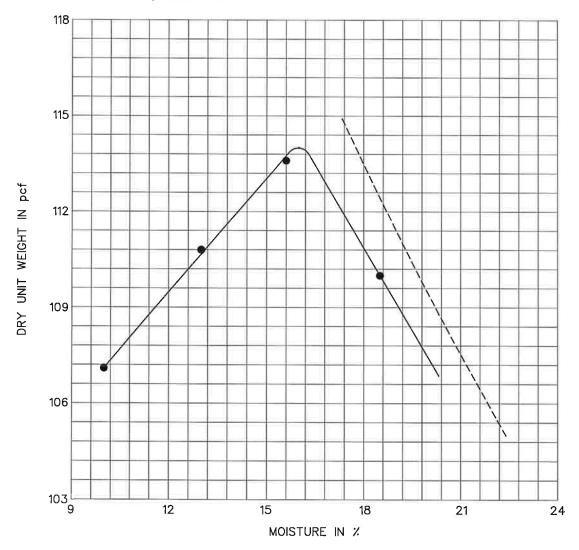
Specific Gravity of Soil

Type of Specific Gravity is BULK Unless Otherwise Indicated

2.70 | Est.

---- 100% Saturation Curve

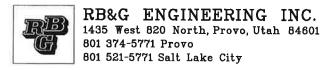



PROJECT NO	. 200401.025

	MOISTURE-DENSITY RELATION (PRO	CTOR)	
Project	COVE DAM	Date	6/9/04
Location	ORDERVILLE, UTAH / TEST PIT NO. 7 AT 3'-4'	Technician	G. PEASLEE
Material Description	LT. BROWN TO BROWN SILTY CLAY USCS CL-ML	Method	ASTM D 698

ĺ	Procedure Used ¹	Α
	Classification Procedure ²	Test

¹ A-No. 4 Sieve, B-¾" Sieve, C-¾" Sieve ² Visual as per ASTM D 2488, Test as per ASTM D 2487

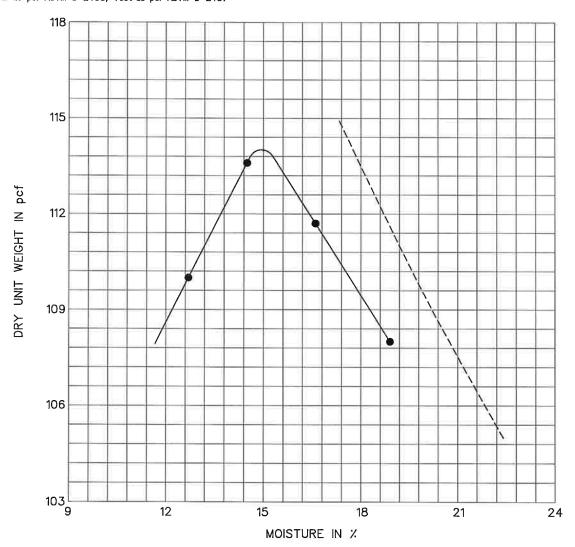


Maximum Dry Density (pcf)	114.0
Optimum Moisture Content (%)	16.0
Modified Maximum Density (pcf)	
Modified Optimum Moisture Content (%)	

Specific Gravity of Soil	2.70	Est.
OVERSIZE CORRECTION-AST	M D 4718	
Specific Gravity of Soil + 3/4		
Percent Oversize		

---- 100% Saturation Curve Type of Specific Gravity is BULK Unless Otherwise Indicated

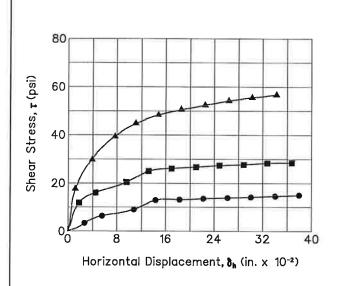


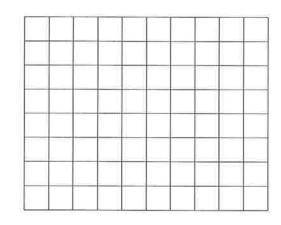

PROJECT NO.	200401.025	

	MOISTURE-DENSITY F	RELATION	V (PRO	CTOR)	
Project	COVE DAM			Date	6/9/04
Location	ORDERVILLE, UTAH / TEST PIT NO. 7 AT 6'			Technician	G. PEASLEE
Material Description	LT. BROWN TO BROWN LEAN CLAY	USCS	CL-2	Method	ASTM D 698

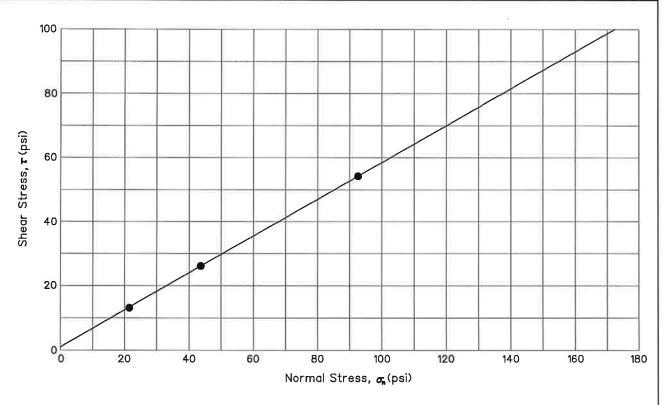
Procedure Used ¹	Α
Classification Procedure ²	Test

 $^{^1}$ A-No. 4 Sieve, B- $\frac{3}{4}$ " Sieve, C- $\frac{7}{4}$ " Sieve 2 Visual as per ASTM D 2488, Test as per ASTM D 2487





Maximum Dry Density (pcf)	114.0
Optimum Moisture Content (%)	15.0
Modified Maximum Density (pcf)	-
Modified Optimum Moisture Content (%)	


Specific Gravity of Soil	2.70	Est.
OVERSIZE CORRECTION-AS	TM D 4718	
Specific Gravity of Soil + 3/4		
Percent Oversize		

Type of Specific Gravity is BULK Unless Otherwise Indicated

Horizontal Displacement, & (in. x 10⁻²)

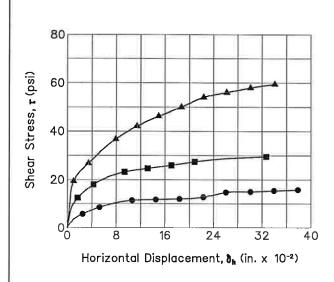
Test Same	Sample	Sample	Data Degree		Normal	Maximum	Strain	Shear Strength Parameters	
No. or Symbol	Size Dry Moisture of Stress Stringles Density Content Saturation Stress St	Shear Stress r (psi)	Rate (inches/ minute)	ches/ Angle &	Cohesion (c/psi)				
•	2.375	80.4	10.4	~100	21.5	12.9	10013		
	2.375	82.3	10.4	~100	43.7	26.1	.0013	29.9	1
A	2.375	87.1	8.5	~ 100	92.6	54.2	.0013		

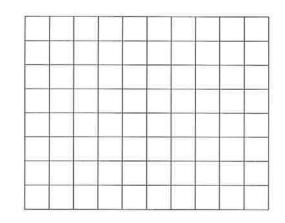
Vertical Displacement, & (in. x 10⁻²)

RB&G ENGINEERING INC.

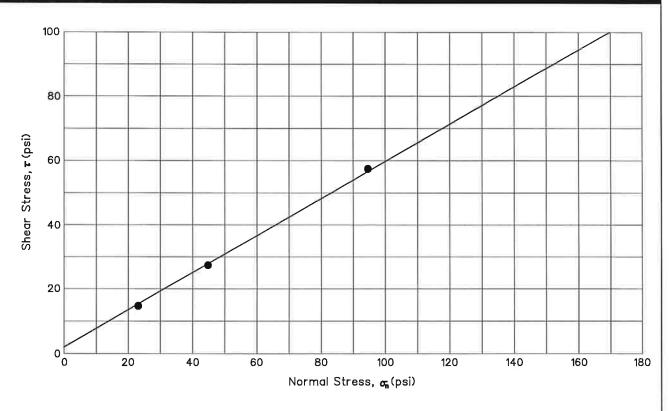
Provo. Utah

DIRECT SHEAR TEST


Project: Cove Dam


Orderville, Utah

HOLE NO.: TP7


DEPTH: 6'

Figure

Horizontal Displacement, 8_h (in. x 10⁻²)

Test	Sample	Sample	ample Data Degree		Normal	Maximum	Shear Rate Stress (inches/	Shear Strength Parameters	
No. or Symbol	Size (inches)	Dry Density (pcf)	Moisture Content (%)	Saturation Stress Stress	Shear Stress r (psi)	Friction Angle ¢ (degrees)		d (o/psi)	
•	2.375	111.5	15.1	100	23.1	14.7	.0013		
	2.375	111.5	15.1	100	44.8	27.4	.0013	30.2	2
A	2.375	111.5	15.1	100	94.6	57.9	.0013		

Vertical Displacement, & (in. x 10⁻²)

RB&G **ENGINEERING** INC.

Provo, Utah

DIRECT SHEAR TEST

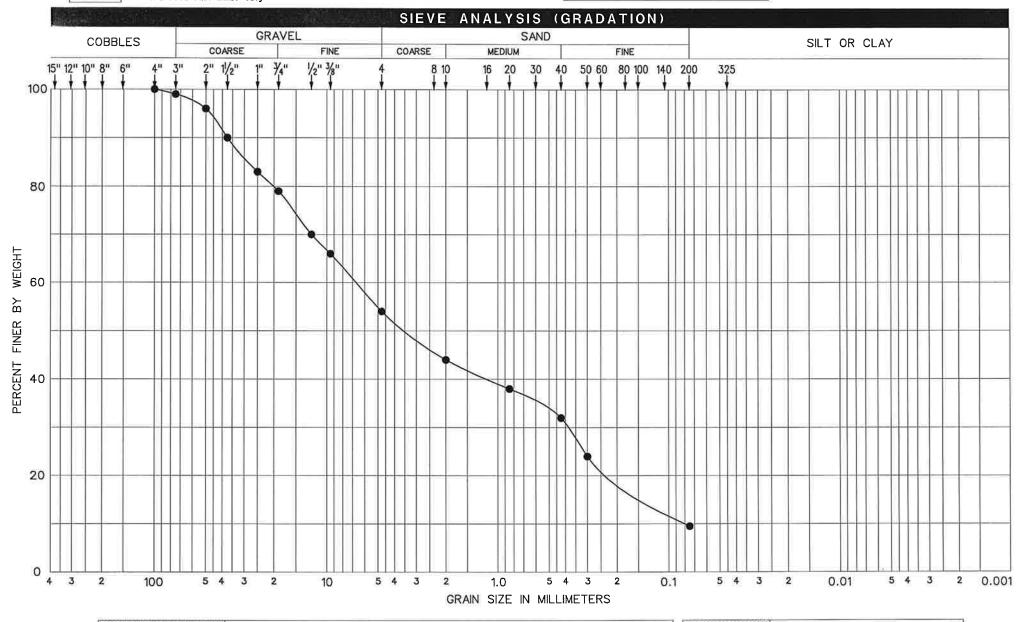
Project: Cove Dam

Orderville, Utah

HOLE NO.: TP7

Figure

DEPTH: 6'


RB&G ENGINEERING INC.

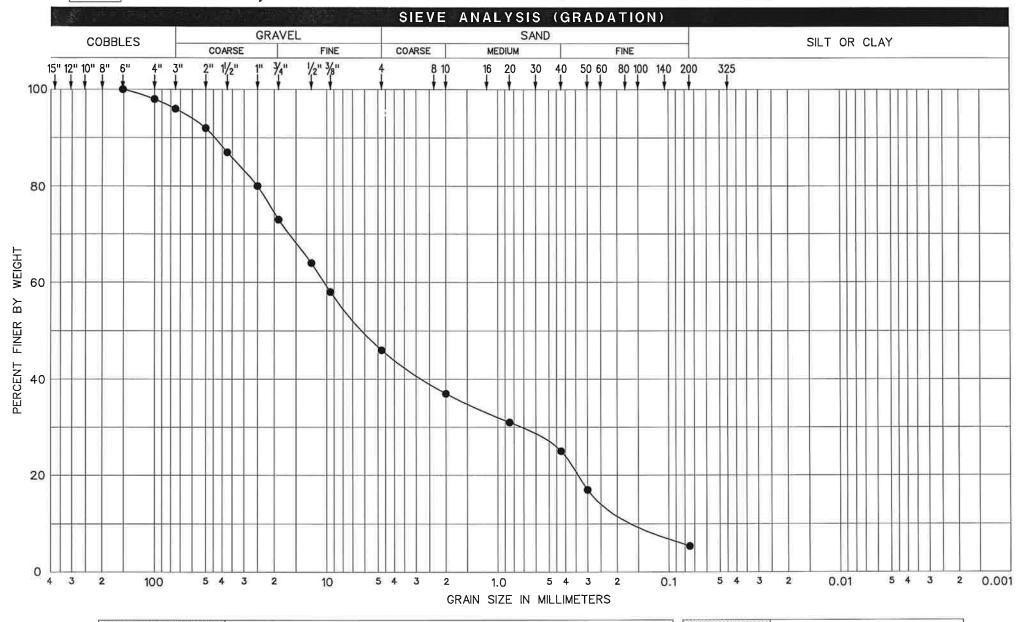
1435 West 820 North, Provo, Utah 84601 801 374-5771 Provo

801 521-5771 Salt Lake City

PROJECT NO.

200401.025

Project	COVE DAM					
Location	ORDERVILLE, UTAH					
Sample No./Depth	ROSE PIT					
Material Description	WELL GRADED GRAVEL W/SILT & SAND	USCS	GW-GM			


Date	6/10/04			
Technician	K. BRADFORD			
Procedure	PLAIN WATER			
Method	ASTM C117, C136, C566			

RB&G ENGINEERING INC. 1435 West 820 North, Provo, Utah 84601 801 374-5771 Provo 801 521-5771 Salt Lake City

PROJECT NO.

200401.025

Project	COVE DAM					
Location	ORDERVILLE, UTAH					
Sample No./Depth	TATE PIT					
Material Description	POORLY GRADED GRAVEL W/SAND	USCS GP				

Date	6/10/04				
Technician	K. BRADFORD				
Procedure	PLAIN WATER				
Method	ASTM C117, C136, C566				

DIVISION OF WATER RESOURCES

Engineering Geology Section 1594 West North Temple, Suite 31D Box 145201 Salt Lake City, Utah 84114-6201

MEMORANDUM

October 6, 1997

TO:

Ben Everitt

Chief Geologist

FROM:

Dan Aubrey

Engineering Geologist

SUBJECT:

Test Pits At Cove Dam Site Near Orderville, Kane County, Utah.

Bela WADES Sagas 15			
From Dan Aubrey			
Co. Water Resources			
Pro10# 538-7283			
Fax₽			

Introduction and Location

On Wednesday, June 4th at the request of Kane County Water Conservancy District I supervised the digging of a number of test pits along the proposed alignments for two offstream cansites in the lower reaches of Cove Canyon. The lower alignment, including both abutments is located in the SW4 of Sec. 5, T41S, R7W, SL9&M. The right abutment of the upper alignment is located in the SE4 of Sec. 6, while the left abutment is located in the NW4 of Sec. 5, T41S, R7W, SLB&M (see Figure 1). A total of nine test pits were located and logged, six pertaining to the upper alignment and three along the lower alignment (see Figure 1).

These sites had been identified during a reconnaissance level inventory of Virgin River damsites during the mid- to late 1980's. Not until 1996 did this iocation receive any further attention concerning its viability as a potential damsite(s). Franson-Nobel & Associates, Inc., in June of 1996, completed a reconnaissance level evaluation, in part, to help in the preparation of preliminary cost estimates. Continued interest in the site by both the Kane County Water-Conservancy District and the Washington County Water Conservancy District and the Washington County Water Conservancy District resulted in this first review of the site from a geology and geotechnical point of view.

Given a storage of 6,700 accessfeet, a dam at the loweralignment would have to be about 103 feet appearation and at the upper alignment a dam would have to be about 103 feet high to store this amount of water. A dam of this beight at the upper site may require the placement of a dike in the saddle just upstream of the right abutment.

Geologic Setting

The proposed Cove damsites are located in an alluvial valley, tributary to Long Yalley and the East Fork Virgin River, that has been cut into a sequence of Cretaceous and Tertiary sedimentary rocks consisting mostly of sandstone and shale. Based on a review of pertinent geologic maps and literature the bedrock exposed in the abutments and underlying the alluvium in the reservoir basins is of the Cretaceous aged Tropic Shale Formation. The shale is predominantly grey, carbonaceous, calcareous, and includes bentonitie horizons and thin lenticular and stones. The residual soil is a silty to sandy clay (CL to CFI). Capping abutment ridges is a thin light brown deposit of gravel containing pebbles and cobbles of gray and red

quartzite, grey to black chert, and grey limestone. Alluvium which covers the flat valley floor of the Cove is predominantly light to medium brown, fine to very fine grained sand with silt, and

clay.

Based on research of water well logs, depth to bedrock in Long Valley (underlying the East Fork Virgin River) is approximately 50 feet. Making the assumption that tributaries are graded to the main valley results in projected depth to bedrock under the lower alignment of about 40.45 feet, and under the upper alignment of about 35.40 feet. The valley is approximately 1,000 feet wide at the lower alignment and about 1,500 feet wide at the upper alignment.

Discussion of Test Pits and Geotechnical Considerations

Figure 2 is a graphic representation of the materials encountered in the test pits. In general the materials encountered were very line grained and to sitt and clay (SM, ML, & CL). The two test pits (# s 2 & 7) located at the base of the right abutment, at each damsite, encountered some gravel. The gravel is contributed from the collovial slopes of the abutment. Test pit #5 which was located in the drainage near the left abutment of the upper alignment encountered the most granular material. Here 6.5 feet of poorly grader sandy gravel contains, colloss to 14" diameter. Calcide (calcium carbonate) stringers are moderately abundant to very abundant in the test pits below 6 or 7 feet, in most of the test pits. Restricted access prevented us from placing test pits on or near the left abutments of either alignment.

Based on the test pits it appears that there is an abundance of cohesive material available for dam construction, however, the test pits did not identify an adequate source of granular inaterial. At this level of investigation (considering only the geology and geotechnical aspects) it does not appear that one alignment has any advantage over the other.

Geologic Hazards

Following digging of the test pits, I performed a preliminary geologic hazards review of the sites. The summary of geologic hazards (see Table I) accompanies this report. While most of the hazards listed in the summary, rate in the unlikely hazards category there are two geologic hazards which fall into the probable category and five which rate as possible hazards. These are identified as follows:

Probable Hazards — 1. Ground shaking due to an earthquake centered on the nearby Sevier Fault, and 2. Expansive clays which occur in the Tropic Formation throughout southern Utah.

Possible Hazards -- 1. Liquefaction, 2. Tectonic subsidence, and 3. Slope failure are all related to proximity of the Sevier Fault. 4. Collapsible soils and 5. Pipable/Erodible hazards are related to the identification in the test pits of very fine grained and non-cohesive silt.

Further study will be necessary to determine what impact these seven hazards might have on a dam constructed at either of these sites.

Conclusions and Recommendations

Based on information from the test pits and geologic liazards evaluation the following conclusions can be reached:

1. There is an abundance of cohesive material available, including some bentonite outcroppings in the Tropic Shale.

2. Only a very limited amount of granular material is available, and nothing that is suitable as rip rap was identified.

3. At this level of investigation one site does not seem to have any substantial advantage

over the other.

4. Either site is capable of storing 6,700 acre-feet of water.

5. Proximity of these sites to the Sevier Foult and the presence of expansive clays and very fine grained non-cohesive soils are geologic hazards.

6. As part of a preliminary design, additional studies should address specific hazards.

The following recommendations are suggested:

1. A seismic hazards evaluation of the Sevier Fault will be needed to determine what impact this hazard might have on these damsites.

2. Laboratory testing of soil samples is necessary to determine if a soils/foundation

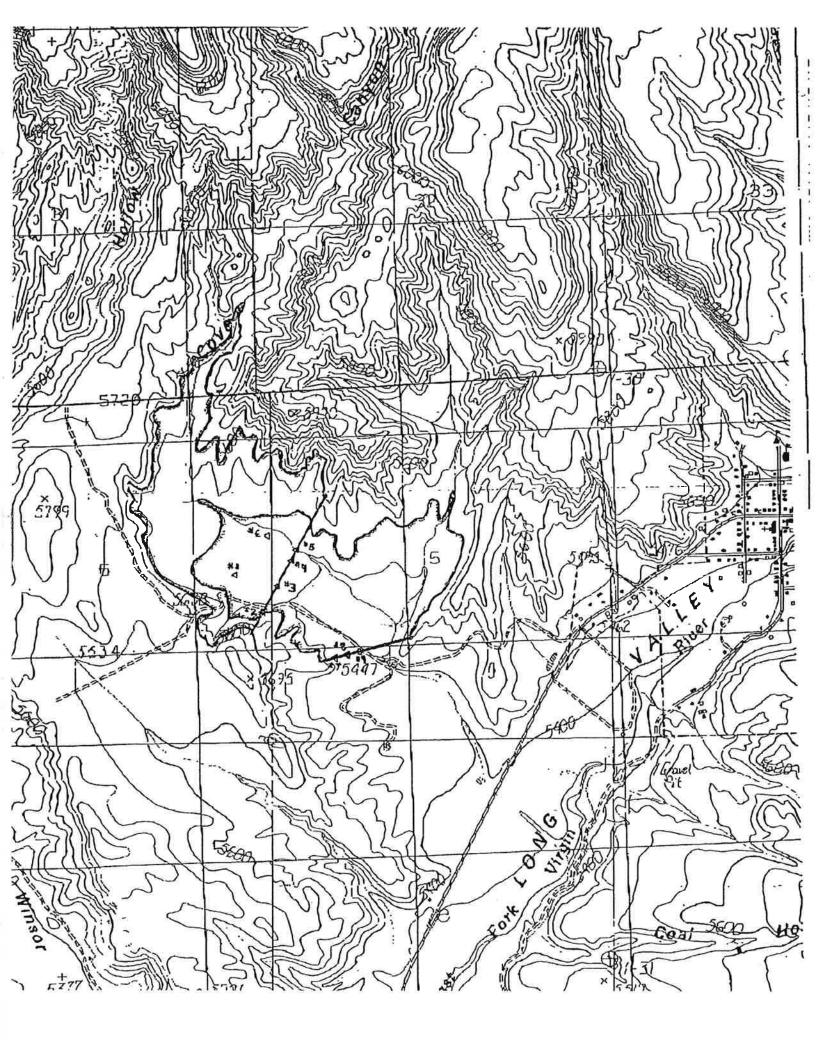
hazard exists.

3. A careful cost estimate ought to be prepared for these sites so a benefit /cost ratio can

be developed.

4. From a geologic and geotechnical view the next step would be to pursue investigation of the subsurface conditions by drilling, sampling and testing (permeability, blow counts, etc.) along the proposed alignment.

SUMMARY OF GEOLOGIC HAZARDS


COVE DANSITES

		Hazard Rating*		Further
	Frobable	Possible	Unlikely	Study
38	Hazard	Hazard	Hazard	Recommended**
3 hit manifes	ALGERTA			
larthquake Ground shaking	E,F			<u> </u>
Liquefaction	-,-	ÆF		S
Surface faulting			X	^
Tectonic deformation		E,RB		G
Slope failure		A, RB	5	G
Seiche			Х	
		Ē,		
Slope Failure (Non-sei	ಶ)		х	
Rock fall			X	3.
Landslide			X	
Debris flow				
Found/Embank Problems				
Collapsible soils		AF		S S
Expansive clays	\mathbf{F}_{i} \mathbf{A}_{i}		27	Ö
Sensitive clays			X	
Organic soils			X X	
Soluble salts		T	V	S
Fipable/Brodible		E	х	- 4
Karst			X	
Differential settlem	ent		X	
Non-engineered fill			11	
Hydrologic				
Shallow ground-water	-		X	
Springs/Seeps			X	
Flooding			v	
Stream/Lake			X X	
Upstream dam failu	ıre		X X	
Spillway capacity			X	
Dam overtopping			21	

*Hazard Rating - <u>Probable</u>-evidence is strong that the hazard exists and mitigation measures should be taken. <u>Possible</u>-hazard may exist, but evidence is uncertain and further study is recommended. <u>Inlikely</u>-no evidence was found to indicate that the hazard is present.

Abbreviations; R = embankment, F = foundation, AF = Elluvial foundation, BF = bedrock foundation, A = abutments, R3 = reservoir basin, SL = shore line, DST = down stream toe, UST = up stream toe, DSF = down stream face, USF = up stream face, USF = up stream face, SP = spillway, & NA = Not applicable.

**Further Study (S-soil/foundation, G-geotecnical/engineering, H-hydrologic, SIP-study in progress, MIP-mitigation measures in progress) is recommended to address the hazard (see Conclusions and Recommendations).

Upper Alignment

ML-CL

It-ind ton, coloreous

sondy cloyey silt to

sondy silty cloy.

sond fine to very

fine grained.

dry, loose to

compact with depth

colore stringers 7:14'

multiple covered and the color colors colors covered to color colors to the color colors and the color colors and the color colors and the color colors colors and the color colors colo

sh-me-cl md orenge-bro to bro serily send to bordy clayey sile to serily clay clay clay clay content orenation of the content increases with depth serid icry fine grained.

Standy silly stay.

Sandy silly stay.

Sandy silly stay.

Court be stay.

Colcite stringers

from to this

clay contont increases

with depth, more

compact.

Toole to U Jeap.

GP, CH

poorly graded sand,

gravel tris with

collide coated, subsequent

to rounded gravel.

most graves to love

than 3" die.

(55" to 15" damp to

planticity white

throughout

throughout.

SM-CH

STOUND COVE

Close to win

Sond atom

Sind boulds

O-21/1, ye

1000e, erum

the clay. H

mod que bor

colornous

stringers

Lower Alignment

Legend

Clay

Silt

Sand

Social Gravel

CL = CH

th. bm to and sy bra

sondy silty clay,
dry, bose, donse from

solicite stringers below

to dense clay is gy.

Occassional pebbles

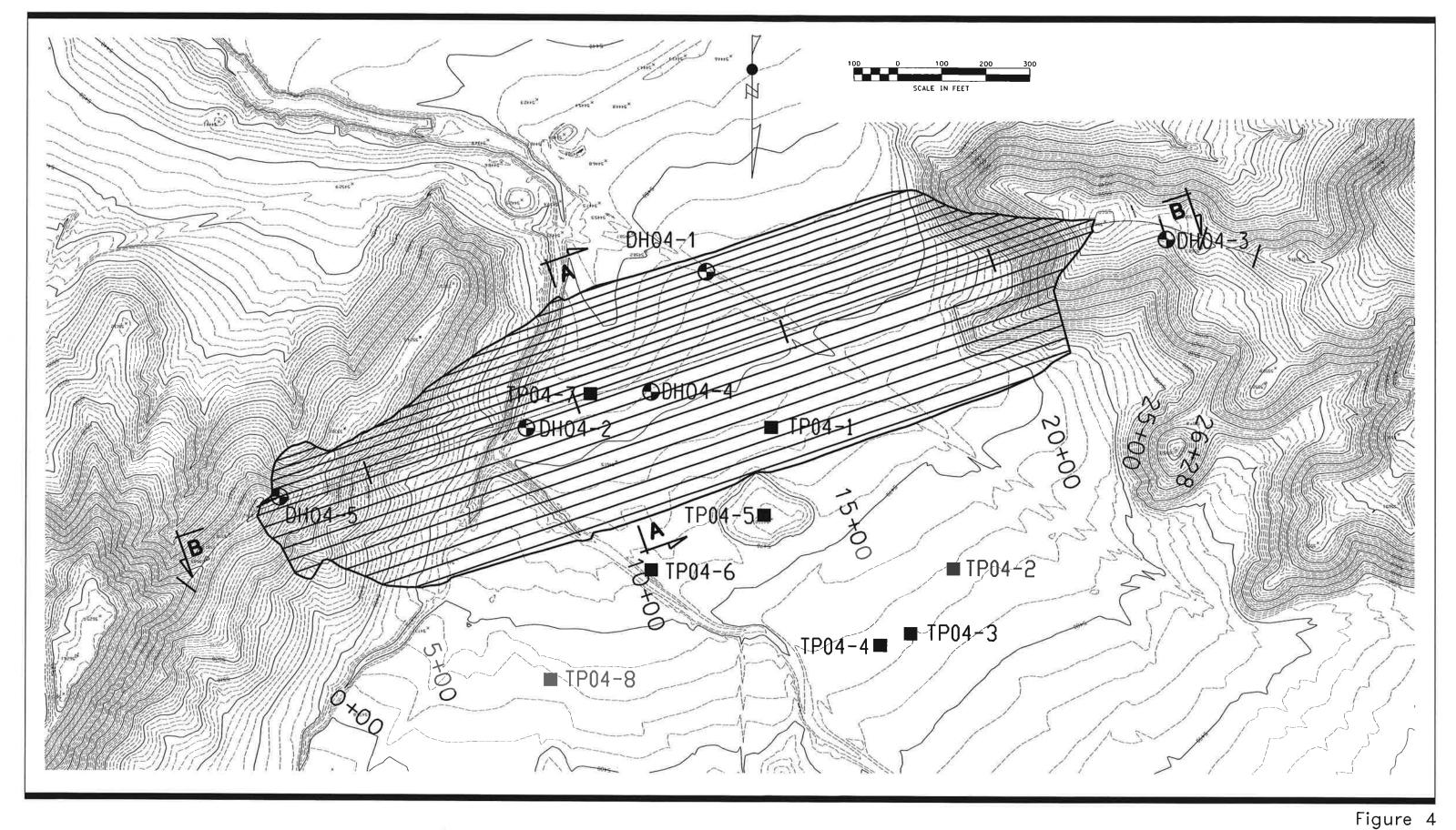
in other 5.

EM-MC-Ch Silly Sand to Sand of the Sandy Silly Clay Ety, local Ety, local Calcareous

SM-ML-CL

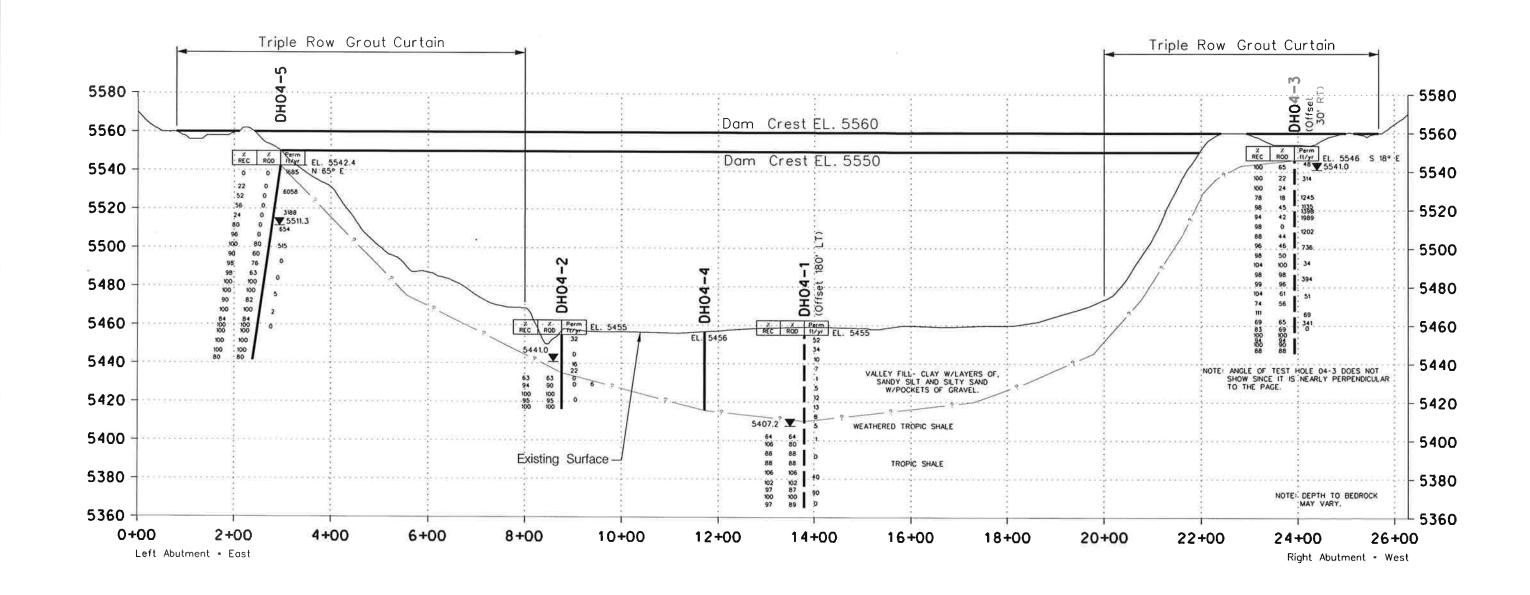
Ight brown

Silty sand to

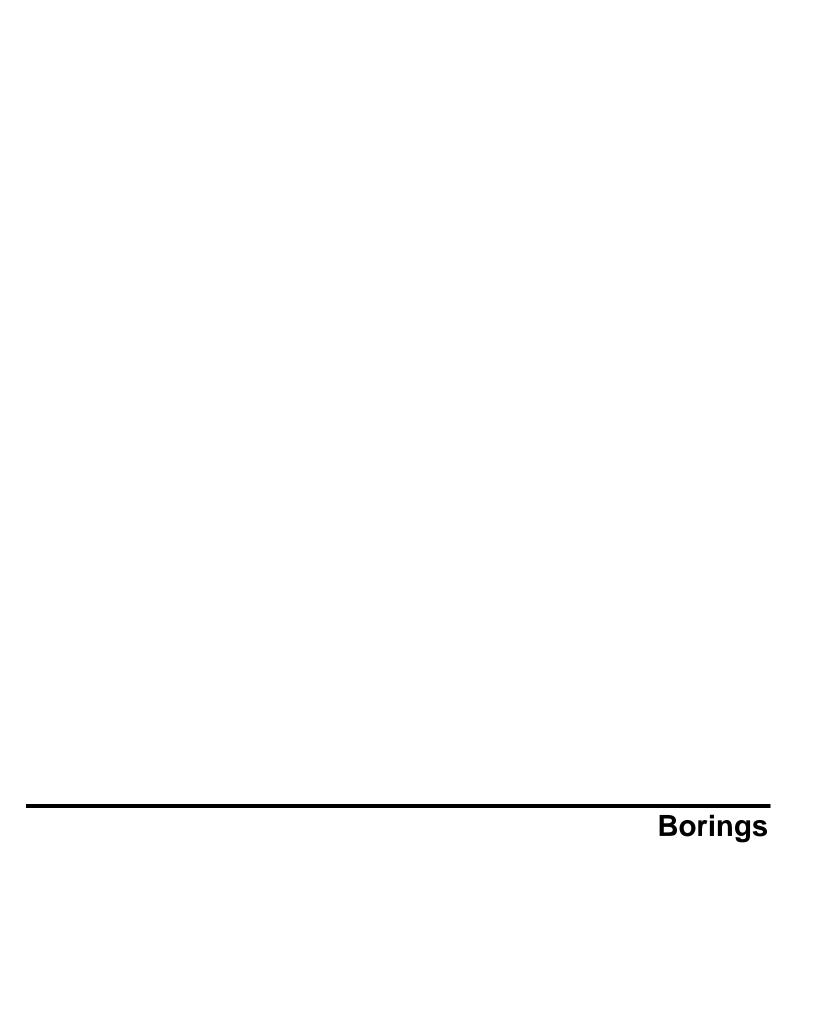

Sandy silt to

See Map For Test Pit Locatio

NRCS Cove Reservoir Project

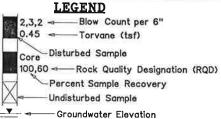

APPENDIX E-14SUBSURFACE INVESTIGATION DATA

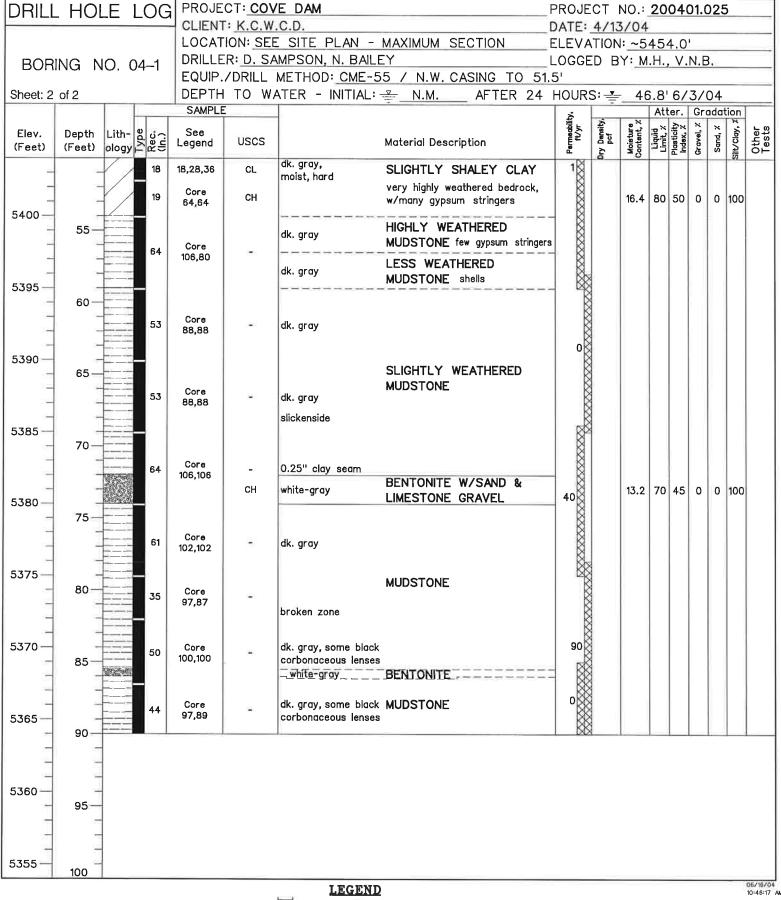
Draft Plan-EA October 2020


Cove Dam Orderville, Utah Dam Plan View,
Test Pit and Drill Hole
Locations

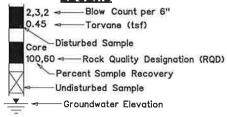
GEOLOGIC CROSS-SECTION (PROFILE)

Note: Exaggerated Vertical Scale, Scale: 1"-50' Vertical 1"-200' Horizontal

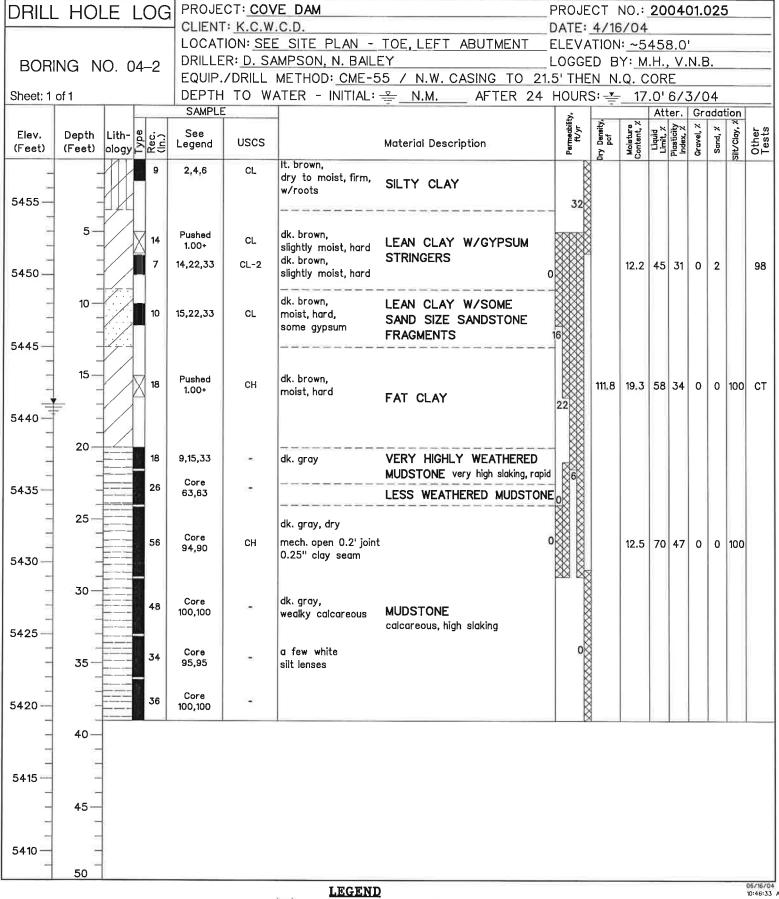



DRILL HOLE LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 4/13/04 LOCATION: SEE SITE PLAN - MAXIMUM SECTION ELEVATION: ~5454.0' DRILLER: D. SAMPSON, N. BAILEY LOGGED BY: M.H., V.N.B. BORING NO. 04-1 EQUIP./DRILL METHOD: CME-55 / N.W. CASING TO 51.5' Sheet: 1 of 2 DEPTH TO WATER - INITIAL: 🚣 N.M. AFTER 24 HOURS: 🛬 46.8' 6/3/04 SAMPLE Atter. Gradation Plasticity Index, % Sand, X Cith- S. C. C. Density Elev. Depth See USCS Legend Material Description (Feet) (Feet) It. brown, 52 5,3,3 CL-ML SILTY CLAY W/SAND dry, firm calcareous 120.3 5450 Pushed It. brown, 8 CL-1 LEAN CLAY 9.8 32 14 0 10 90 CT 1.00+ dry, hard 10 5445 10 It. brown, 7,9,11 CLAY W/SAND dry, very stiff 5440 15 Pushed It. brown, SANDY CLAY 12 CL-2 119.4 8.7 37 19 0 17 83 CT 1.00+ dry, hard 112.4 5435 20 SILTY CLAY W/SILTY It. brown, 9,12,17 CL,SM dry, very stiff SAND LENSES & LAYERS 5430 25 Pushed It. brown, 12 CL-2 14.3 34 18 0 6 94 CT 1.00+ dry, hard 5425 med. to It. brown, 30 6 8,12,13 CL dry, very stiff, w/white stringers LEAN CLAY 5420 35 Pushed med. brown, 18 CL-2 105.2 17.5 49 31 0 3 97 CT 1.00+ moist, very stiff 5415 40 med. brown, 4,6,8 18 moist to slightly wet, CL 5410 grayish-med. brown, LEAN TO FAT CLAY Pushed 12 CL-2/CH moist, stiff, 100.7 23.1 50 34 0 6 94 CT 0.72 W/SOME SAND w/white stringers 5405 TROPIC SHALE FORMATION

RB&G
ENGINEERING
INC.
Provo. Utah



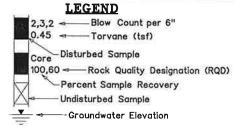
UC - Unconfined Compression Test CT - Consolidation Test



RB&G **ENGINEERING** INC. Provo, Utah

UC - Unconfined Compression Test CT - Consolidation Test

RB&G
ENGINEERING
INC.
Provo, Utah



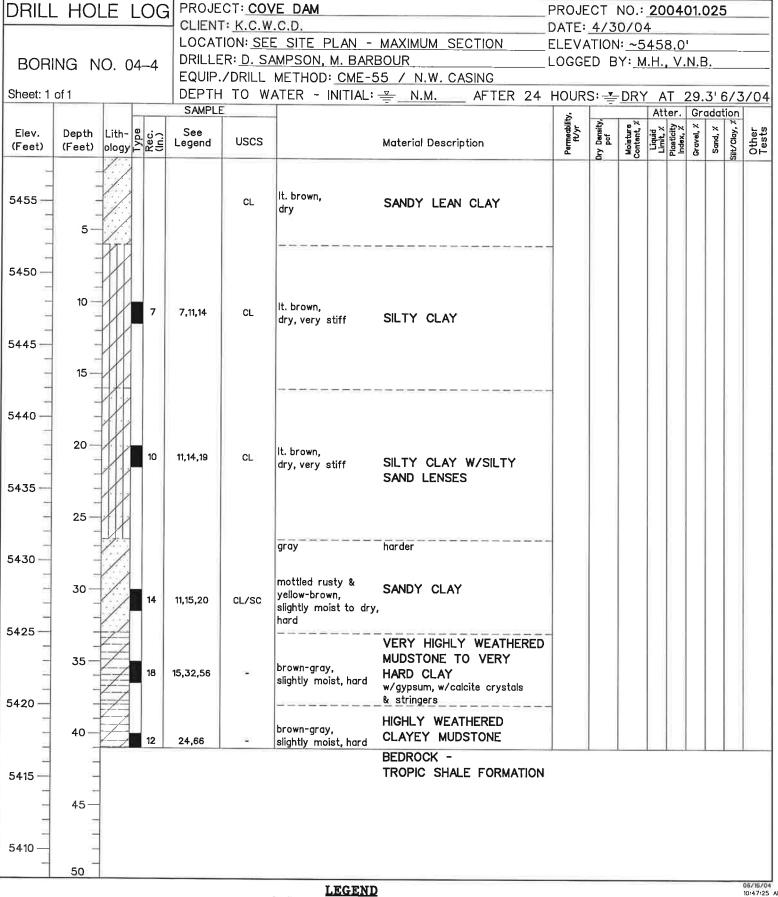
UC - Unconfined Compression Test CT - Consolidation Test

PROJECT: COVE DAM DRILL HOLE LOG PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 4/26/04 LOCATION: SEE SITE PLAN - RIGHT ABUTMENT ELEVATION: ~5546.0' DRILLER: D. SAMPSON, M. BARBOUR LOGGED BY: M.H., V.N.B. BORING NO. 04-3 EQUIP./DRILL METHOD: CME-55 / N.Q. CORE AT 60° FROM HORIZONTAL, TREND S18°E Sheet: 1 of 2 DEPTH TO WATER - INITIAL: - N.M. AFTER 24 HOURS: -71.0' 6/3/04 SAMPLE Atter. Gradation Lith- 호 양당 Liquid Limit, % Plasticity Index, % Gravel, % Sand, X Elev. Depth See Silvoloy USCS Legend Material Description (Feet) (Feet) 5545 CLAY/VERY WEATHERED 48 gray-brown MUDSTONE gray-brown to Core brown-gray 100,65 gypsum 5540 Core gray-brown 314 100,22 SILTY MUDSTONE 5535 calcareous coating, very highly Core gray-brown, СН weathered & fractured, multiple 13.7 54 33 0 0 100 100,24 dry angle - haphazard, some gypsum coating on joints, shaley & friable 5530 Core 1245 78,18 Core 5525 59 1135 98,45 25 gray-white, BENTONITE some rust staining SHALEY MUDSTONE brown 100% water loss 398 Core dk. gray w/white SILTSTONE/MUDSTONE 56 94,42 bedding 1989 5520 30 interbedded dk. gray Core 736 59 & brown, 98,0 SILTY MUDSTONE 35 gypsum bedding calcareous 5515 interbedded dk. gray Core 53 & brown w/white 88,44 40 stratification 5510 clay seam Core 58 MUDSTONE 96,46 dk. gray w/brown, some rust stains. some shells, 5505 slow slaking Core 98.50 50

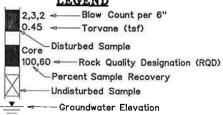
RB&G
ENGINEERING
INC.
Provo, Utah

UC - Unconfined Compression Test

CT - Consolidation Test

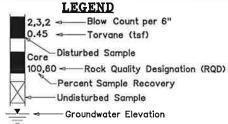

DRILL HOLE LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 4/26/04 LOCATION: SEE SITE PLAN - RIGHT ABUTMENT ELEVATION: ~5546.0' DRILLER: D. SAMPSON, M. BARBOUR LOGGED BY: M.H., V.N.B. BORING NO. 04-3 EQUIP./DRILL METHOD: CME-55 / N.Q. CORE AT 60° FROM HORIZONTAL, TREND S18°E Sheet: 2 of 2 DEPTH TO WATER - INITIAL: — N.M. AFTER 24 HOURS: ₹ 71.0' 6/3/04 SAMPLE Atter. Gradation Plasticity Index, X Sand, X Densit pcf Type (In.) See Elev. Depth Lith-USCS Material Description Legend (Feet) (Feet) ology 394 dk. gray more competent, 5500 MUDSTONE no bedding, shells, Core 104,100 open joint at 53.4' 55 to 53.7', 0.2" clay seam 5495 Core some white bedding, 98,98 60 trace of gypsum Core 5490 99,96 rust stain & coating SILTY MUDSTONE Core 62 104.61 very hard septarian nodule 5485 Core gray, high slaking SHALE 74,56 75 69 BENTONITE 5480 core is stuck in inner barrel Core 62 and has not been removed. 111.? 80 may contain bentonite 100% water loss 5475 Core 41 dk. gray 69.65 MUDSTONE 85 calcareous, some slaking, 40° slickenside some It. gray wavy bedding Core 5470 29 0.25" clay seam 83,69 90 Core 60 dk. gray 100,100 clay seam, not calcareous Core 5465 94,94 95 Core It. gray BENTONITE 100,100 OLCANIC ASH black & white Core 42 dk. gray MUDSTONE 88,88 5460 100 LEGEND 04:02:52 F

RB&G ENGINEERING INC. Provo. Utah



UC - Unconfined Compression Test CT - Consolidation Test

RB&G **ENGINEERING** INC. Provo, Utah



UC - Unconfined Compression Test CT - Consolidation Test

DRILL HOLE LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 5/4/04 LOCATION: SEE SITE PLAN - LEFT ABUTMENT ELEVATION: ~5542.41 DRILLER: D. SAMPSON, M. BARBOUR LOGGED BY: M.H., V.N.B. BORING NO. 04-5 EQUIP./DRILL METHOD: CME-55 / N.Q. CORE AT 60° FROM HORIZONTAL, TREND N65°E DEPTH TO WATER - INITIAL: - N.M. AFTER 24 HOURS: ₹ 35.0' 6/3/04 Sheet: 1 of 2 SAMPLE Atter. Gradation Gravel, 7. Permeabili⁷ ft/yr Plasticity Index, % Sand, X Lith- a o C Other Tests See Sill Clay, Elev. Depth USCS Material Description Legend (Feet) (Feet) 5540 VERY HIGHLY WEATHERED Core 0 0,0 TROPIC SHALE FORMATION 5535 VERY HIGHLY WEATHERED CLAYEY MUDSTONE TO Core 13 brown-gray 22.0 6058 CLAY W/MUDSTONE **FRAGMENTS** 5530 MUDSTONE RUBBLE Core 52,0 W/CLAY MATRIX 3188 5525 20 Core 56,0 MUDSTONE BROKEN TO RUBBLE 25 5520 Core brown-gray 24,0 30 Core brown-gray, 48 80,0 calcareous 5515 654 35 Core MOTTLED & MIXED LAYERS 58 96.0 OF DARK GRAY & BROWN 5510 MUDSTONE more compotent, w/random gypsum stringers, near vertical fractures at 33' to 38', some Core brown-gray, 60 CL-2 43 26 0 91 4.7 9 100,80 dry friable shaley layers 1" to 2" 515 thick 5505 Core w/clay seams, shells 0 90,60 dk. gray, CL-2 12.6 47 24 2 98 0 dry, shells CALCAREOUS MUDSTONE 5500 50

RB&G ENGINEERING INC. Provo, Utah

UC - Unconfined Compression Test

CT - Consolidation Test

PROJECT: COVE DAM DRILL HOLE LOG PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 5/4/04 LOCATION: SEE SITE PLAN - LEFT ABUTMENT ELEVATION: ~5542.4' DRILLER: D. SAMPSON, M. BARBOUR LOGGED BY: M.H., V.N.B. BORING NO. 04-5 EQUIP./DRILL METHOD: CME-55 / N.Q. CORE AT 60° FROM HORIZONTAL, TREND N65°E Sheet: 2 of 2 DEPTH TO WATER - INITIAL: <u>→ N.M.</u> AFTER 24 HOURS: 🛬 35.0' 6/3/04 SAMPLE Atter. Gradation ermeability ft/yr Liquid Limit, % Plasticity Index, % Gravel, % Fith- ag of C. Sand, X Other Tests Denaid Elev. Depth See Silt/Clay, USCS Legend Material Description (Feet) (Feet) 占 Core 59 dk. gray 98,76 5495 55 Core 54 dk. gray 98,63 60 SHALEY MUDSTONE Core dk. gray, 5490 100,100 few shells friable, very slow slaking dk. gray, Core 65 60 no gypsum, 100,100 w/big white shells 5485 Core 70 54 90,B2 SHALE TO BENTONITE 5480 CALCAREOUS MUDSTONE Core dk. gray w/few 75 60 100,100 white lenses dk. to it. gray, very soft SHALEY BENTONITE 5475 dk. gray Core 80 50 dk. gray 84.84 Core 12 5470 100,100 CALCAREOUS MUDSTONE 85 Core 60 100,100 very soft 5465 SHALEY BENTONITE 90 Core 60 dk. gray 100,100 CALCAREOUS MUDSTONE 95 5460 Core 52 100,100 LIMESTONE Core CALCAREOUS MUDSTONE 100 dk. gray 80,80 5455 W/SHELLS LEGEND

RB&G ENGINEERING INC. 2,3,2 Blow Count per 6"
0.45 Torvane (tsf)

Core Disturbed Sample
100,60 Rock Quality Designation (RQD)

Percent Sample Recovery
Undisturbed Sample

Groundwater Elevation

UC - Unconfined Compression Test
CT - Consolidation Test

Bottom

Depth Cored 51.5 to 90 feet

NQ Core Dia. 1.875 in. Length of Core Box 2 ft.

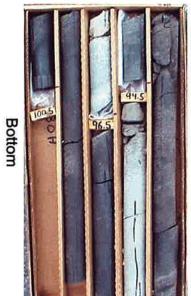
RB&G ENGINEERING INC. Provo, Utah Figure Project Location Core Photos, Drill Hole # 04-1 Center Section Cove DamSite Feasibility Study Orderville, Kane County, Utah

Bottom

Depth Cored 21.5 to 39 feet

NQ Core Dia. 1.875 in. Length of Core Box 2 ft.

RB&G ENGINEERING INC. Provo, Utah


Figure *Project* Location Core Photos, Drill Hole # 04-2 Center Section Cove DamSite Feasibility Study Orderville, Kane County, Utah

near toest slope @ ceft abut ment :

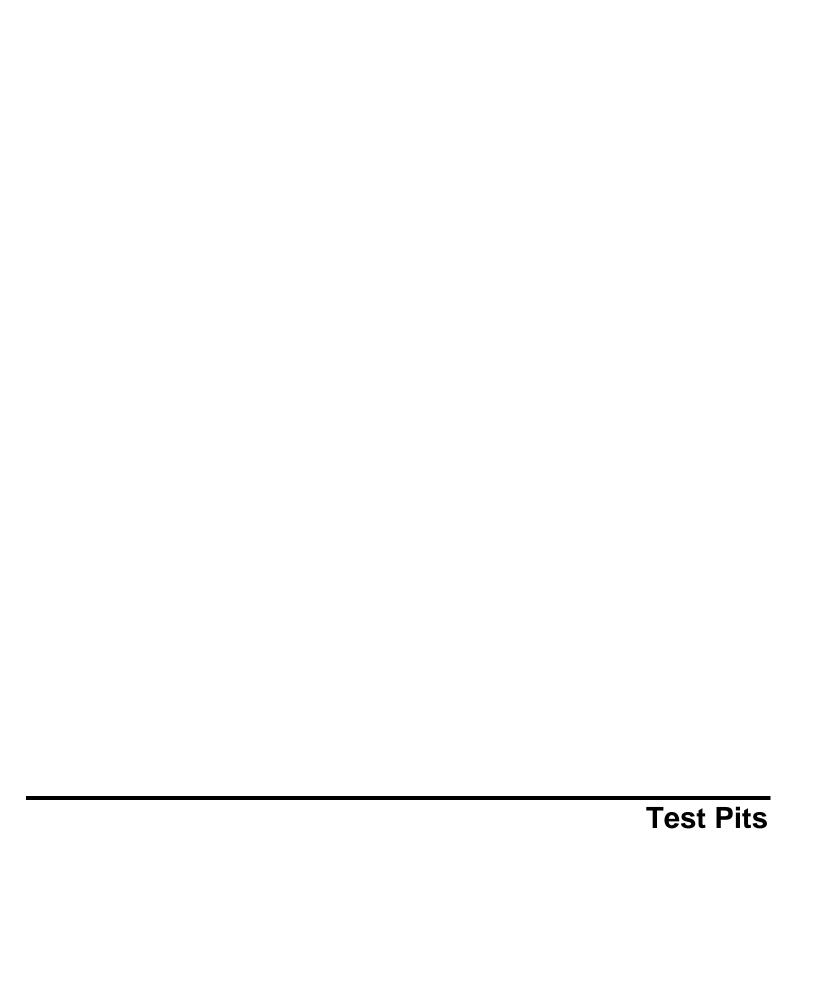
04-2

Drilled with a dip of 60°, Trend S 18°E 4.4 to 100.5 feet

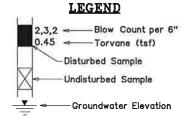
NQ Core Dia. 1.875 in. Length of Core Box 2 ft.

RB&G ENGINEERING INC. Provo, Utah

Figure Project Location Core Photos, Drill Hole # 04-3 Right Abutment Cove Dam Site Feasibility Study Orderville, Kane County, Utah


Drilled with a dip of 60° , Trend N 65° E 8.5 to 101 feet

NQ Core Dia. 1.875 in. Length of Core Box 2 ft.


RB&G ENGINEERING INC. Provo, Utah Figure Project Location Core Photos, Drill Hole # 04-5 Left Abutment Cove Dam Site Feasibility Study Orderville, Kane County, Utah

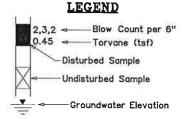
PROJECT NO.: 200401.025 TEST PIT LOG PROJECT: COVE DAM CLIENT: K.C.W.C.D. DATE: 6/1/04 LOCATION: SEE SITE PLAN ELEVATION: ~5463.0' LOGGED BY: M. STILSON PIT NO. 04-1 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE DEPTH TO WATER - INITIAL: - DRY AFTER 24 HOURS: - DRY Sheet: 1 of 1 SAMPLE Atter. Gradation Denaity pcf Gravel, % Silt/Clay, Other Tests Depth Lith- 00 (Feet) ology Elev. Туре USCS Material Description (Feet) 5460 -3 Rings 1" fine silty Block CL-1 4.8 26 12 0 3 97 sand layer Bucket 5 LEAN CLAY Ring CL-2 It. brown to brown, dry, hard, 95.1 6.4 35 16 0 2 98 Block some pinhole structure, 1" fine silty minor mineral stringers sand layer 5455 -Ring CL-2 31 15 0 26 74 Block 10 1" fine silty sand layer 1" fine silty Bag CL sand layer 5450 -15 5445 20

RB&G **ENGINEERING** Provo. Utah

06/15/04 11:02:09 AM

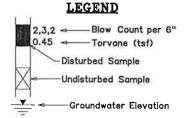
UC - Unconfined Compression Test

CT - Consolidation Test


TEST PIT LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 6/2/04 LOCATION: SEE SITE PLAN ELEVATION: ~5474.0' LOGGED BY: M. STILSON PIT NO. 04-2 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE DEPTH TO WATER - INITIAL:

DRY AFTER 24 HOURS:

THE CONTROL OF Sheet: 1 of 1 DRY SAMPLE Atter. Gradation Gravel, % Sand, % Densit) pcf Depth Lith- occurrence (Feet) Other Tests Elev. Type USCS Material Description (Feet) CL Bag 5470 LEAN CLAY W/FINE SAND It. brown to brown, very dry, hard, CL-2 Bag 40 20 0 2 98 sand intermixed throughout entire depth of test pit, some distinct pockets but no continuous layers, some pinhole structure, macro-hole structure in upper 3', trace minerals 5465 CL Bag 10 Bag CL-1 5.8 31 13 0 12 88 5460 -15-5455 20


UC - Unconfined Compression Test

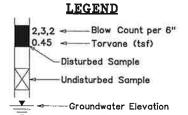
CT - Consolidation Test SG - Specific Gravity Test

TEST PIT LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 6/2/04 LOCATION: SEE SITE PLAN ELEVATION: ~5476.0' LOGGED BY: M. STILSON PIT NO. 04-3 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE DEPTH TO WATER - INITIAL: #__DRY____ AFTER 24 HOURS: #__ Sheet: 1 of 1 NOT MEASURED SAMPLE Atter. Gradation Sand, X Lith- 8 Other Tests Denait Elev. Depth USCS Type Material Description (Feet) (Feet) Bag SP 25 73 2 SAND W/GRAVEL 5475 medium grained sand, fine grained gravel CL Bag 2" silty sand layer 5470 -Bag CL LEAN CLAY W/SAND It. brown to brown, dry, hard, intermixed, fine, some pinhole structure, some silt lenses, calcite stringers CL Bag SP-SM 2" sand w/silt layer 5465 -2" silty sand layer Bag CL 15 5460 -20

RB&G **ENGINEERING** INC. Provo. Utah

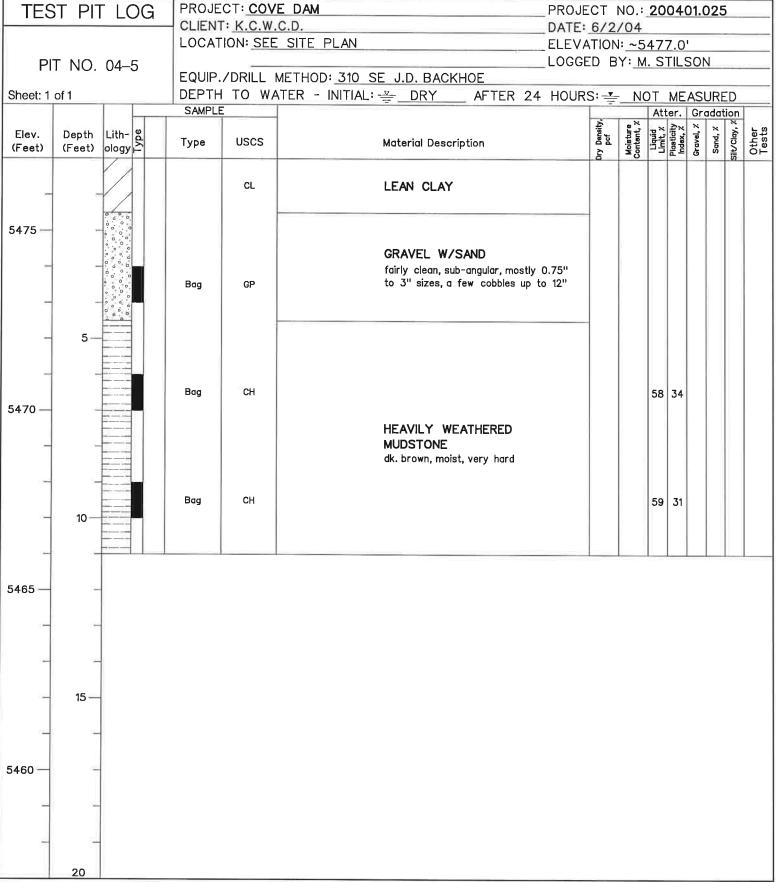
UC - Unconfined Compression Test

SG - Specific Gravity Test

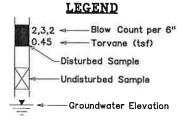

CT - Consolidation Test

TEST PIT LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 6/2/04 LOCATION: SEE SITE PLAN ELEVATION: ~5475.0' LOGGED BY: M. STILSON PIT NO. 04-4 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE DEPTH TO WATER - INITIAL:

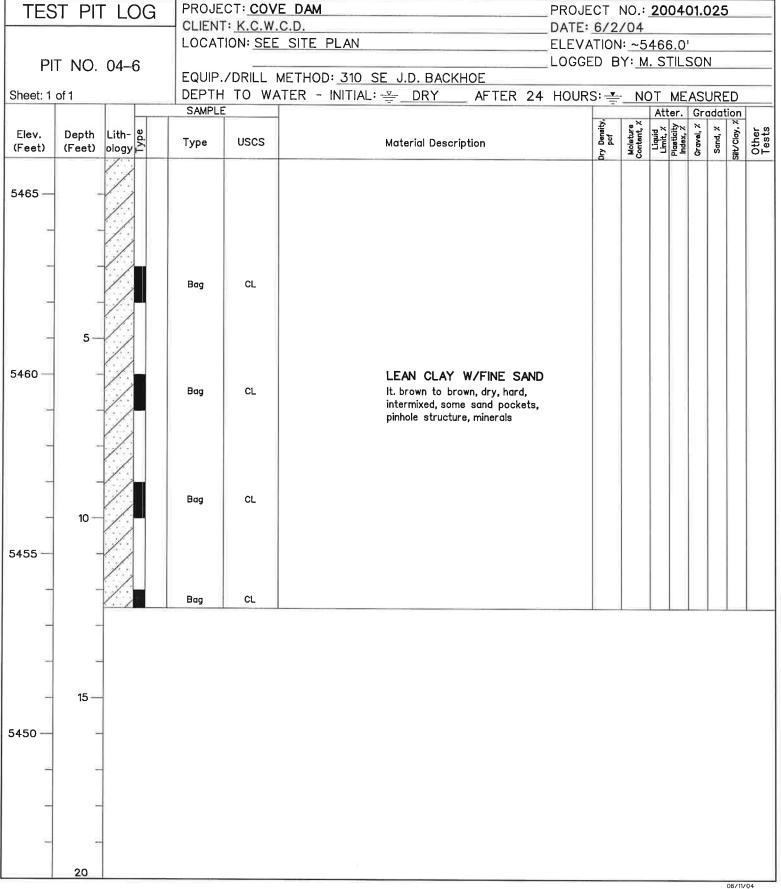
DRY AFTER 24 HOURS:
NOT MEASURED Sheet: 1 of 1 SAMPLE Atter. Gradation Denaity, pcf Sand, X Other Tests Depth Lith-Elev. USCS Type **Material Description** (Feet) Bag CL 5470 -SM 2" sand layer at 5.5' 0 82 18 LEAN CLAY It. brown to brown, dry, hard, Bag CL some small sand pockets, pinhole structure, trace minerals Bag CL 5465 -10 5460 -15 -20



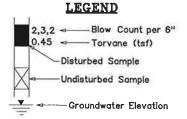
06/15/04 11:02:45 AM


UC - Unconfined Compression Test

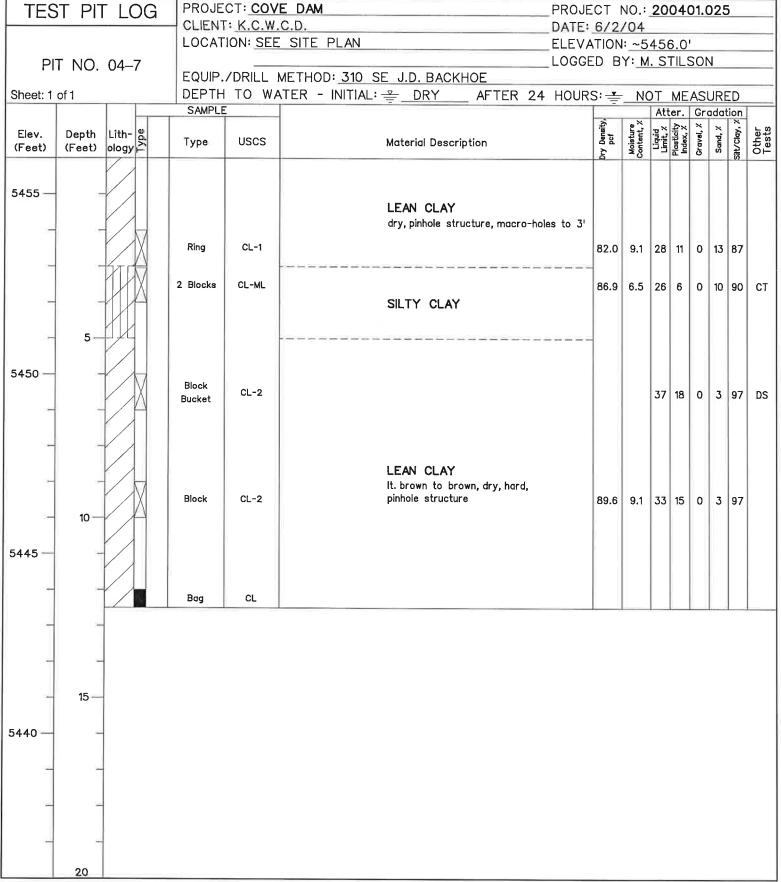
CT - Consolidation Test SG - Specific Gravity Test



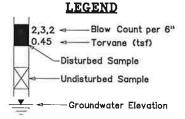
06/15/04 11:03:01 AM


UC - Unconfined Compression Test

CT = Consolidation Test



06/11/04 10:59:49 AM


UC - Unconfined Compression Test

CT - Consolidation Test SG - Specific Gravity Test

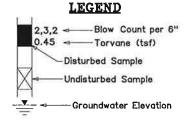
RB&G ENGINEERING INC. Provo. Utah

06/14/04 03:09:18 PM

UC - Unconfined Compression Test

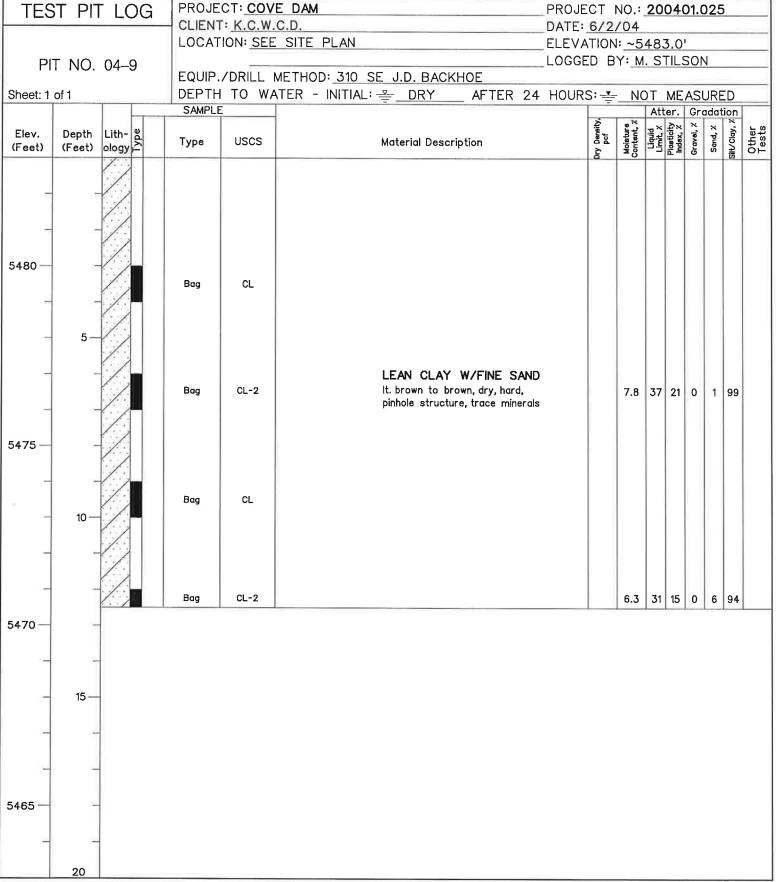
CT = Consolidation Test

SG = Specific Gravity Test DS = Direct Shear Test


TEST PIT LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 6/2/04 LOCATION: SEE SITE PLAN ELEVATION: ~5475.0' LOGGED BY: M. STILSON PIT NO. 04-8 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE DEPTH TO WATER - INITIAL:

— DRY AFTER 24 HOURS:

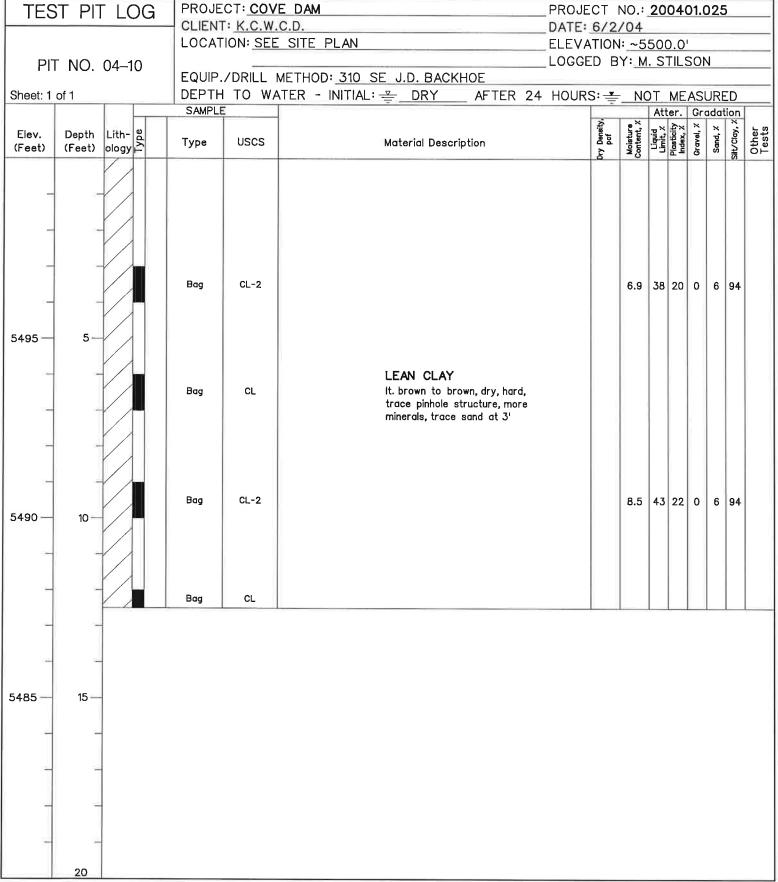
— NOT MEASURED Sheet: 1 of 1 SAMPLE Atter. Gradation Liquid Limit, X Plasticity Index, X Gravel, X Other Tests Depth Lith-Elev. USCS Type Material Description (Feet) SILTY CLAY W/SAND It. brown to brown, dry, hard, pinhole structure CL-1 33 14 0 6 94 Bag 6.9 5470 -Bag LEAN CLAY It. brown to brown, dry, hard, pinhole structure, minerals Bag CL-2 6.7 46 25 0 2 98 5465 -10 CL Bag 5460 -15 -20


RB&G ENGINEERING INC.

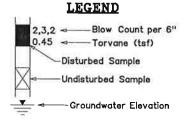
06/11/04 11:00:17 AM


UC - Unconfined Compression Test

CT - Consolidation Test



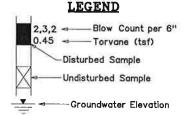
RB&G **ENGINEERING** Provo. Utah


UC - Unconfined Compression Test

CT - Consolidation Test

RB&G **ENGINEERING** Provo. Utah

UC - Unconfined Compression Test

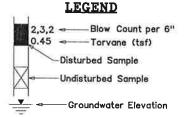

CT - Consolidation Test

TEST PIT LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 6/2/04 LOCATION: SEE SITE PLAN ELEVATION: ~5498.0' LOGGED BY: M. STILSON PIT NO. 04-11 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE Sheet: 1 of 1 DEPTH TO WATER - INITIAL: = DRY AFTER 24 HOURS:

<u>→ NOT MEASURED</u> SAMPLE Atter. Gradation Liquid Limit, % Plasticity Index, % Sand, X Other Tests Densit pcf Lith-Elev. Depth USCS Type Material Description (Feet) (Feet) ology 5495 CL-ML SILTY CLAY W/SAND 0 43 57 20 5 It. brown to brown, dry, hard, pinhole structure, fine sand - intermixed Bag CL-ML 5490 -LEAN CLAY W/SAND Bag CL-2 It. brown to brown, dry, hard, 5.7 34 16 0 17 83 pinhole structure, fine sand - intermixed 10 SILTY CLAY W/SAND It. brown to brown, dry, hard, pinhole structure, fine sand - intermixed Bag CL-ML 5485 -15 5480

RB&G ENGINEERING INC. Provo, Utah

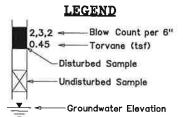
06/11/04 11:01:01 AM


UC - Unconfined Compression Test

CT - Consolidation Test

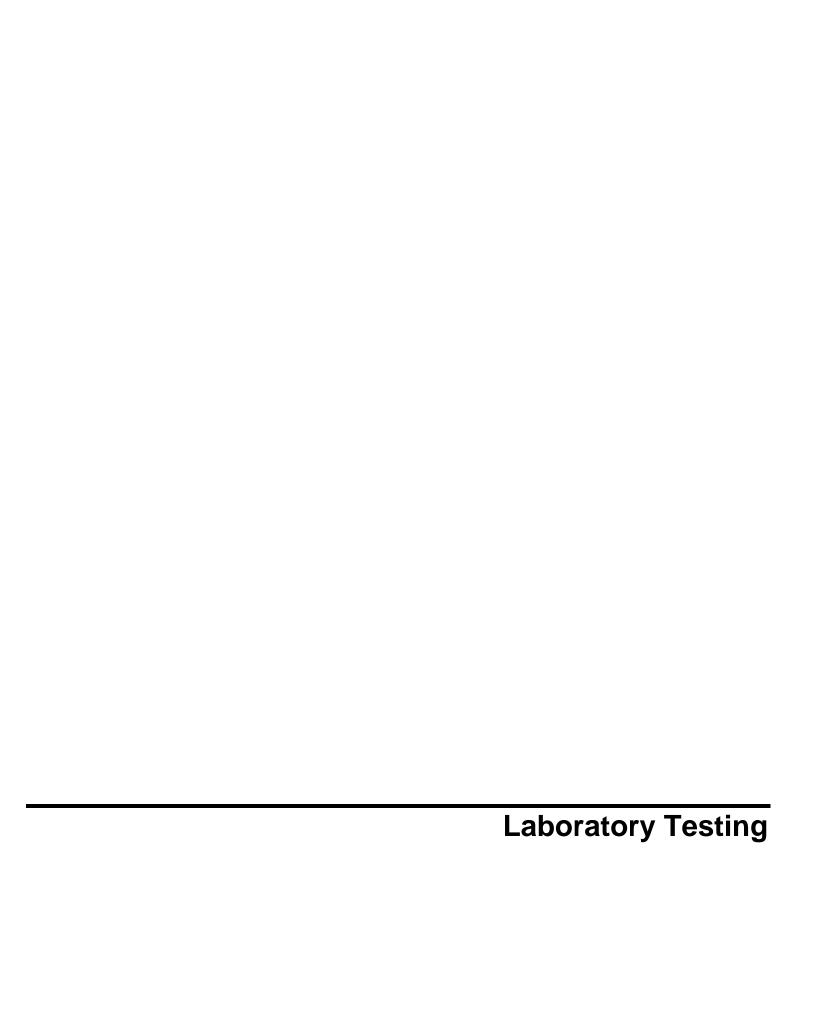
TEST PIT LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 6/2/04 LOCATION: SEE SITE PLAN ELEVATION: ~5520.0' LOGGED BY: M. STILSON PIT NO. 04-12 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE DEPTH TO WATER - INITIAL: #_ DRY __ AFTER 24 HOURS: #_ NOT MEASURED Sheet: 1 of 1 SAMPLE Atter. Gradation Sand, X Other Tests Lith- 8 Elev. Depth USCS Type Material Description (Feet) (Feet) ology SILTY CLAY W/SAND It. brown to brown, dry, hard Bag CL-ML 5515 -Bag/ SANDY SILT ML NP 0 47 53 shows layering 4.4 Block It. brown to brown, dry, hard SILTY CLAY W/SAND CL-ML Bag It. brown to brown, dry, hard 5510 10 LEAN CLAY It. brown to brown, dry, hard Bag CL-2 7.2 36 16 0 2 98 5505 15

RB&G ENGINEERING INC.


06/11/04 11:01:14 AM

UC - Unconfined Compression Test
CT - Consolidation Test

TEST PIT LOG PROJECT: COVE DAM PROJECT NO.: 200401.025 CLIENT: K.C.W.C.D. DATE: 6/2/04 LOCATION: SEE SITE PLAN ELEVATION: ~5548.01 LOGGED BY: M. STILSON PIT NO. 04-13 EQUIP./DRILL METHOD: 310 SE J.D. BACKHOE DEPTH TO WATER - INITIAL: # DRY Sheet: 1 of 1 AFTER 24 HOURS: 🛬 NOT MEASURED SAMPLE Atter. Gradation Liquid Limit, % Plosticity Index, % Density, pcf Sand, X Other Tests Lith- & Elev. Depth USCS Туре Material Description (Feet) (Feet) ology 6" clay layer Bag SM 8" clay layer 5515 SILTY SAND W/CLAY LAYERS Bag SM It. brown to brown, dry 12" clay layer SM Bag 5510 -Bag SM 5505 -15 -


RB&G ENGINEERING INC. Provo. Utah

06/11/04 11:01:30 AM

UC - Unconfined Compression Test

CT - Consolidation Test

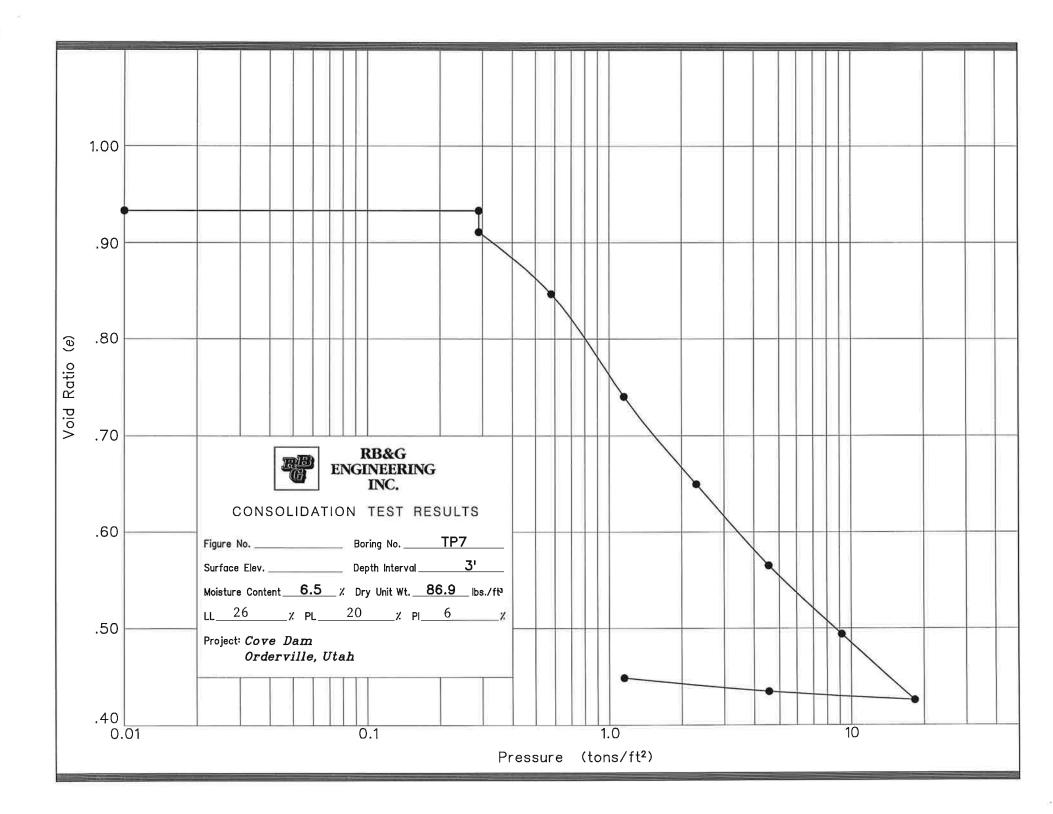
Table 1

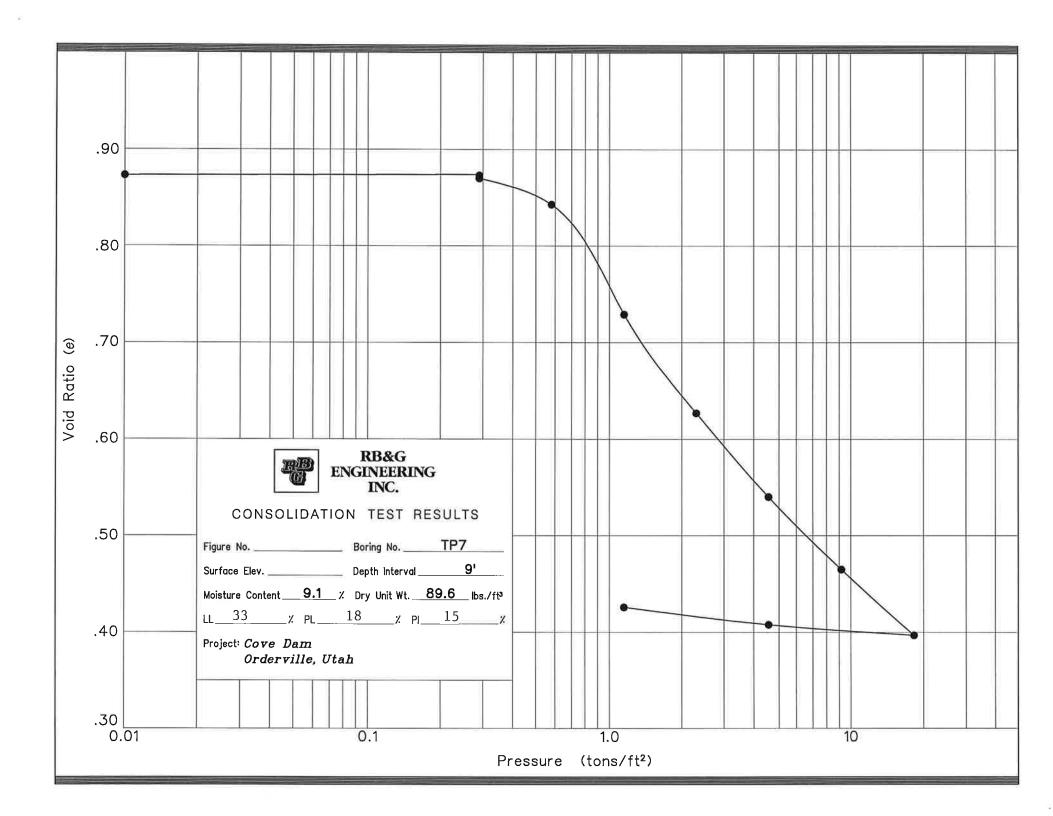
SUMMARY OF TEST DATA

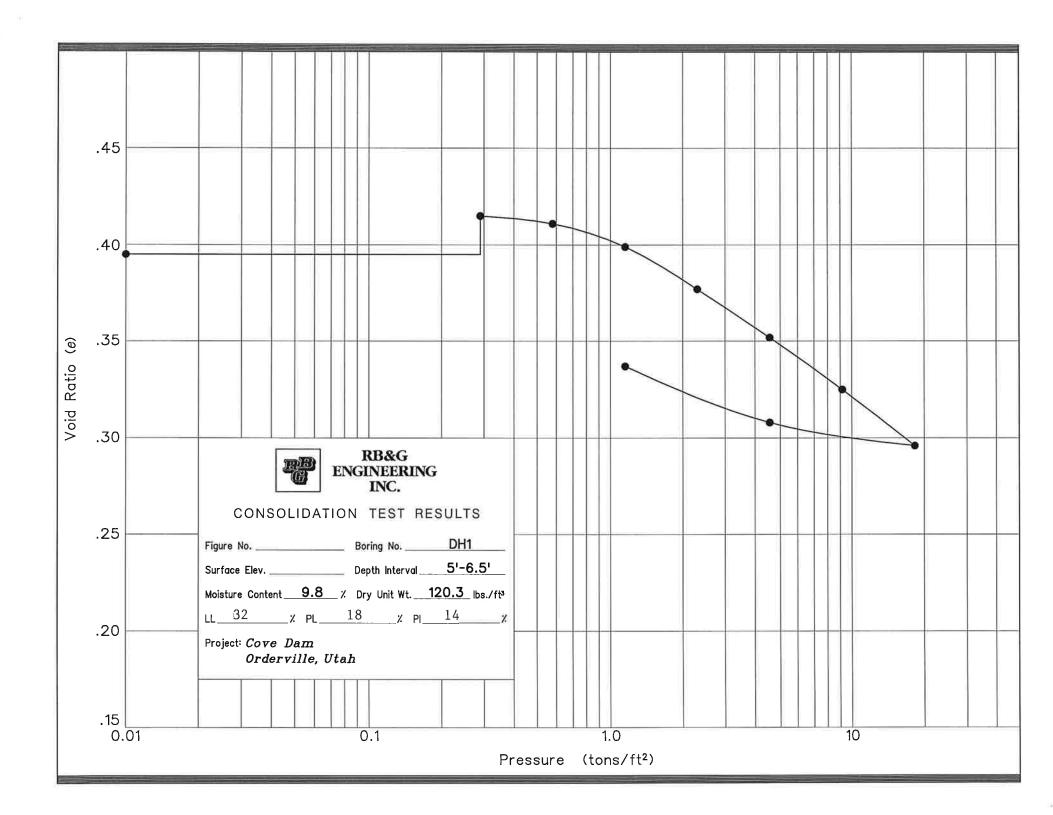
PROJECT LOCATION

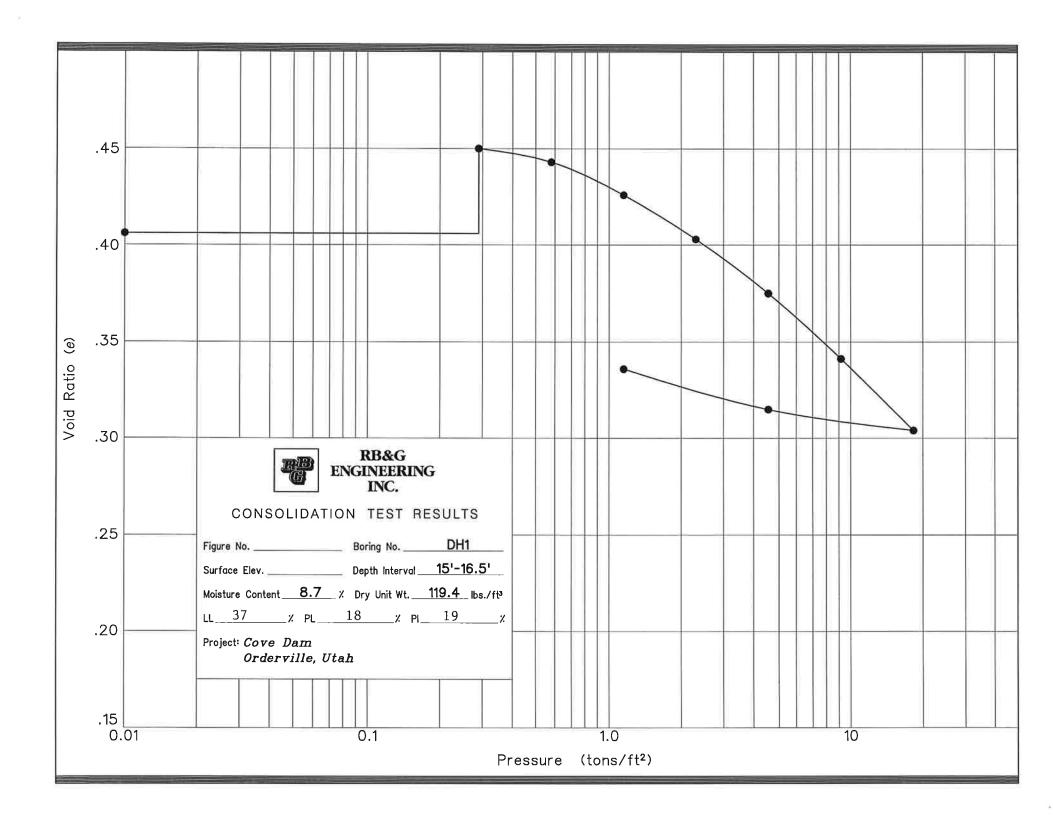
Cove Dam

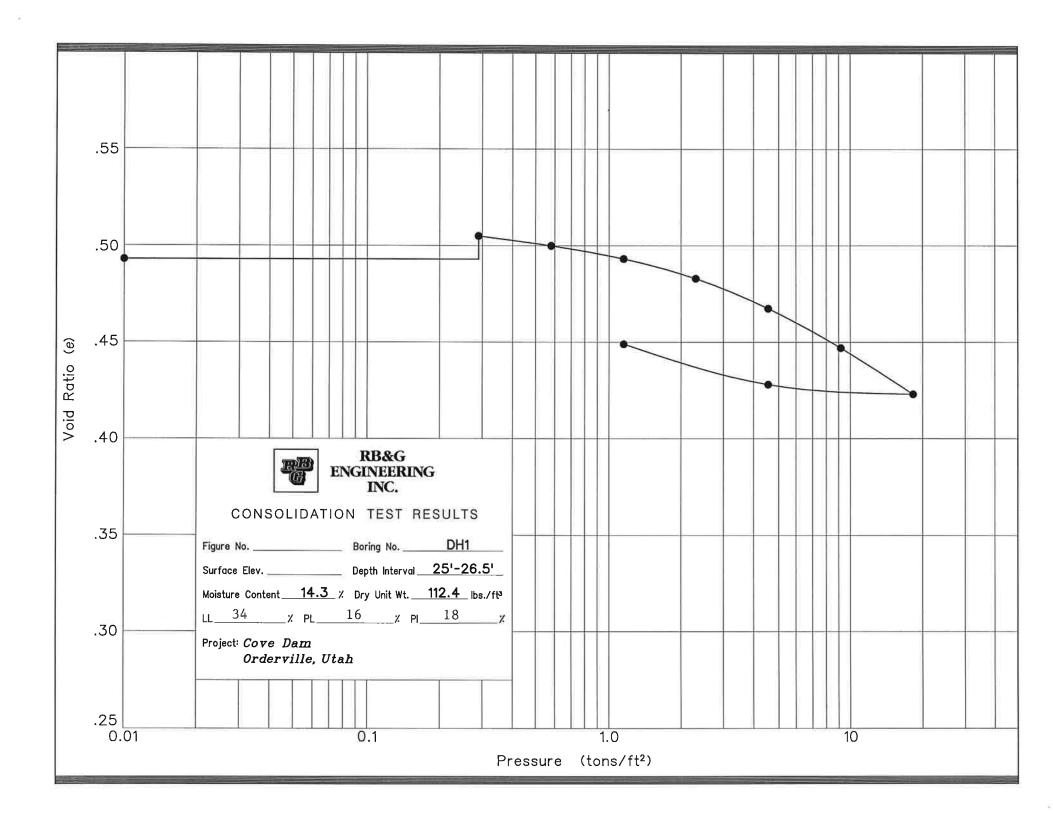
Kane County, Utah

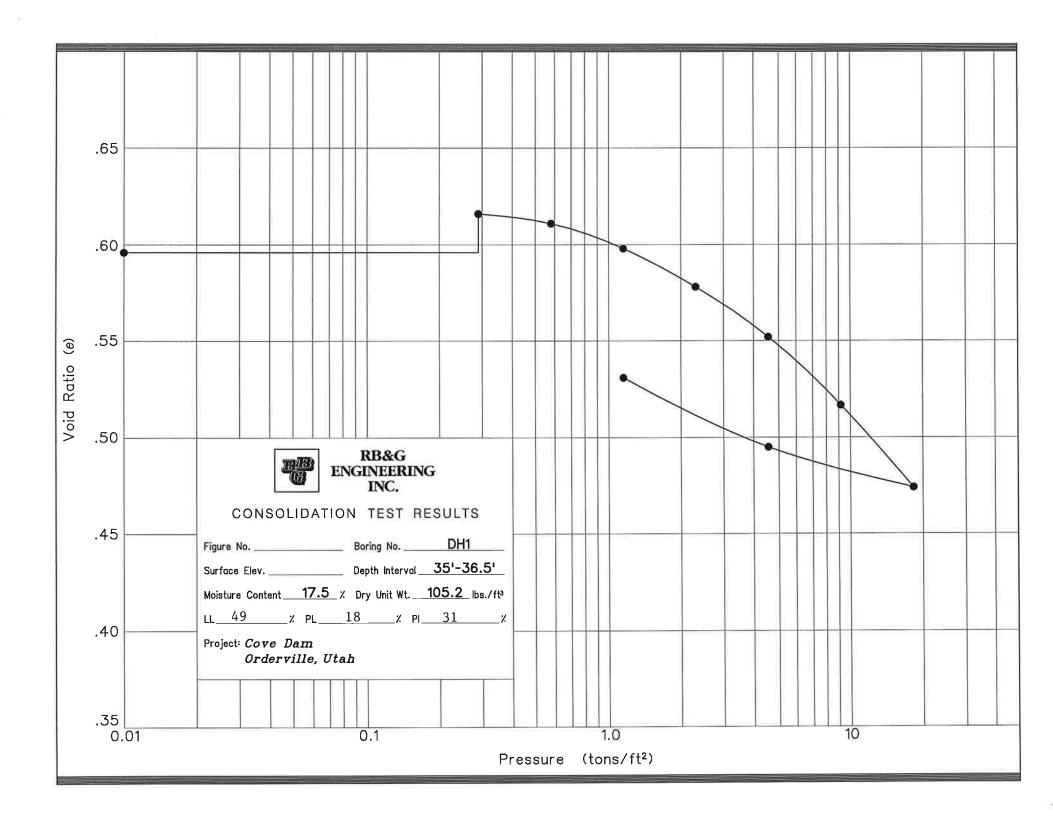

PROJECT NO.

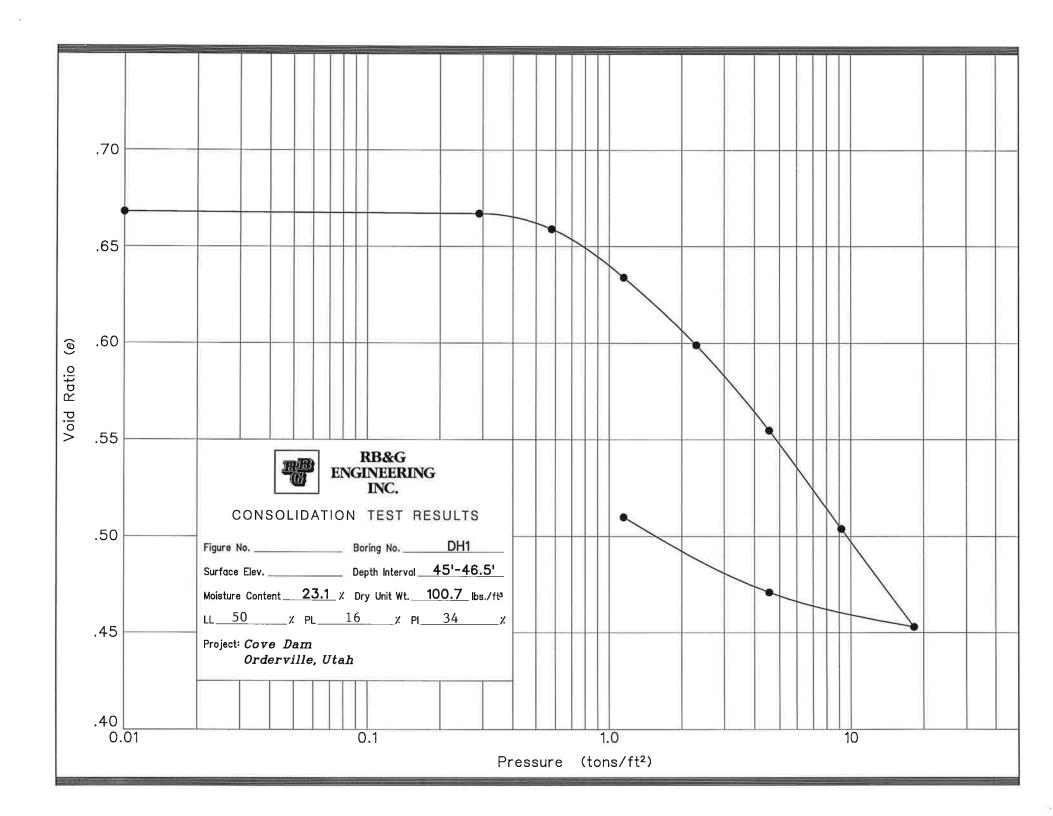

200401-025

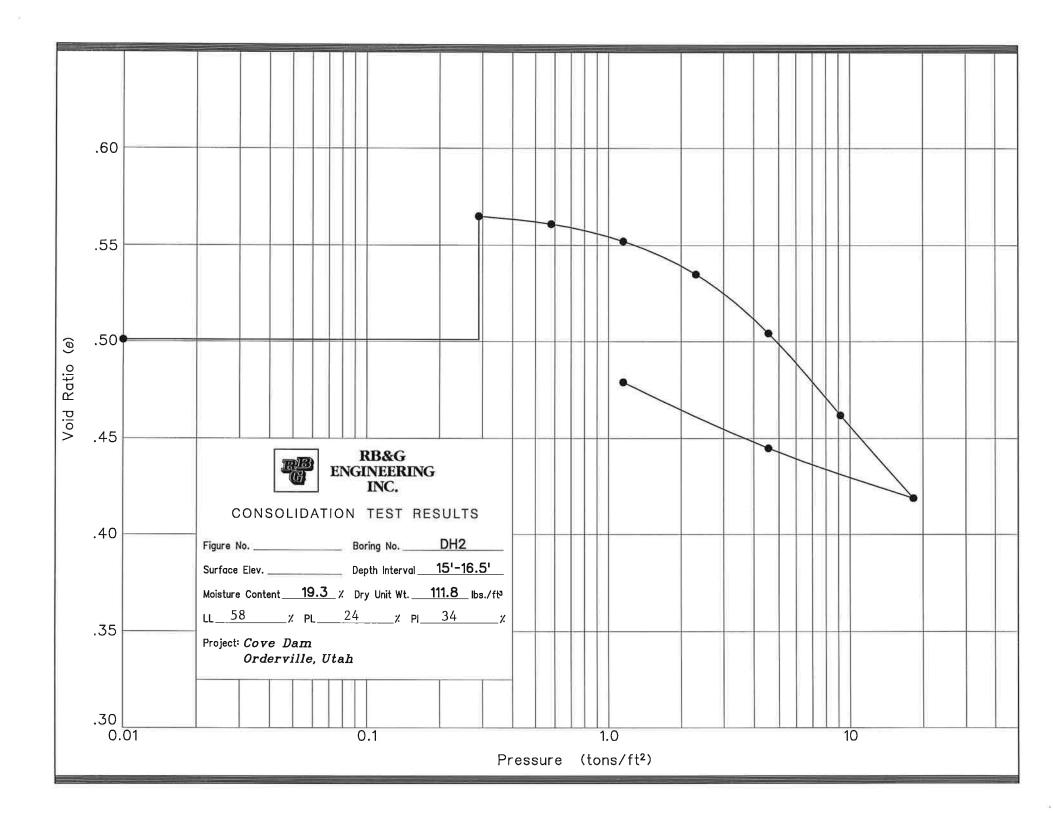

FEATURE

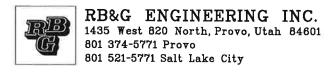

	DEPTH		IN-P	LACE		АТ	TERBERG L	IMITS	MECHA	ANICAL AN	ALYSIS	UNIFIED
HOLE NO.	BELOW GROUND SURFACE (ft)	MATERIAL	DRY UNIT WEIGHT (pcf)	MOISTURE (%)	PINHOLE TEST RESULTS	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	PLASTICITY INDEX (%)	PERCENT GRAVEL	PERCENT SAND	PERCENT SILT & CLAY	SOIL CLASSIFICATION SYSTEM (modified)
DH-1	5-6	Soil	120.3	9.8		32	18	14	0	10	90	CL-1
	15-16.5	Soil	119.4	8.7		37	18	19	0	17	83	CL-2
	25-26.5	Soil	112.4	14.3		34	16	18	0	6	94	CL-2
	35-36.5	Soil	105.2	17.5		49	18	31	0	3	97	CL-2
	45-46	Soil	100.7	23.1		50	16	34	0	6	94	CL-2/CH
	53	Bedrock		16.4		82	30	50	0	0	100	СН
	73	Bedrock		13.2		70	25	45	0	0	100	СН
DH-2	6.5-8	Soil		12.2		45	14	31	0	2	98	CL-2
	15-16.5	Soil	111.8	19.3		58	24	34	0	0	100	СН
	26	Bedrock		13.5		70	23	47	0	0	100	СН
DH-3	14	Bedrock		13.7		54	21	33	0	0	100	СН
DH-5	41	Bedrock		4.7		43	17	26	0	9	91	CL-2
	48	Bedrock		12.6		47	23	24	0	2	98	CL-2
TP-1	3-4	Soil		4.8	ND2	26	16	12	0	3	97	CL-1
	6-7	Soil		6.4	ND2	35	19	6	0	2	98	CL-2
	9-10	Soil		3.4	ND3	31	16	15	0	26	74	CL-2
TP-2	6-7	Soil		8.6		40	20	20	0	2	98	CL-2
	12-12.5	Soil		5.8	ND3	31	18	13	0	12	88	CL-1
TP-3	0-1	Soil							25	73	2	SP
TP-4	5.5	Soil							0	82	18	SM
TP-5	6	Bedrock				58	24	34				СН
	9	Bedrock				59	28	31				СН
TP-7	2	Soil	82.0	9.1	ND2	28	17	11	0	13	87	CL-1
	2-3	Soil	86.9	6.5	ND3	26	20	6	0	10	90	CL-ML
	6-7	Soil		4.0	ND2	37	19	18	0	3	97	CL-2
	9-10	Soil	89.6	9.1		33	18	15	0	3	97	CL-2
TP-8	3-4	Soil		6.9	ND3	33	19	14	0	6	94	CL-1
	9-10	Soil		6.7	ND2	46	21	25	0	2	98	CL-2
TP-9	6-7	Soil		7.8		37	16	21	0	31	99	CL-2
	12-12.5	Soil		6.3		31	16	15	0	6	94	CL-2
TP-10	3-4	Soil		6.9		38	18	20	0	6	94	CL-2
	9-10	Soil		8.5		43	21	22	0	6	94	CL-2
TP-11	3-4	Soil		4.4		20	15	5	0	43	57	CL-ML
	9-10	Soil		5.7		34	18	16	0	17	83	CL-2
TP-12	6-7	Soil		4.4				NP	0	47	53	ML
	12-12.5	Soil		7.2		36	20	16	0	2	98	CL-2

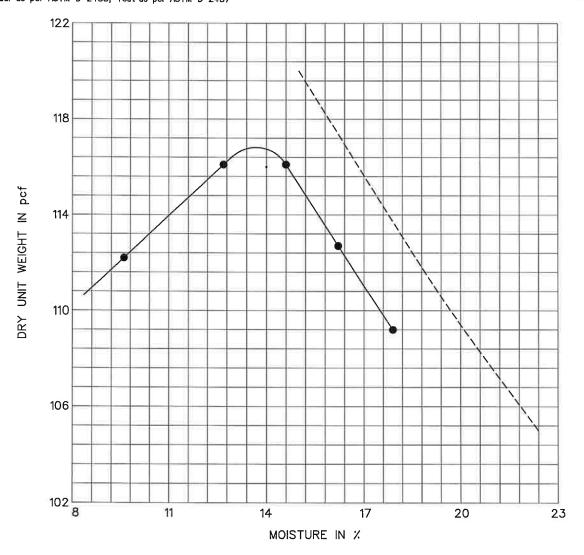

NP=Nonplastic










PROJECT NO.	200401.025	

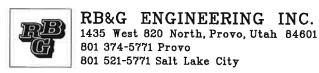
	MOISTURE-DENSITY RE	OITAL	V (PRC	CTOR)	
Project	COVE DAM		Date	6/9/04	
Location	ORDERVILLE, UTAH / TEST PIT NO. 1 AT	3'		Technician	G. PEASLEE
Material Description	LT. BROWN TO BROWN LEAN CLAY	USCS	CL-1	Method	ASTM D 698

Procedure Used ¹	Α
Classification Procedure ²	Test

¹ A-No. 4 Sieve, B-¾" Sieve, C-¾" Sieve ² Visual as per ASTM D 2488, Test as per ASTM D 2487

Maximum Dry Density (pcf)	116.0
Optimum Moisture Content (%)	14.0
Modified Maximum Density (pcf)	
Modified Optimum Moisture Content (%)	

odified Maximum Density (pcf)	Specific Gravity of Soil+¾
odified Optimum Moisture Content (%)	Percent Oversize


Type of Specific Gravity is BULK Unless Otherwise Indicated

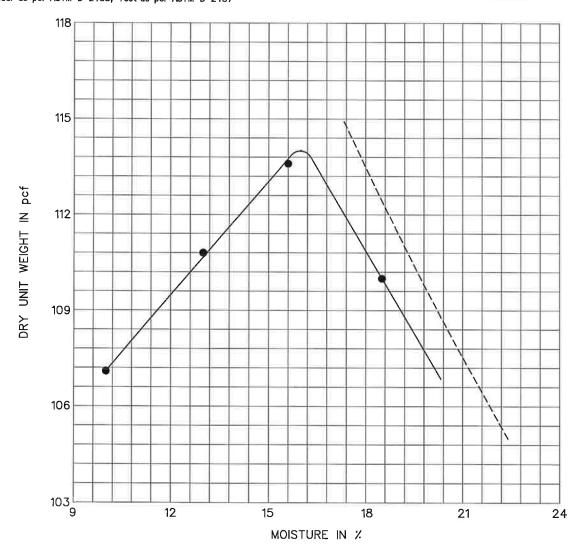
OVERSIZE CORRECTION-ASTM D 4718

2.70 | Est.

Specific Gravity of Soil

──── 100% Saturation Curve

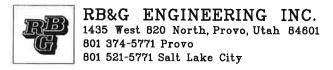



PROJECT NO.	200401.025

	MOISTURE-DENSITY RELATION (PRO	CTOR)	
Project	COVE DAM	Date	6/9/04
Location	ORDERVILLE, UTAH / TEST PIT NO. 7 AT 3'-4'	Technician	G. PEASLEE
Material Description	LT. BROWN TO BROWN SILTY CLAY USCS CL-ML	Method	ASTM D 698

ĺ	Procedure Used ¹	Α
	Classification Procedure ²	Test

¹ A-No. 4 Sieve, B-¾" Sieve, C-¾" Sieve ² Visual as per ASTM D 2488, Test as per ASTM D 2487

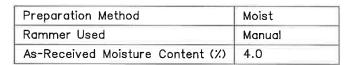


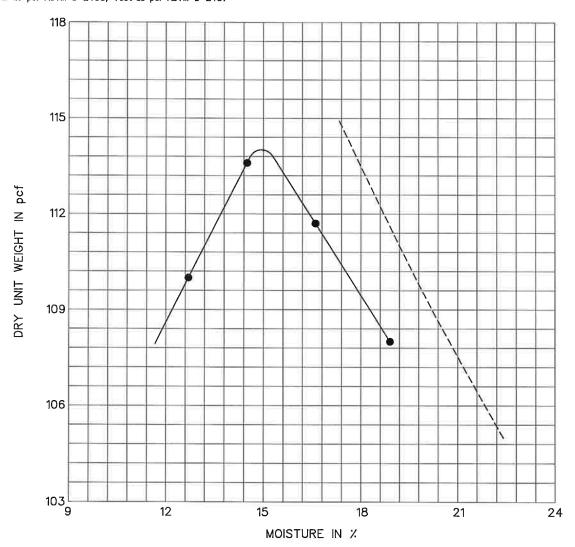
Maximum Dry Density (pcf)	114.0
Optimum Moisture Content (%)	16.0
Modified Maximum Density (pcf)	
Modified Optimum Moisture Content (%)	

Specific Gravity of Soil	2.70	Est.
OVERSIZE CORRECTION-AST	M D 4718	
Specific Gravity of Soil + 3/4		
Percent Oversize		

---- 100% Saturation Curve

Type of Specific Gravity is BULK Unless Otherwise Indicated

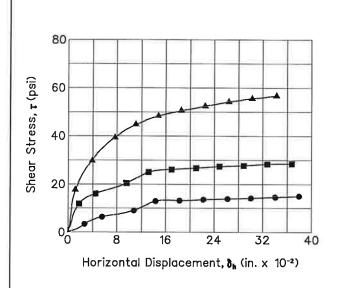


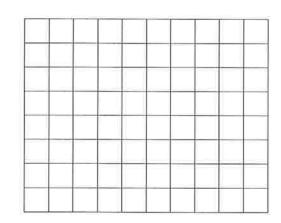

PROJECT NO.	200401.025
	· · · · · · · · · · · · · · · ·

	MOISTURE-DENSITY F	RELATION (PRO	CTOR)	
Project	COVE DAM		Date	6/9/04
Location	ORDERVILLE, UTAH / TEST PIT NO. 7	G. PEASLEE		
Material Description	LT. BROWN TO BROWN LEAN CLAY	USCS CL-2	Method	ASTM D 698

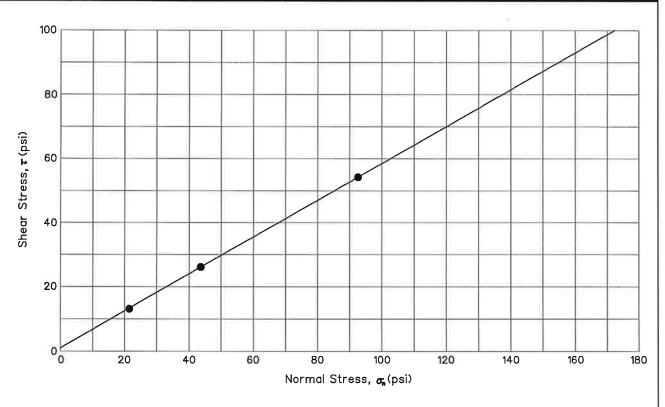
Procedure Used ¹	Α
Classification Procedure ²	Test

 $^{^1}$ A-No. 4 Sieve, B- $\frac{3}{4}$ " Sieve, C- $\frac{7}{4}$ " Sieve 2 Visual as per ASTM D 2488, Test as per ASTM D 2487





Maximum Dry Density (pcf)	114.0
Optimum Moisture Content (%)	15.0
Modified Maximum Density (pcf)	-
Modified Optimum Moisture Content (%)	


Specific Gravity of Soil	2.70	Est.
OVERSIZE CORRECTION-AS	ГМ D 4718	
Specific Gravity of Soil + 3/4		
Percent Oversize		

Type of Specific Gravity is BULK Unless Otherwise Indicated

Horizontal Displacement, δ_h (in. x 10^{-2})

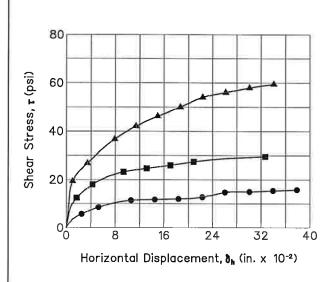
Test Sample	Sample Data		Degree	N 1	Maximum	Strain	Shear Strength Parameters		
No. or Symbol	Size (inches)	Dry Density (pcf)	Moisture Content (%)	of Saturation (%)	Normal Stress 8. (psi)	Shear Stress r (psi)	Rate (inches/ minute)	Friction Angle ¢ (degrees)	Cohesion (c/psi)
•	2.375	80.4	10.4	~100	21.5	12.9	10013		
	2.375	82.3	10.4	~100	43.7	26.1	.0013	29.9	1
A	2.375	87.1	8.5	~ 100	92.6	54.2	.0013		

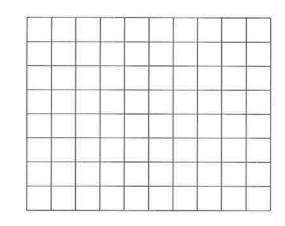
Vertical Displacement, & (in. x 10⁻²)

RB&G ENGINEERING INC.

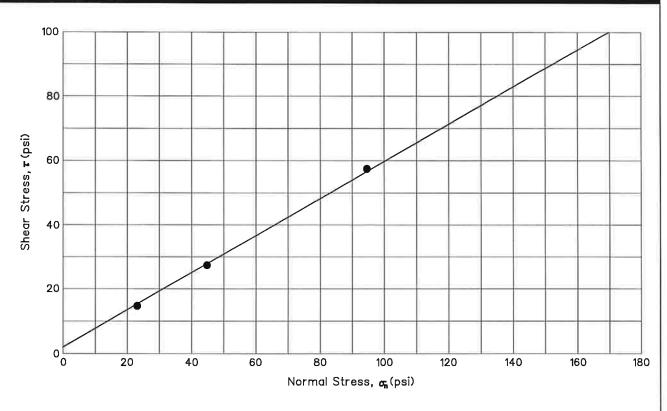
Provo. Utah

DIRECT SHEAR TEST


Project: Cove Dam


Orderville, Utah

HOLE NO.: TP7


DEPTH: 6'

Figure

Horizontal Displacement, 8_h (in. x 10⁻²)

	REMOLDI			CTED TO	98% MA	XIMUM DI	ENSITY	Shear S	Strength
Test Sample	Sample	Sample Sample Date		Degree	Normal	Maximum	Strain	Shear Strength Parameters	
No. or Symbol	Size Dry Moisture Of Stress Saturation & Content Saturation	Shear Stress r (psi)	Rate (inches/ minute)	Friction Angle ¢ (degrees)	Cohesion (c/psi)				
•	2.375	111.5	15.1	100	23.1	14.7	.0013		
_	2.375	111.5	15.1	100	44.8	27.4	.0013	30.2	2
	2.375	111.5	15.1	100	94.6	57.9	.0013		

Vertical Displacement, & (in. x 10⁻²)

RB&G ENGINEERING INC.

Provo, Utah

DIRECT SHEAR TEST

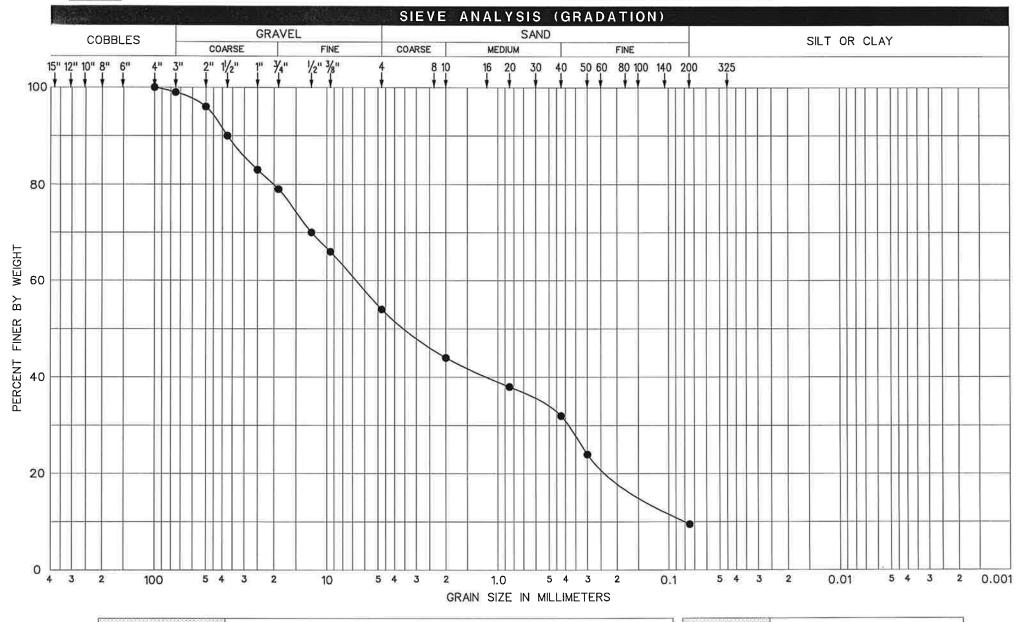
Project: Cove Dam

Orderville, Utah

HOLE NO.: TP7

DEPTH: 6'

Figure


RB&G ENGINEERING INC.

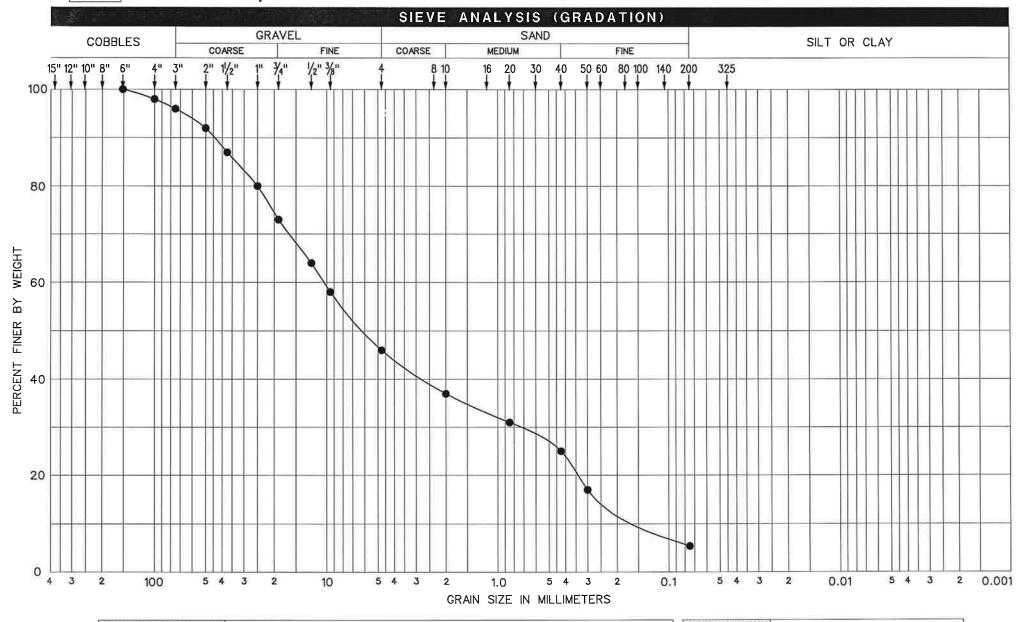
1435 West 820 North, Provo, Utah 84601 801 374-5771 Provo

801 521-5771 Salt Lake City

PROJECT NO.

200401.025

Project	COVE DAM		
Location	ORDERVILLE, UTAH		
Sample No./Depth	ROSE PIT		
Material Description	WELL GRADED GRAVEL W/SILT & SAND	USCS	GW-GM

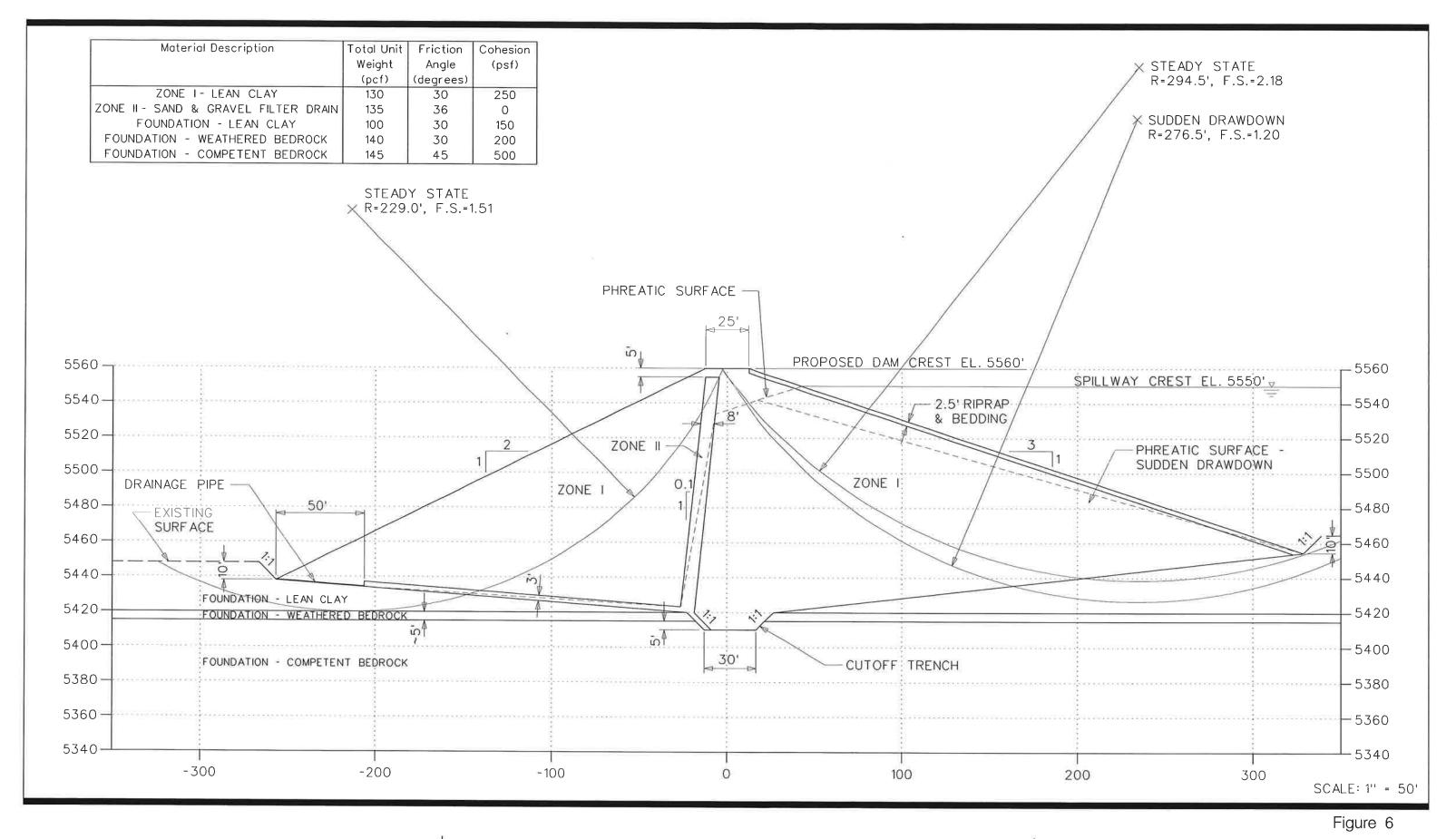

Date	6/10/04
Technician	K. BRADFORD
Procedure	PLAIN WATER
Method	ASTM C117, C136, C566

RB&G ENGINEERING INC. 1435 West 820 North, Provo, Utah 84601 801 374-5771 Provo 801 521-5771 Salt Lake City

PROJECT NO.

200401.025

Project	COVE DAM					
Location	ORDERVILLE, UTAH					
Sample No./Depth	TATE PIT					
Material Description	POORLY GRADED GRAVEL W/SAND	USCS GP				


Date	6/10/04
Technician	K. BRADFORD
Procedure	PLAIN WATER
Method	ASTM C117, C136, C566

NRCS Cove Reservoir Project

APPENDIX E-15

CONCEPTUAL EMBANKMENT DESIGN

Draft Plan-EA October 2020

NRCS Cove Reservoir Project

APPENDIX E-16

CONCEPT DESIGN DRAWINGS

Draft Plan-EA October 2020

REVISIONS

STAGE-STORAGE CURVE

KANE

AUGUST 2, 2019

E 357-21 Overall EXH.dwg

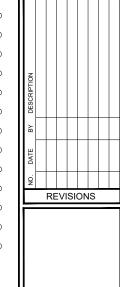


EXHIBIT COVE RESERVOIR
KANE COUNTY WATER CONSERVANCY DISTRICT PRELIMINARY SPILLWAY AND OUTLET WORKS DESIGN

357-21 JTM AUGUST 2, 2019 AS NOTED

NRCS Cove Reservoir Project

APPENDIX E-17SITES EROSION ANALYSIS

Draft Plan-EA October 2020

Cove Reservoir SITES Analysis

Kane County, Utah

1435 West 820 North Provo, Utah 84601 801-374-5771 Provo 801-521-5771 Salt Lake City 801-374-5773 Fax

MEMORANDUM

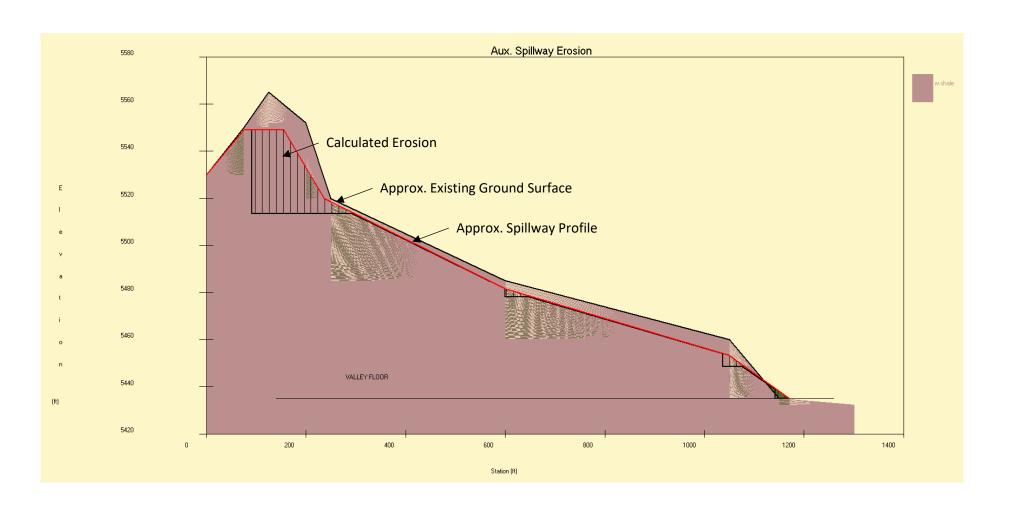
To: Brent Gardner, P.E.

From: Brandon Horrocks, P.E.

Date: November 13, 2019

This memorandum describes auxiliary spillway stability and integrity analyses performed for the proposed Cove Dam, located in Kane County, Utah. The purpose of these analyses was to evaluate if the planned auxiliary spillway to be excavated into the native materials near the left abutment of the dam will meet NRCS stability and integrity design requirements. It is anticipated that this memorandum will be included in Appendix D of the project Environmental Assessment, and that the studies and documents referenced herein, such as the hydrological analyses, 2004 Cove Dam Feasibility Study, and preliminary design drawings will also be included in Appendix D, and the reader will have access to these documents for reference.

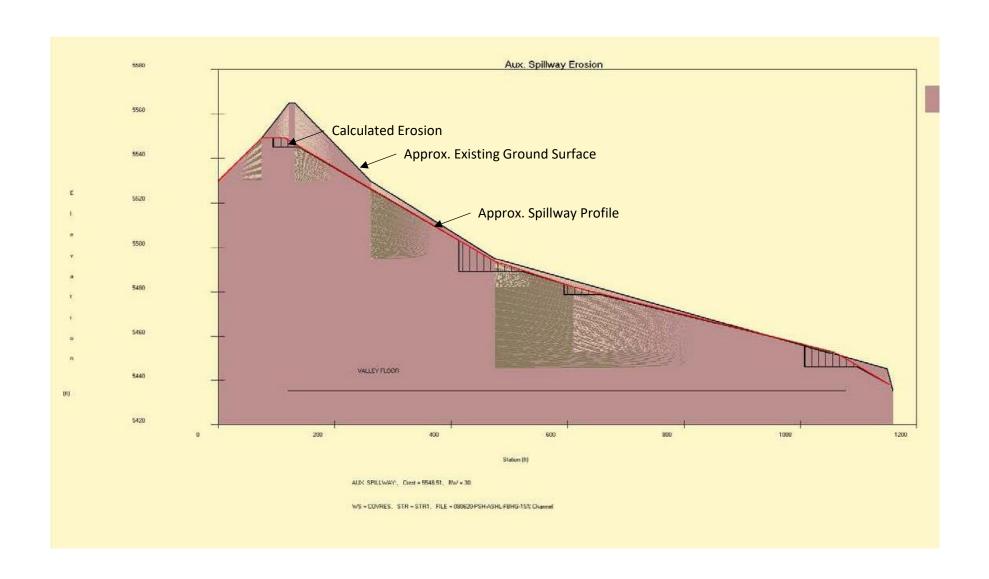
Flood routing and spillway evaluation analyses were performed for the calculated Stability Design Hydrograph (SDH) and Freeboard Hydrograph (FBH). The reservoir inflow hydrographs were provided to us by Alpha Engineering. The calculated SDH and FBH provided to us have peak reservoir inflows of 1,516 and 3,524 cfs, respectively. Routing analyses performed indicated that the SDH can be routed through the proposed Cove Reservoir and principal spillway without use of the auxiliary spillway; therefore, no erosion within the auxiliary spillway would occur as a result of the stability design storm, and the NRCS stability design requirements would be satisfied. An integrity design erosion analysis for the auxiliary spillway while passing the FBH was performed using the NRCS SITES computer program (version 2015.1.8). The calculated peak flow through the auxiliary spillway while routing the FBH through the reservoir is 378 cfs. NRCS requires that the spillway be designed to not breach during passage of the FBH.


The boring completed on the left abutment nearest the proposed auxiliary spillway during the 2004 feasibility study (DH04-5) encountered weathered shale at the ground surface. Based upon

a review of erosion parameters for weathered shale included in the SITES program Help menu, a head cut index of 0.2 and representative diameter of 1 inch was used to model the weathered shale materials.

The existing ground surface and proposed spillway profile along the planned auxiliary spillway alignment were inputted into the SITES model. The existing topography along the planned spillway is as steep as about 1.5H:1V (Horizontal:Vertical). The planned spillway profile will require excavation into the native subsurface materials, resulting in spillway flowline grades as steep as about 3H:1V.

The results of the SITES analysis are illustrated on the attached output graphic, and it will be noted that the estimated erosion as a result of the FBH does not result in a spillway breach. The results of the analysis indicate that NRCS auxiliary spillway integrity requirements are satisfied.


We appreciate the opportunity to provide this service to you. Please feel free to contact us if you have any questions.

SITES OUTPUT

Cove Reservoir Kane County, Utah

SITES OUTPUT

Cove Reservoir Kane County, Utah ***********************

SITES XEQ 08/28/2020 WATER RESOURCE SITE ANALYSIS COMPUTER PROGRAM VER 2005.1.8 (USER MANUAL - DATED DECEMBER 2005)

	2005.1.8 16:21:21		(USER M	ANUAL - DA'	TED DECEMB	ER 2005)	
*****	******	****** 80	-80 LIST O	F INPUT Da	ta ******	******	******
SITES SAVMOV	0 101	5COVRES	COV RES			4.74	C3
SAVMOV STRUCTURE	101 1 STR1	Cove Res 5470 5480 5490 5500 5510 5520 5530 5540 5545.5 5550 5552				0.18 62.26 303.40 738.03 1400.09 2323.02 3541.97 5073.81 6055.03 6934.92 7347.18 7450.25	1
ENDTABLE HYD	1		Principal	Spillway			
		1 0 15 15 16 16 17 17 18 19 20 20 21 22 24 25 27 29 31 34 38 43 51 65 96 850 111 70 54 45 39 35 32 29	11 15 16 16 17 17 18 18 19 20 21 21 23 24 25 27 29 31 35 39 45 53 69 109 479 98 65 51 43 38 34 31 29	14 15 16 16 17 17 18 18 19 20 21 22 23 24 26 27 29 32 35 40 46 56 74 127 259 88 62 50 42 37 33 33 30 28	15 15 16 16 17 17 18 18 19 20 21 22 23 24 26 28 30 33 36 41 48 58 80 157 172 81 59 48 41 36 33 30 28	15 16 16 17 17 18 19 19 20 21 22 23 25 26 28 30 33 37 42 49 61 87 219 132 75 56 46 40 35 32 29 27	

		27 25 24 23 22 21 20 19 18 18 17 17 16 16 15	27 25 24 22 21 20 20 19 18 17 17 16 16 15 15	26 25 23 22 21 20 19 19 18 17 17 16 16 15 15	26 24 23 22 21 20 19 19 18 17 17 16 16 15	26 24 23 22 21 20 19 18 18 17 17 16 16 15	
ENDTABLE HYD	3		Auxiliarv	Spillway	(Local)		
11110	3	0.3	Auxiliary	SPIIIWAY	(LOCAL)		
		0 6 2027	0 39 2180	0 194 1955	0 687 1683	0 1365 1441	
		1248	1107	1001	924	874	
		833 180	748 112	589 73	423	283 28	
		160	9	5	47 3	1	
		1	0			_	
ENDTABLE							
HYD	5	1 0	Freeboard	(General)			
		1.2	0	4	35	84	
		195	425	1352	3365	3296	
		2008	1331	1060	912	792	
		742	664	624	613	611	
		547 1	262 0	90	24	5	
ENDTABLE		1	O				
WSDATA	2C CR		4.74				
PDIRECT				9.40	16.00		
POOLDATA	ELEV		5545.5		5552	5435	SC
PSINLET PSDATA	1	1 1000	3.75 30		0.012	5450	
ASSPRFL	41	1000	30		0.012	3130	
	0	5530	75	5549.2	115	5549.2	
	475	5493.8	610	5482.3	1057	5453	
	1153	5438					
ENDTABLE ASSURFACE	41	1170	1				
11000111101	0	1170	.025	0	1		
ENDTABLE							
ASDATA	41			2			1
BTMWIDTH ASMATERIAI	FEET	30					
MINITERIAL	1	50	1	75	115	.25	
ENDTABLE							
ASCOORD	1	W.Shale	N		100		
	0 132	5530 5565	75 262	5549.3 5530	122 475	5565 5495	
	1150	5445	1155	5440	1160	5435	
		-		-		, _ 	

ENDTABLE GRAPHICS I

GO, DESIGN LCPIO TYPE2 24

SAVMOV 2 101 1

ENDJOB

STR1

**** MESSAGE - DEFAULT TOPSOIL FILL MATERIAL PARAMETERS USED.

**** MESSAGE - AUXILIARY SPILLWAY CREST ELEVATION IS SET TO 5549.20 FROM THE ASSPRFL RECORDS.

**** MESSAGE - VALUES FROM ASSURFACE, REACH 1 IMPLY NO VEGETAL COVER WITH "n" OF 0.025.

XEQ 08/28/2 VER 2005.1.	8	(V RES Cove Res			WSID= COVRES SUBW= CR	S
FIME 16:21:	21	SITE = STR1	00.00 1.02	PASS=	1	PART= 1	
*****	*****	MATERIAL PI	ROPERTIES	*****	*****	*****	*
		DRY		PERCENT		DETACH. RI	
MATERI.		DENSITY lbs/CuFt	Kh	CLAY		RATE DIAM/(lb/SqFt) ind	
W.Shale	50.	115.	0.25	75.0	(1 0/11//	1.0	
TS_FILL	0.	115. 100.	0.05	0.0		0.0	
GEN_FIL	L 50.	115.	0.25	75.0		1.0	00
*****	*****	***** BASI	C Data **	*****	*****	*****	**
	UMID CLIMAT		o baca		CLASS		
NF.LOW HYDR	OGRAPH(S) E	NTERED					
RECIP Q	-PS,1-DAY	Q-PS,10-DAY	P-SD		P-FB		
	0.00	0.00	9.40		16.00		
ISDATA -	CN	DA-SM	TC/L		-/H	ORF	
	0.00	4.74	0.00		0.00	~	
SITEDATA- P	ERM POOL	CREST PS	FP SED	V.	ALLEY FI	L 378?	
	0.00	5545.50	0.00	5	435.00		
В	ASEFLOW	INITIAL EL	EXTRA VOL	. S	ITE TYPE	Ξ	
	0.00	0.00	0.00	:	DESIGN		
SDATA - N	O. COND	COND L	DIA/W		-/H		
	1.00		30.00				
	PS N	KE	WEIR L		TW EL		
	0.012	1.00	3.75	5	450.00		
	2ND STG	ORF H	ORF L	ST.	ART AUX.		
	0.00	0.00	0.00		0.00		
ASCRESTS -	AIIX 1	AUX.2	AUX.3		AUX.4	AUX.5	
						11011.0	

5549.	20	0.00	0.00	0.00	0.00			
AUX.Data - REF.	NO. RETAI 41	RD. Ci TI 0.00						
AUX.Data - INLET	N SIDE	SLOPE 2.00	EXIT N 0.025	EXIT SLOPE 0.154	ACTUAL AUX? NO			
BTM WIDTH - E		BW2 0.00	BW3 0.00	BW4 0.00	BW5 0.00			
AUXILIARY SPILLW	NAY RATING DI	EVELOPED US	ING WSPVRT.					
1*************************************	***** DI ORIFICES OROP INLET FOR ORIFICES	ETAILED LIS 3.10 3.10 S 0.60	T OF BASIC RATIO (TIME IN NO. POI	Data ******* DF Ia TO S (CH.10, NCS TO PEAK OF UNI NTS FOR DESIGN HY	**************************************			
HOOD, WEIR INLETHOOD, PIPE ENTRAHOOD, SLUG FLOW	ANCE COEF	0.60	DRAWDOV	NN TIME LIMIT - DA NN RATIO STORAGE I DRAWDOWN RATIOS AE	LIMIT 0.15			
PS ACCURACY OF F				COWABLE FSS VEL. (CALC. PRECISION,				
GRAVITATIONAL CO				PILLWAY MIN. CAP. PILLWAY MIN. CAP.				
MIN. TR60 DEPTH MIN. NHCP378 DEF MIN. NHCP378 DEF MIN. NHCP378 DEF	TH PS - AUX	.CREST 1.00	OLD TR6	JX. BW IN BW SOLUTION OON OF BW SOLUTION 50 CRITERIA USED . CP378 CRITERIA USE	1.0 NO			
SIDE SLOPE WAV	TE BERM MUI TIDTH U ft	LTIPLE STAB &D/S WIDTHS ft	ILITY BERMS DELTA H ft	CROWN = 0.667 ft, S SEPARATE STAE WIDTHS, ft U/S D/S 0.00 0.00	BILITY BERMS HEIGHTS, ft U/S D/S			
DIMENSIONLESS UNIT HYDROGRAPH STANDARD DIMENSIONLESS UNIT HYDROGRAPH PEAK FACTOR = 484.0 TIME INC. =0.020 NO. INC. TO PEAK = 10. VOLUME FACTOR = 48.3429								
0.0000 0.4700 1.0000 0.6800 0.2800 0.1260 0.0550 0.0250 0.0110 0.0050 0.0000	0.6600 (0.9900 (0.5600 (0.2410 (0.1070 (0.0470 (0.0210 (0.0090	0.8200 0.9300 0.4600 0.2070 0.0910 0.0400 0.0180 0.0080	0.1900 0.9300 0.8600 0.3900 0.1740 0.0770 0.0340 0.0150 0.0070 0.0020	0.3100 0.9900 0.7800 0.3300 0.1470 0.0660 0.0290 0.0130 0.0060 0.0010				

EXISTING NATURAL SURFACE AT AUXILIARY SPILLWAY SITE - X,Y COORDINATES:

```
      0.
      5530.00

      75.
      5549.30

      122.
      5565.00

      132.
      5565.00

      262.
      5530.00

      475.
      5495.00

      1150.
      5445.00

      1155.
      5440.00

      1160.
      5435.00
```

1NRCS DESIGN STORM RAINFALL DISTRIBUTION (CHAPTER 21, NEH4 & TR-60).

0.000	0.008 0.052	0.016 0.063	0.025 0.074	0.033
0.043	0.052	0.063	0.074	0.066
0.180	0.112	0.120	0.142	0.100
0.530	0.203	0.633	0.660	0.684
0.705	0.724	0.742	0.759	0.775
0.790	0.804	0.818	0.831	0.844
0.856	0.868	0.879	0.890	0.900
0.910	0.920	0.930	0.939	0.948
0.957	0.966	0.975	0.983	0.992
1.000				

24 HOUR TYPE II RAINFALL DISTRIBUTION IDENTIFICATION NAME IS TYPE2 GIVEN DURATION = 24.0 HRS

0.000	0.001	0.002	0.003	0.004
0.005	0.006	0.007	0.008	0.009
0.010	0.012	0.013	0.014	0.015
0.016	0.017	0.018	0.020	0.021
0.022	0.023	0.024	0.026	0.027
0.028	0.029	0.031	0.032	0.033
0.034	0.036	0.037	0.038	0.040
0.041	0.042	0.044	0.045	0.047
0.048	0.049	0.051	0.052	0.054
0.055	0.057	0.058	0.060	0.061
0.063	0.065	0.066	0.068	0.070
0.071	0.073	0.075	0.076	0.078
0.080	0.082	0.084	0.085	0.087
0.089	0.091	0.093	0.095	0.097
0.099	0.101	0.103	0.105	0.107
0.109	0.111	0.113	0.116	0.118
0.120	0.122	0.125	0.127	0.130
0.132	0.135	0.138	0.141	0.144
0.147	0.150	0.153	0.157	0.160
0.163	0.166	0.170	0.173	0.177
0.181	0.185	0.189	0.194	0.199
0.204	0.209	0.215	0.221	0.228
0.235	0.243	0.251	0.261	0.271
0.283	0.307	0.354	0.431	0.568
0.663	0.682	0.699	0.713	0.725
0.735	0.743	0.751	0.759	0.766
0.772	0.778	0.784	0.789	0.794
0.799	0.804	0.808	0.812	0.816
0.820	0.824	0.827	0.831	0.834
0.838	0.841	0.844	0.847	0.850

0.854	0.856	0.859	0.862	0.865
0.868	0.870	0.873	0.875	0.878
0.880	0.882	0.885	0.887	0.889
0.891	0.893	0.895	0.898	0.900
0.902	0.904	0.906	0.908	0.910
0.912	0.914	0.915	0.917	0.919
0.921	0.923	0.925	0.926	0.928
0.930	0.931	0.933	0.935	0.936
0.938	0.939	0.941	0.942	0.944
0.945	0.947	0.948	0.949	0.951
0.952	0.953	0.955	0.956	0.957
0.958	0.960	0.961	0.962	0.964
0.965	0.966	0.967	0.968	0.970
0.971	0.972	0.973	0.975	0.976
0.977	0.978	0.979	0.981	0.982
0.983	0.984	0.985	0.986	0.988
0.989	0.990	0.991	0.992	0.993
0.994	0.996	0.997	0.998	0.999
1.000				

MESSAGE ---- Climatic Index changed from 0.0 to 1.0 for this run.

CREST PS 5545.50 FT 6055.0 ACFT 0.00 AC 126.3 CFS
SED ACCUM 5545.50 FT 6055.0 ACFT 0.00 AC 126.3 CFS
START ELEV 5545.50 FT 6055.0 ACFT 0.00 AC 0.0 CFS

INFLOW HYDROGRAPH PROVIDED IN LOCATION 1, PEAK= 850.00 CFS, AT 120.00 HRS. TITLE = Principal Spillway

HYD	PO	4.74Cove	Res				COVRES	1
	0	1.0000					STR1	2
		0.03	0.03	0.10	0.18	0.26	PO D	3
		0.34	0.41	0.49	0.57	0.65	PO D	4
		0.73	0.81	0.89	0.97	1.05	PO D	5
		1.13	1.22	1.30	1.38	1.45	PO D	6
		1.53	1.61	1.70	1.78	1.86	PO D	7
		1.95	2.03	2.11	2.19	2.27	PO D	8
		2.35	2.43	2.51	2.60	2.68	PO D	9
		2.77	2.85	2.93	3.01	3.10	PO D	10
		3.18	3.27	3.35	3.44	3.52	PO D	11
		3.61	3.70	3.79	3.87	3.96	PO D	12
		4.05	4.14	4.23	4.32	4.41	PO D	13
		4.50	4.59	4.68	4.77	4.87	PO D	14
		4.96	5.05	5.15	5.25	5.34	PO D	15
		5.44	5.54	5.64	5.74	5.84	PO D	16
		5.95	6.05	6.16	6.26	6.37	PO D	17
		6.48	6.59	6.70	6.82	6.93	PO D	18
		7.05	7.17	7.28	7.40	7.53	PO D	19
		7.65	7.78	7.91	8.04	8.17	PO D	20
		8.31	8.45	8.60	8.74	8.89	PO D	21

9.05	9.21	9.37	9.54	9.71	PO D 22
9.89	10.08	10.27	10.47	10.67	PO D 23
10.89	11.11	11.34	11.59	11.85	PO D 24
12.13	12.43	12.75	13.09	13.47	PO D 25
13.90	14.38	14.94	15.63	17.26	PO D 26
22.38	28.72	32.09	33.90	35.07	PO D 27
35.92	36.60	37.15	37.62	38.02	PO D 28
38.36	38.65	38.90	39.11	39.29	PO D 29
39.45	39.58	39.68	39.78	39.85	PO D 30
39.90	39.94	39.97	39.98	39.99	PO D 31
39.98	39.97	39.94	39.91	39.87	PO D 32
39.82	39.77	39.70	39.64	39.57	PO D 33
39.49	39.41	39.33	39.23	39.14	PO D 34
39.04	38.94	38.84	38.73	38.62	PO D 35
38.50	38.39	38.27	38.15	38.03	PO D 36
37.91	37.78	37.65	37.52	37.39	PO D 37
37.26	37.13	36.99	36.85	36.72	PO D 38
36.58	36.44	36.30	36.16	36.02	PO D 39
35.88	35.74	35.59	35.45	35.30	PO D 40
35.16	35.02	34.87	34.72	34.58	PO D 41
34.43	34.29	34.14	33.99	33.85	PO D 42
33.70	33.55	33.41	33.27	33.12	PO D 43
32.97	32.82	32.68	32.53	32.39	PO D 44
32.25	32.10	31.95	31.80	31.66	PO D 45
31.51	31.37	31.23	31.09	30.95	PO D 46
30.81	30.67	30.52	30.38	30.24	PO D 47
30.10	29.96	29.82	29.68	29.55	PO D 48
29.41	29.28	29.14	29.00	28.86	PO D 49
28.72	28.58	28.45	28.32	28.19	PO D 50
28.06	27.87	27.62	27.36	27.10	PO D 51
26.84	26.58	26.33	26.08	25.83	PO D 52
25.59	25.35	25.10	24.87	24.63	PO D 53
24.40	24.17	23.94	23.71 22.61	23.49	PO D 54
23.26	23.04	22.83 21.77		22.40	PO D 55 PO D 56
22.18 21.16	21.98 20.96	20.76	21.56 20.57	21.36 20.37	PO D 56 PO D 57
	19.99	19.80	19.62	19.43	PO D 57
20.18 19.25	19.99	18.89	18.72	18.54	PO D 58
18.37	18.20	18.03	17.86	17.69	PO D 59
17.53	17.36	17.20	17.04	16.88	PO D 61
16.73	16.57	16.42	16.26	16.11	
15.96	15.82	15.69	15.61	15.53	PO D 63
15.45	15.37	15.29	15.22	15.14	PO D 64
15.06	14.99	14.91	14.83	14.76	PO D 65
14.69	14.61	14.54	14.46	14.39	PO D 66
14.32	14.25	14.17	14.10	14.03	PO D 67
13.96	13.89	13.82	13.75	13.68	PO D 68
13.61	13.55	13.48	13.41	13.34	PO D 69
13.28	13.21	13.14	13.08	13.01	PO D 70
12.95	12.88	12.82	12.75	12.69	PO D 71
12.63	12.56	12.50	12.44	12.38	PO D 72
12.32	12.25	12.19	12.13	12.07	PO D 73
12.01	11.95	11.89	11.83	11.78	PO D 74
11.72	11.66	11.60	11.54	11.49	PO D 75
11.43	11.37	11.32	11.26	11.21	PO D 76
11.15	11.10	11.04	10.99	10.93	PO D 77
10.88	10.83	10.77	10.72	10.67	PO D 78
10.61	10.56	10.51	10.46	10.41	PO D 79
10.36	10.31	10.26	10.21	10.16	PO D 80

10.11	10.06	10.01	9.96 9.72	9.91 9.67	PO D 81 PO D 82
9.62	9.58	9.53	9.48	9.44	PO D 83
9.39	9.35	9.30	9.26	9.21	PO D 84
9.17	9.12	9.08	9.04	8.99	PO D 85
8.95	8.91	8.86	8.82	8.78	PO D 86
8.74	8.69	8.65	8.61	8.57	PO D 87
8.53	8.49	8.45	8.41	8.37	PO D 88
8.33	8.29	8.25	8.21	8.17	PO D 89
8.13 7.94	8.09 7.90 7.72	8.05 7.87	8.02 7.83	7.98 7.79	PO D 90 PO D 91
7.75	7.72	7.68	7.64	7.61	PO D 92
7.57	7.54	7.50	7.47	7.43	PO D 93
7.40	7.36	7.33	7.29	7.26	PO D 94
7.23	7.19	7.16	7.12	7.09	PO D 95
7.06	7.03	6.99	6.96	6.93	PO D 96
6.90	6.86	6.83	6.80	6.77	PO D 97
6.74	6.71	6.68	6.65	6.61	PO D 98
6.58	6.55 6.41	6.52 6.38	6.49 6.35 6.20	6.46 6.32	PO D 99 PO D100
6.29	6.26	6.23	6.20	6.18	PO D101
6.15	6.12	6.09	6.06	6.04	PO D102
6.01	5.98	5.96	5.93	5.90	PO D103
5.88	5.85	5.82	5.80	5.77	PO D104
5.74	5.72	5.69	5.67	5.64	PO D105
5.62	5.59	5.57	5.54	5.52	PO D106
5.49	5.47	5.45	5.42	5.40	PO D107
5.37	5.35	5.33	5.30	5.28	PO D108
5.26	5.23	5.21	5.19	5.16	PO D109
5.14	5.12	5.10	5.08	5.05	PO D110
5.03	5.01	4.99	4.97	4.94	PO D111
4.92	4.90	4.88	4.86	4.84	PO D112
4.82	4.80	4.78	4.76	4.74	PO D113
4.72	4.70	4.68	4.66	4.64	PO D114
4.62	4.60	4.58	4.56	4.54	PO D115
4.52	4.50	4.48	4.46	4.44	PO D116
4.43	4.41	4.39	4.37	4.35	PO D117
4.33 4.24	4.32 4.23	4.39 4.30 4.21	4.28 4.19	4.26 4.17	PO D117 PO D118 PO D119
4.16	4.14	4.12	4.11	4.09	PO D120
4.07	4.06	4.04	4.02	4.01	PO D121
3.99 3.91	3.97 3.89	3.96 3.88 3.80	3.94 3.86	3.93 3.85	PO D122 PO D123
3.83 3.76 3.68	3.82 3.74 3.67	3.73 3.65	3.79 3.71 3.64	3.77 3.70 3.62	PO D124 PO D125 PO D126
3.61	3.60	3.58	3.57	3.55	PO D127
3.54	3.53	3.51	3.50	3.49	PO D128
3.47 3.41	3.46 3.39	3.45 3.38	3.43 3.37	3.42 3.35 3.29	PO D129 PO D130
3.34 3.28 3.22	3.33 3.27 3.21	3.32 3.25 3.19	3.30 3.24 3.18	3.23 3.17	PO D131 PO D132 PO D133
3.16	3.15	3.14	3.12	3.11	PO D134
3.10	3.09	3.08	3.07	3.06	PO D135
3.04 2.99	3.03	3.02	3.01	3.00	PO D136
	2.98	2.97	2.96	2.95	PO D137
2.94	2.93	2.92	2.90	2.89	PO D138
2.88	2.87	2.86	2.85	2.84	PO D139

2.83 2.78 2.74	2.82 2.78 2.73	2.81 2.77 2.72	2.80 2.76 2.71	2.79 2.75 2.70	PO D140 PO D141 PO D142
2.69	2.68	2.67	2.66	2.65	PO D143
2.65 2.60	2.64 2.59	2.63 2.58	2.62 2.58	2.61 2.57	PO D144 PO D145
2.56	2.55	2.54	2.53	2.52	PO D146
2.52 2.48	2.51 2.47	2.50 2.46	2.49 2.45	2.48 2.44	PO D147 PO D148
2.44	2.43	2.42	2.41	2.41	PO D149
2.40	2.39 2.35	2.38 2.35	2.38	2.37	PO D150
2.36 2.32	2.33	2.35	2.34 2.30	2.33 2.30	PO D151 PO D152
2.29	2.28	2.27	2.27	2.26	PO D153
2.25 2.22	2.25 2.21	2.24 2.21	2.23 2.20	2.23 2.19	PO D154 PO D155
2.19	2.18	2.17	2.17	2.16	PO D156
2.16 2.12	2.15 2.12	2.14 2.11	2.14 2.11	2.13 2.10	PO D157 PO D158
2.09	2.09	2.08	2.08	2.07	PO D159
2.07	2.06	2.05	2.05	2.04	PO D160
2.04 2.01	2.03	2.03	2.02 1.99	2.01 1.99	PO D161 PO D162
1.98	1.98	1.97	1.97	1.96	PO D163
1.96 1.93	1.95 1.92	1.95 1.92	1.94 1.91	1.94 1.91	PO D164 PO D165
1.91	1.90	1.90	1.89	1.89	PO D166
1.88 1.86	1.88 1.85	1.87 1.85	1.87 1.84	1.86 1.84	PO D167 PO D168
1.83	1.83	1.83	1.82	1.82	PO D100
1.81	1.81	1.80	1.80	1.79	PO D170
1.79 1.77	1.79 1.76	1.78 1.76	1.78 1.76	1.77 1.75	PO D171 PO D172
1.75	1.74	1.74	1.74	1.73	PO D173
1.73 1.71	1.72 1.70	1.72 1.70	1.72 1.70	1.71 1.69	PO D174 PO D175
1.69	1.69	1.68	1.68	1.67	PO D176
1.67 1.65	1.67 1.65	1.66 1.65	1.66 1.64	1.66 1.64	PO D177 PO D178
1.64	1.63	1.63	1.63	1.62	PO D178
1.62	1.62	1.61	1.61	1.61	PO D180
1.60 1.59	1.60 1.58	1.60 1.58	1.59 1.58	1.59 1.57	PO D181 PO D182
1.57	1.57	1.56	1.56	1.56	PO D183
1.56 1.54	1.55 1.54	1.55 1.53	1.55 1.53	$1.54 \\ 1.53$	PO D184 PO D185
1.53	1.52	1.52	1.52	1.51	PO D186
1.51 1.50	1.51 1.50	1.51 1.49	1.50 1.49	1.50 1.49	PO D187
1.48	1.48	1.49	1.49	1.49	PO D188 PO D189
1.47	1.47	1.47	1.46	1.46	PO D190
1.46 1.45	1.46 1.44	1.45 1.44	1.45 1.44	$1.45 \\ 1.44$	PO D191 PO D192
1.43	1.43	1.43	1.43	1.43	PO D193
$1.42 \\ 1.41$	$1.42 \\ 1.41$	$1.42 \\ 1.41$	$1.42 \\ 1.41$	$1.41 \\ 1.40$	PO D194 PO D195
1.40	1.40	1.40	1.39	1.39	PO D196
1.39 1.38	1.39	1.39	1.38	1.38 1.37	PO D197
1.30	1.38	1.38	1.37	1.3/	PO D198

1.37	1.37	1.37	1.36	1.36	PO D199
1.36	1.36	1.36	1.35	1.35	PO D200
1.35	1.35	1.35	1.34	1.34	PO D201
1.34 1.33	1.34 1.33	1.34 1.33	1.33 1.33	1.33 1.32	PO D202 PO D203
1.33	1.32	1.32	1.32	1.32	PO D203
1.31	1.31	1.31	1.31	1.31	PO D205
1.31	1.30	1.30	1.30	1.30	PO D206
1.30	1.30	1.29	1.29	1.29	PO D207
1.29 1.28	1.29 1.28	1.29 1.28	1.28 1.28	1.28 1.28	PO D208 PO D209
1.27	1.27	1.27	1.27	1.27	PO D209 PO D210
1.27	1.27	1.26	1.26	1.26	PO D211
1.26	1.26	1.26	1.26	1.25	PO D212
1.25	1.25	1.25	1.25	1.25	PO D213
1.25 1.24	$1.24 \\ 1.24$	1.24 1.24	1.24 1.24	1.24 1.23	PO D214 PO D215
1.23	1.23	1.23	1.23	1.23	PO D216
1.23	1.23	1.22	1.22	1.22	PO D217
1.22	1.22	1.22	1.22	1.22	PO D218
1.21 1.21	$1.21 \\ 1.21$	1.21 1.21	1.21 1.21	1.21 1.20	PO D219 PO D220
1.21	1.21	1.21	1.21	1.20	PO D220 PO D221
1.20	1.20	1.20	1.19	1.19	PO D222
1.19	1.19	1.19	1.19	1.19	PO D223
1.19	1.19	1.19	1.18	1.18	PO D224
1.18 1.18	1.18 1.18	1.18 1.18	1.18 1.17	$1.18 \\ 1.17$	PO D225 PO D226
1.17	1.17	1.17	1.17	1.17	PO D227
1.17	1.17	1.17	1.17	1.16	PO D228
1.16	1.16	1.16	1.16	1.16	PO D229
1.16 1.15	1.16 1.15	1.16 1.15	1.16 1.15	1.16 1.15	PO D230 PO D231
1.15	1.15	1.15	1.15	1.15	PO D231
1.15	1.15	1.15	1.14	1.14	PO D233
1.14	1.14	1.14	1.14	1.14	PO D234
$1.14 \\ 1.14$	1.14 1.13	1.14 1.13	1.14 1.13	1.14 1.13	PO D235 PO D236
1.14	1.13	1.13	1.13	1.13	PO D230 PO D237
1.13	1.13	1.13	1.13	1.13	PO D238
1.12	1.12	1.12	1.12	1.12	PO D239
1.12	1.12	1.12	1.12	1.12	PO D240
$1.12 \\ 1.11$	$1.12 \\ 1.11$	$1.12 \\ 1.11$	$1.12 \\ 1.11$	$1.12 \\ 1.11$	PO D241 PO D242
1.11	1.11	1.11	1.11	1.11	PO D243
1.11	1.11	1.11	1.11	1.11	PO D244
1.11	1.11	1.10	1.10	1.10	PO D245
1.10 1.10	1.10 1.10	$1.10 \\ 1.10$	1.10 1.10	$1.10 \\ 1.10$	PO D246 PO D247
1.10	1.10	1.10	1.10	1.10	PO D248
1.10	1.09	1.09	1.09	1.09	PO D249
1.09	1.09	1.09	1.09	1.09	PO D250
1.09 1.09	1.09 1.09	1.09 1.09	1.09 1.09	1.09 1.09	PO D251 PO D252
1.09	1.09	1.09	1.09	1.09	PO D252 PO D253
1.08	1.08	1.08	1.08	1.08	PO D254
1.08	1.08	1.08	1.08	1.08	PO D255
1.08 1.08	1.08	1.08	1.08	1.08	PO D256
1.00	1.08	1.08	1.08	1.07	PO D257

1.02 1.02 1.02 1.02 1.02 PO D308	1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.06 1.06 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.06 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	1.07 1.07 1.07 1.07 1.07 1.06 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	1.07 1.07 1.07 1.07 1.07 1.07 1.06 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	1.07 1.07 1.07 1.07 1.07 1.06 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	PO D258 PO D259 PO D260 PO D261 PO D261 PO D262 PO D263 PO D264 PO D265 PO D266 PO D267 PO D268 PO D270 PO D271 PO D272 PO D273 PO D274 PO D275 PO D276 PO D277 PO D277 PO D278 PO D277 PO D278 PO D278 PO D280 PO D281 PO D282 PO D283 PO D284 PO D283 PO D284 PO D285 PO D286 PO D287 PO D288 PO D287 PO D288 PO D287 PO D288 PO D287 PO D288 PO D290 PO D291 PO D291 PO D292 PO D293 PO D294 PO D295 PO D296 PO D297 PO D297 PO D297 PO D298 PO D299 PO D300 PO D301 PO D301 PO D302 PO D305 PO D306 PO D307
	1.02	1.02	1.02	1.02	1.02	PO D302
	1.02	1.02	1.02	1.02	1.02	PO D303
	1.02	1.02	1.02	1.02	1.02	PO D304
	1.02	1.02	1.02	1.02	1.02	PO D305
	1.02	1.02	1.02	1.02	1.02	PO D306

1.01	1.01	1.01	1.01	1.01	PO D317
1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	PO D318 PO D319
1.01	1.01	1.01	1.01	1.01	PO D320
1.01	1.01	1.01	1.01	1.01	PO D321
1.01	1.01	1.01	1.01	1.01	PO D322
1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	PO D323 PO D324
1.01	1.01	1.01	1.01	1.01	PO D325
1.01	1.01	1.01	1.01	1.01	PO D326
1.01	1.01	1.01	1.01	1.01	PO D327
1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	PO D328 PO D329
1.01	1.01	1.01	1.01	1.01	PO D330
1.01	1.01	1.01	1.01	1.01	PO D331
1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	PO D332 PO D333
1.01	1.01	1.01	1.01	1.01	PO D333
1.01	1.01	1.01	1.01	1.01	PO D335
1.01	1.01	1.01	1.01	1.01	PO D336
1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	PO D337 PO D338
1.01	1.01	1.01	1.01	1.01	PO D339
1.01	1.01	1.01	1.01	1.01	PO D340
1.01	1.01	1.01	1.01	1.01	PO D341
1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	PO D342 PO D343
1.01	1.01	1.01	1.01	1.01	PO D344
1.01	1.01	1.01	1.01	1.01	PO D345
1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	PO D346 PO D347
1.01	1.01	1.01	1.01	1.01	PO D348
1.01	1.01	1.01	1.01	1.01	PO D349
1.01	1.01	1.01	1.01	1.01	PO D350
1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	PO D351 PO D352
1.01	1.01	1.01	1.01	1.01	PO D353
1.01	1.01	1.01	1.01	1.01	PO D354
1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	1.01 1.01	PO D355 PO D356
1.01	1.01	1.01	1.01	1.01	PO D357
1.01	1.01	1.01	1.01	1.01	PO D358
1.01	1.01	1.01	1.01	1.01	PO D359
1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	PO D360 PO D361
1.00	1.00	1.00	1.00	1.00	PO D362
1.00	1.00	1.00	1.00	1.00	PO D363
1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	PO D364 PO D365
1.00	1.00	1.00	1.00	1.00	PO D366
1.00	1.00	1.00	1.00	1.00	PO D367
1.00	1.00	1.00	1.00 1.00	1.00	PO D368
1.00 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	PO D369 PO D370
1.00	1.00	1.00	1.00	1.00	PO D371
1.00	1.00	1.00	1.00	1.00	PO D372
1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	PO D373 PO D374
1.00	1.00	1.00	1.00	1.00	PO D375

1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	PO D376 PO D377 PO D378 PO D379 PO D380 PO D381
1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	PO D382 PO D383 PO D384 PO D385 PO D386 PO D387
1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	PO D388 PO D389 PO D390 PO D391 PO D392 PO D393
1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	PO D394 PO D395 PO D396 PO D397 PO D398 PO D399
1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	PO D400 PO D401 PO D402 PO D403 PO D404 PO D405
1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	PO D406 PO D407 PO D408 PO D409 PO D410 PO D411
1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	PO D412 PO D413 PO D414 PO D415 PO D416 PO D417
1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	PO D418 PO D419 PO D420 PO D421 PO D422 PO D423
1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	PO D424 PO D425 PO D426 PO D427 PO D428 PO D429
1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	PO D430 PO D431 PO D432 PO D433 PO D434

1.00	1.00	1.00	1.00	1.00	PO D435
1.00	1.00	1.00	1.00	1.00	PO D436
1.00	1.00	1.00	1.00	1.00	PO D437
1.00	1.00	1.00	1.00	1.00	PO D438
1.00	1.00	1.00	1.00	1.00	PO D439
1.00	1.00	1.00	1.00	1.00	PO D440
1.00	1.00	1.00	1.00	1.00	PO D441
1.00	1.00	1.00	1.00	1.00	PO D442
1.00	1.00	1.00	1.00	1.00	PO D443
1.00	1.00	1.00	1.00	1.00	PO D444
1.00	1.00	1.00	1.00	1.00	PO D445
1.00	1.00	1.00	1.00	1.00	PO D446
1.00	1.00	1.00	1.00	1.00	PO D447
1.00	1.00	1.00	1.00	1.00	PO D448
1.00	1.00	1.00	1.00	1.00	PO D449
1.00	1.00	1.00	1.00	1.00	PO D450
1.00	1.00	1.00	1.00	1.00	PO D451
1.00	1.00	1.00	1.00	1.00	PO D452
1.00	1.00	1.00	1.00	1.00	PO D453
1.00	1.00	1.00	1.00	1.00	PO D454
1.00	1.00	1.00	1.00	1.00	PO D455
1.00	1.00	1.00	1.00	1.00	PO D456
1.00	1.00	1.00	1.00	1.00	PO D457
1.00	1.00	1.00	1.00	1.00	PO D458
1.00	1.00	1.00	1.00	1.00	PO D459
1.00	1.00	1.00	1.00	1.00	PO D460
1.00	1.00	1.00	1.00	1.00	PO D461
1.00	1.00	1.00	1.00	1.00	PO D462
1.00	1.00	1.00	1.00	1.00	PO D463
1.00	1.00	1.00	1.00	1.00	PO D464
1.00	1.00	1.00	1.00	1.00	PO D465
1.00	1.00	1.00	1.00	1.00	PO D466
1.00	1.00	1.00	1.00	1.00	PO D467
1.00	1.00	1.00	1.00	1.00	PO D468
1.00	1.00	1.00	1.00	1.00	PO D469
1.00	1.00	1.00	1.00	1.00	PO D470
1.00	1.00	1.00	1.00	1.00	PO D471
1.00	1.00	1.00	1.00	1.00	PO D472
1.00	1.00	1.00	1.00	1.00	PO D473
1.00	1.00	1.00	1.00	1.00	PO D474
1.00	1.00	1.00	1.00	1.00	PO D475
1.00	1.00	1.00	1.00	1.00	PO D476
1.00	1.00	1.00	1.00	1.00	PO D477
1.00	1.00	1.00	1.00	1.00	PO D478
1.00	1.00	1.00	1.00	1.00	PO D479
1.00	1.00	1.00	1.00	1.00	PO D480
1.00	1.00	1.00	1.00	1.00	PO D481
1.00	1.00	1.00	1.00	1.00	PO D482
1.00 1.00	$1.00 \\ 1.00$	1.00 1.00	1.00 1.00	1.00 1.00	PO D483 PO D484
1.00	1.00	1.00	1.00	1.00	PO D484 PO D485
1.00	1.00	1.00	1.00	1.00	PO D485
1.00	1.00	1.00	1.00	1.00	PO D480 PO D487
1.00	1.00	1.00	1.00	1.00	PO D488
				P.00	1,T 1489
				-	_,

1SITES -----XEQ 08/28/2020 COV RES WSID= COVRES

ENDTABLE

 VER 2005.1.8
 Cove Res
 SUBW= CF

 TIME 16:21:21
 SITE = STR1
 PASS= 1
 PART= 3

 SUBW= CR

5545.50 FT 6055.0 ACFT 0.00 AC CREST PS 126.3 CFS

SED ACCUM 5545.50 FT 6055.0 ACFT 0.00 AC 126.3 CFS

5545.50 FT 6055.0 ACFT 0.00 AC START ELEV 0.0 CFS

NRCS-PSH RAINFALL 1-DAY = 0.00 in 10-DAY = 0.00 in DA = 4.74 SM RUNOFF 1-DAY = 0.00 in 10-DAY = 0.00 in

CLIMATIC INDEX = 1.00 CN 10-DAY = 0. CN 1-DAY = 0.

PEAK = 850.0 CFS, AT 120.0 HRS.

NRCS-PSH 5547.76 FT 6496.1 ACFT 0.00 AC ROUTED RESULT - HYD TYPE OMAX 0.00 AC 40.0 CFS

PS STORAGE 441.0 ACFT, BETWEEN AUX. CREST AND SED. ACCUM ELEVATIONS.

DRAWDOWN (DDT) TEST 5545.84 FT 6121.2 ACFT 4.35 CFS CONTROL IS 0.150 DETENTION STORAGE

TIME LIMIT REACHED = 10.00 DAYS. FLOW WAS 9.73 CFS, ELEV = 5546.26 (ELEVATION TO START ROUTING SDH AND/OR FBH HAS BEEN RAISED.)

TIME TO DDT TEST DISCHARGE IS 15.79 DAYS - DRAWDOWN STOPPED.

***** NOTE - CREST OF AUX. RAISED TO HOLD 148.03 ACFT NOT EVACUATED IN DRAWDOWN TIME LIMIT. TOTAL STORAGE REQUIRED = 6644.08 ACFT, NEW ELEVATION OF AUXILIARY SPILLWAY CREST = 5548.51 FT.

PLOT OF PRINCIPAL SPILLWAY HYDROGRAPH, 1 INCH= 200. CFS 0. 200. 400. 600. I I I 800 Qin Qout Elev Vol Area ExtVel I Time 0.00 0.0 0.0 5545.5 6055.5 0.0 0.0 5545.5 6055.5 0.0 0.1 5545.5 6056.5 0.0 1.00 11.0 .I 2.00 14.0 .I
 2.00
 14.0
 0.1
 5545.5
 6050.5
 0.0

 3.00
 15.0
 0.2
 5545.5
 6057.7
 0.0

 4.00
 15.0
 0.3
 5545.5
 6058.9
 0.0

 5.00
 15.0
 0.3
 5545.5
 6060.1
 0.0

 6.00
 15.0
 0.4
 5545.5
 6061.3
 0.0

 7.00
 15.0
 0.5
 5545.5
 6062.5
 0.0

 8.00
 15.0
 0.6
 5545.5
 6063.7
 0.0

 9.00
 15.0
 0.7
 5545.6
 6064.0
 0.0
 .I .I .I .I .I .I 9.00 15.0 0.7 5545.6 6064.9 0.0 10.00 15.0 0.7 5545.6 6066.1 0.0 .I .I .I 11.00 16.0 0.8 5545.6 6067.3 0.0 12.00 16.0 0.9 5545.6 6068.6 0.0 .I 13.00 16.0 1.0 5545.6 6069.8 0.0 .I 14.00 16.0 1.1 5545.6 6071.1 0.0 .I 15.00 16.0 1.1 5545.6 6072.3 0.0 .I 16.00 16.0 1.2 5545.6 6073.5 0.0 .I 17.00 16.0 1.3 5545.6 6074.7 0.0 .I 18.00 16.0 1.4 5545.6 6076.0 0.0 .I 19.00 16.0 1.5 5545.6 6077.2 0.0 .I

I

20.00 16.0 1.5 5545.6 6078.4 0.0 21.00 17.0 1.6 5545.6 6079.6 0.0 22.00 17.0 1.7 5545.6 6080.9 0.0 23.00 17.0 1.8 5545.6 6082.1 0.0 24.00 17.0 1.9 5545.6 6083.4 0.0 25.00 17.0 1.9 5545.7 6084.6 0.0 26.00 17.0 2.0 5545.7 6085.9 0.0 27.00 17.0 2.1 5545.7 6087.1 0.0 28.00 17.0 2.2 5545.7 6089.5 0.0 29.00 17.0 2.3 5545.7 6089.5 0.0 30.00 17.0 2.3 5545.7 6099.8 0.0 31.00 18.0 2.4 5545.7 6099.8 0.0 32.00 18.0 2.5 5545.7 6093.3 0.0 33.00 18.0 2.8 5545.7 6094.6 0.0 35.00 18.0 </th <th>I. I. I. I. I. I. I. I. I. I. I. I. I. I</th>	I. I. I. I. I. I. I. I. I. I. I. I. I. I
21.00 17.0 1.6 5545.6 6079.6 0.0 22.00 17.0 1.7 5545.6 6080.9 0.0 23.00 17.0 1.8 5545.6 6082.1 0.0 24.00 17.0 1.9 5545.6 6083.4 0.0 25.00 17.0 1.9 5545.7 6084.6 0.0 26.00 17.0 2.0 5545.7 6085.9 0.0 27.00 17.0 2.1 5545.7 6087.1 0.0 28.00 17.0 2.2 5545.7 6089.5 0.0 30.00 17.0 2.3 5545.7 6089.5 0.0 31.00 18.0 2.4 5545.7 6099.8 0.0 31.00 18.0 2.4 5545.7 6092.0 0.0 32.00 18.0 2.5 5545.7 6093.3 0.0 33.00 18.0 2.6 5545.7 6094.6 0.0 35.00 18.0 2.8 5545.7 6095.8 0.0 37.00 18.0 </td <td>I. I. I. I. I. I. I. I. I. I. I.</td>	I. I. I. I. I. I. I. I. I. I. I.
22.00 17.0 1.7 5545.6 6080.9 0.0 23.00 17.0 1.8 5545.6 6082.1 0.0 24.00 17.0 1.9 5545.6 6083.4 0.0 25.00 17.0 1.9 5545.7 6084.6 0.0 26.00 17.0 2.0 5545.7 6085.9 0.0 27.00 17.0 2.1 5545.7 6087.1 0.0 28.00 17.0 2.2 5545.7 6088.3 0.0 29.00 17.0 2.3 5545.7 6089.5 0.0 30.00 17.0 2.3 5545.7 6099.8 0.0 31.00 18.0 2.4 5545.7 6090.8 0.0 31.00 18.0 2.5 5545.7 6092.0 0.0 33.00 18.0 2.6 5545.7 6093.3 0.0 34.00 18.0 2.7 5545.7 6094.6 0.0 35.00 18.0 2.8 5545.7 6095.8 0.0 37.00 18.0 </td <td>I. I. I. I. I. I. I. I. I. I. I.</td>	I. I. I. I. I. I. I. I. I. I. I.
23.00 17.0 1.8 5545.6 6082.1 0.0 24.00 17.0 1.9 5545.6 6083.4 0.0 25.00 17.0 1.9 5545.7 6084.6 0.0 26.00 17.0 2.0 5545.7 6085.9 0.0 27.00 17.0 2.1 5545.7 6087.1 0.0 28.00 17.0 2.2 5545.7 6088.3 0.0 29.00 17.0 2.3 5545.7 6089.5 0.0 30.00 17.0 2.3 5545.7 6099.8 0.0 31.00 18.0 2.4 5545.7 6092.0 0.0 32.00 18.0 2.5 5545.7 6092.0 0.0 33.00 18.0 2.6 5545.7 6094.6 0.0 34.00 18.0 2.7 5545.7 6095.8 0.0 35.00 18.0 2.8 5545.7 6097.1 0.0 36.00 18.0 2.9 5545.7 6099.6 0.0 38.00 18.0 </td <td>I. II. II. II. II. II. II. II. II.</td>	I. II. II. II. II. II. II. II. II.
24.00 17.0 1.9 5545.6 6083.4 0.0 25.00 17.0 1.9 5545.7 6084.6 0.0 26.00 17.0 2.0 5545.7 6085.9 0.0 27.00 17.0 2.1 5545.7 6087.1 0.0 28.00 17.0 2.2 5545.7 6088.3 0.0 29.00 17.0 2.3 5545.7 6089.5 0.0 30.00 17.0 2.3 5545.7 6099.8 0.0 31.00 18.0 2.4 5545.7 6092.0 0.0 32.00 18.0 2.5 5545.7 6093.3 0.0 33.00 18.0 2.6 5545.7 6093.3 0.0 34.00 18.0 2.7 5545.7 6094.6 0.0 35.00 18.0 2.8 5545.7 6095.8 0.0 37.00 18.0 2.8 5545.7 6099.4 0.0 38.00 18.0 2.9 5545.7 6099.6 0.0 38.00 19.0 </td <td>I. II. II. II. II. II. II. II. II.</td>	I. II. II. II. II. II. II. II. II.
25.00 17.0 1.9 5545.7 6084.6 0.0 26.00 17.0 2.0 5545.7 6085.9 0.0 27.00 17.0 2.1 5545.7 6087.1 0.0 28.00 17.0 2.2 5545.7 6088.3 0.0 29.00 17.0 2.3 5545.7 6089.5 0.0 30.00 17.0 2.3 5545.7 6090.8 0.0 31.00 18.0 2.4 5545.7 6092.0 0.0 32.00 18.0 2.5 5545.7 6093.3 0.0 33.00 18.0 2.6 5545.7 6094.6 0.0 34.00 18.0 2.7 5545.7 6095.8 0.0 35.00 18.0 2.8 5545.7 6097.1 0.0 36.00 18.0 2.8 5545.7 6098.4 0.0 37.00 18.0 2.9 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 </td <td>I. II. II. II. II. II. II. II. II.</td>	I. II. II. II. II. II. II. II. II.
25.00 17.0 1.9 5545.7 6084.6 0.0 26.00 17.0 2.0 5545.7 6085.9 0.0 27.00 17.0 2.1 5545.7 6087.1 0.0 28.00 17.0 2.2 5545.7 6088.3 0.0 29.00 17.0 2.3 5545.7 6089.5 0.0 30.00 17.0 2.3 5545.7 6090.8 0.0 31.00 18.0 2.4 5545.7 6092.0 0.0 32.00 18.0 2.5 5545.7 6093.3 0.0 33.00 18.0 2.6 5545.7 6094.6 0.0 34.00 18.0 2.7 5545.7 6095.8 0.0 35.00 18.0 2.8 5545.7 6097.1 0.0 36.00 18.0 2.8 5545.7 6098.4 0.0 37.00 18.0 2.9 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 </td <td>I. I. I. I. I. I. I. I.</td>	I. I. I. I. I. I. I. I.
26.00 17.0 2.0 5545.7 6085.9 0.0 27.00 17.0 2.1 5545.7 6087.1 0.0 28.00 17.0 2.2 5545.7 6088.3 0.0 29.00 17.0 2.3 5545.7 6089.5 0.0 30.00 17.0 2.3 5545.7 6090.8 0.0 31.00 18.0 2.4 5545.7 6092.0 0.0 32.00 18.0 2.5 5545.7 6093.3 0.0 33.00 18.0 2.6 5545.7 6094.6 0.0 34.00 18.0 2.7 5545.7 6094.6 0.0 35.00 18.0 2.8 5545.7 6095.8 0.0 37.00 18.0 2.8 5545.7 6097.1 0.0 38.00 18.0 2.9 5545.7 6098.4 0.0 39.00 19.0 3.1 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 </td <td>I. II. II. II. II. II. II. II.</td>	I. II. II. II. II. II. II. II.
27.00 17.0 2.1 5545.7 6087.1 0.0 28.00 17.0 2.2 5545.7 6088.3 0.0 29.00 17.0 2.3 5545.7 6089.5 0.0 30.00 17.0 2.3 5545.7 6090.8 0.0 31.00 18.0 2.4 5545.7 6092.0 0.0 32.00 18.0 2.5 5545.7 6093.3 0.0 33.00 18.0 2.6 5545.7 6094.6 0.0 34.00 18.0 2.7 5545.7 6095.8 0.0 35.00 18.0 2.8 5545.7 6097.1 0.0 36.00 18.0 2.8 5545.7 6098.4 0.0 37.00 18.0 2.9 5545.7 6099.6 0.0 38.00 18.0 3.0 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.7 6103.4 0.0 41.00 19.0 </td <td>I. I. I. I. I. I. I. I.</td>	I. I. I. I. I. I. I. I.
28.00 17.0 2.2 5545.7 6088.3 0.0 29.00 17.0 2.3 5545.7 6089.5 0.0 30.00 17.0 2.3 5545.7 6090.8 0.0 31.00 18.0 2.4 5545.7 6092.0 0.0 32.00 18.0 2.5 5545.7 6093.3 0.0 33.00 18.0 2.6 5545.7 6094.6 0.0 34.00 18.0 2.7 5545.7 6095.8 0.0 35.00 18.0 2.8 5545.7 6097.1 0.0 36.00 18.0 2.8 5545.7 6098.4 0.0 37.00 18.0 2.9 5545.7 6099.6 0.0 38.00 18.0 3.0 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.7 6103.4 0.0 41.00 19.0 3.4 5545.8 6104.7 0.0 42.00 19.0 </td <td>I. I. I. I. I. I. I.</td>	I. I. I. I. I. I. I.
29.00 17.0 2.3 5545.7 6089.5 0.0 30.00 17.0 2.3 5545.7 6090.8 0.0 31.00 18.0 2.4 5545.7 6092.0 0.0 32.00 18.0 2.5 5545.7 6093.3 0.0 33.00 18.0 2.6 5545.7 6094.6 0.0 34.00 18.0 2.7 5545.7 6095.8 0.0 35.00 18.0 2.8 5545.7 6097.1 0.0 36.00 18.0 2.8 5545.7 6098.4 0.0 37.00 18.0 2.9 5545.7 6099.6 0.0 38.00 18.0 3.0 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.7 6103.4 0.0 41.00 19.0 3.4 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 </td <td>I. I. I. I. I. I.</td>	I. I. I. I. I. I.
29.00 17.0 2.3 5545.7 6089.5 0.0 30.00 17.0 2.3 5545.7 6090.8 0.0 31.00 18.0 2.4 5545.7 6092.0 0.0 32.00 18.0 2.5 5545.7 6093.3 0.0 33.00 18.0 2.6 5545.7 6094.6 0.0 34.00 18.0 2.7 5545.7 6095.8 0.0 35.00 18.0 2.8 5545.7 6097.1 0.0 36.00 18.0 2.8 5545.7 6098.4 0.0 37.00 18.0 2.9 5545.7 6099.6 0.0 38.00 18.0 3.0 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.7 6103.4 0.0 41.00 19.0 3.4 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 </td <td>I. I. I. I. I. I.</td>	I. I. I. I. I. I.
30.00 17.0 2.3 5545.7 6090.8 0.0 31.00 18.0 2.4 5545.7 6092.0 0.0 32.00 18.0 2.5 5545.7 6093.3 0.0 33.00 18.0 2.6 5545.7 6094.6 0.0 34.00 18.0 2.7 5545.7 6095.8 0.0 35.00 18.0 2.8 5545.7 6097.1 0.0 36.00 18.0 2.8 5545.7 6098.4 0.0 37.00 18.0 2.9 5545.7 6099.6 0.0 38.00 18.0 3.0 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.7 6103.4 0.0 41.00 19.0 3.3 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6107.3 0.0	I. I. I. I. I. I.
31.00 18.0 2.4 5545.7 6092.0 0.0 32.00 18.0 2.5 5545.7 6093.3 0.0 33.00 18.0 2.6 5545.7 6094.6 0.0 34.00 18.0 2.7 5545.7 6095.8 0.0 35.00 18.0 2.8 5545.7 6097.1 0.0 36.00 18.0 2.8 5545.7 6098.4 0.0 37.00 18.0 2.9 5545.7 6099.6 0.0 38.00 18.0 3.0 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6106.0 0.0	I. I. I. I. I.
32.00 18.0 2.5 5545.7 6093.3 0.0 33.00 18.0 2.6 5545.7 6094.6 0.0 34.00 18.0 2.7 5545.7 6095.8 0.0 35.00 18.0 2.8 5545.7 6097.1 0.0 36.00 18.0 2.8 5545.7 6098.4 0.0 37.00 18.0 2.9 5545.7 6099.6 0.0 38.00 18.0 3.0 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.7 6103.4 0.0 41.00 19.0 3.3 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6107.3 0.0	I. I. I. I.
33.00 18.0 2.6 5545.7 6094.6 0.0 34.00 18.0 2.7 5545.7 6095.8 0.0 35.00 18.0 2.8 5545.7 6097.1 0.0 36.00 18.0 2.8 5545.7 6098.4 0.0 37.00 18.0 2.9 5545.7 6099.6 0.0 38.00 18.0 3.0 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.8 6104.7 0.0 41.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6107.3 0.0	I. I. I. I.
34.00 18.0 2.7 5545.7 6095.8 0.0 35.00 18.0 2.8 5545.7 6097.1 0.0 36.00 18.0 2.8 5545.7 6098.4 0.0 37.00 18.0 2.9 5545.7 6099.6 0.0 38.00 18.0 3.0 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.7 6103.4 0.0 41.00 19.0 3.3 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6107.3 0.0	I. I. I.
35.00 18.0 2.8 5545.7 6097.1 0.0 36.00 18.0 2.8 5545.7 6098.4 0.0 37.00 18.0 2.9 5545.7 6099.6 0.0 38.00 18.0 3.0 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.7 6103.4 0.0 41.00 19.0 3.3 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6107.3 0.0	.I .I .I
35.00 18.0 2.8 5545.7 6097.1 0.0 36.00 18.0 2.8 5545.7 6098.4 0.0 37.00 18.0 2.9 5545.7 6099.6 0.0 38.00 18.0 3.0 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.7 6103.4 0.0 41.00 19.0 3.3 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6107.3 0.0	.I .I .I
36.00 18.0 2.8 5545.7 6098.4 0.0 37.00 18.0 2.9 5545.7 6099.6 0.0 38.00 18.0 3.0 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.7 6103.4 0.0 41.00 19.0 3.3 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6107.3 0.0	.I .I
37.00 18.0 2.9 5545.7 6099.6 0.0 38.00 18.0 3.0 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.7 6103.4 0.0 41.00 19.0 3.3 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6107.3 0.0	.I
38.00 18.0 3.0 5545.7 6100.8 0.0 39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.7 6103.4 0.0 41.00 19.0 3.3 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6107.3 0.0	
39.00 19.0 3.1 5545.7 6102.1 0.0 40.00 19.0 3.2 5545.7 6103.4 0.0 41.00 19.0 3.3 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6107.3 0.0	.I
40.00 19.0 3.2 5545.7 6103.4 0.0 41.00 19.0 3.3 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6107.3 0.0	
41.00 19.0 3.3 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6107.3 0.0	.I
41.00 19.0 3.3 5545.8 6104.7 0.0 42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6107.3 0.0	.I
42.00 19.0 3.4 5545.8 6106.0 0.0 43.00 19.0 3.4 5545.8 6107.3 0.0	.I
43.00 19.0 3.4 5545.8 6107.3 0.0	
	. I
	.I
44.00 19.0 3.5 5545.8 6108.6 0.0	.I
45.00 20.0 3.6 5545.8 6109.9 0.0	.I
46.00 20.0 3.7 5545.8 6111.3 0.0	.I
47.00 20.0 3.8 5545.8 6112.6 0.0	.I
	. I
49.00 20.0 4.0 5545.8 6115.3 0.0	.I
50.00 20.0 4.0 5545.8 6116.6 0.0	.I
51.00 21.0 4.1 5545.8 6118.0 0.0	.I
52.00 21.0 4.2 5545.8 6119.4 0.0	.I
53.00 21.0 4.3 5545.8 6120.7 0.0	.I
54.00 21.0 4.4 5545.8 6122.1 0.0	.I
	. I
56.00 21.0 4.6 5545.9 6124.8 0.0	.I
57.00 22.0 4.7 5545.9 6126.2 0.0	.I
58.00 22.0 4.8 5545.9 6127.7 0.0	.I
59.00 22.0 4.9 5545.9 6129.1 0.0	.I
60.00 22.0 5.0 5545.9 6130.5 0.0	.I
61.00 23.0 5.1 5545.9 6131.9 0.0	.I
62.00 23.0 5.2 5545.9 6133.4 0.0	.I
63.00 23.0 5.2 5545.9 6134.9 0.0	.I
64.00 23.0 5.3 5545.9 6136.4 0.0	.I
65.00 24.0 5.4 5545.9 6137.8 0.0	.I
66.00 24.0 5.5 5545.9 6139.4 0.0	.I
67.00 24.0 5.6 5545.9 6140.9 0.0	.I
68.00 24.0 5.7 5545.9 6142.4 0.0	. I
69.00 25.0 5.8 5546.0 6144.0 0.0	.I
70.00 25.0 5.9 5546.0 6145.5 0.0	.I
71.00 25.0 6.1 5546.0 6147.1 0.0	.I
72.00 26.0 6.2 5546.0 6148.7 0.0	.I
73.00 26.0 6.3 5546.0 6150.3 0.0	.I
74.00 26.0 6.4 5546.0 6152.0 0.0	.I
75.00 27.0 6.5 5546.0 6153.6 0.0	.I
76.00 27.0 6.6 5546.0 6155.3 0.0	_
77.00 27.0 6.7 5546.0 6157.0 0.0	.I
78.00 28.0 6.8 5546.0 6158.7 0.0	.I .I .I

```
79.00
        28.0
               6.9 5546.0
                           6160.5
                                    0.0
 80.00
       29.0
               7.0 5546.0
                           6162.2
                                    0.0
                                                 .I
                                                 .I
 81.00
       29.0
               7.2 5546.1
                           6164.1
                                    0.0
                                                 .I
 82.00
       29.0
               7.3 5546.1
                           6165.9
                                    0.0
 83.00
       30.0
               7.4 5546.1
                           6167.7
                                    0.0
                                                 . I
 84.00
       30.0
               7.5 5546.1
                           6169.5
                                    0.0
                                                 . I
 85.00
       31.0
               7.7 5546.1
                           6171.4
                                    0.0
                                                   Ι
 86.00
       31.0
               7.8 5546.1
                          6173.4
                                    0.0
                                                 . I
 87.00
       32.0
               7.9 5546.1
                          6175.3
                                    0.0
                                                   Ι
       33.0
               8.0 5546.1
 88.00
                          6177.3
                                    0.0
                                                   Ι
       33.0
 89.00
               8.2 5546.1
                          6179.4
                                    0.0
                                                   Ι
 90.00
       34.0
               8.3 5546.1
                          6181.5
                                    0.0
                                                 . I
                                                   Ι
 91.00
       35.0
               8.5 5546.2
                          6183.6
                                    0.0
                                                   Ι
 92.00
        35.0
               8.6 5546.2
                          6185.8
                                    0.0
 93.00
        36.0
               8.7 5546.2
                          6188.1
                                    0.0
                                                 . I
 94.00
        37.0
               8.9 5546.2
                          6190.3
                                    0.0
                                                 . I
 95.00
       38.0
               9.0 5546.2
                          6192.7
                                    0.0
                                                 . I
                          6195.1
 96.00
       39.0
               9.2 5546.2
                                    0.0
                                                 . I
       40.0
               9.4 5546.2
 97.00
                          6197.6
                                    0.0
                                                . I
                                  0.0
                                                . I
 98.00
       41.0
              9.5 5546.2 6200.2
 99.00
       42.0
              9.7 5546.3
                          6202.8
                                  0.0
                                                . I
100.00
       43.0
              9.9 5546.3
                          6205.5
                                  0.0
                                                 . I
101.00
       45.0
             10.1 5546.3 6208.3
                                  0.0
                                                .PI
       46.0
102.00
             10.3 5546.3 6211.3
                                  0.0
                                                .PI
103.00
       48.0
             10.5 5546.3 6214.3
                                  0.0
                                                .PI
                                  0.0
104.00
       49.0
             10.7 5546.3 6217.4
                                                .PI
       51.0
105.00
             10.9 5546.3
                          6220.7
                                    0.0
                                                .P I
       53.0
106.00
             11.1 5546.4 6224.0
                                    0.0
                                                .P I
107.00
       56.0 11.3 5546.4 6227.6
                                    0.0
                                                .P I
108.00
       58.0
             11.6 5546.4 6231.4
                                    0.0
                                                .P I
                                                .P I
109.00
       61.0 11.9 5546.4 6235.3
                                    0.0
                                                .P I
110.00
       65.0 12.1 5546.4 6239.5
                                    0.0
111.00
                                                .P I
       69.0 12.4 5546.5
                          6244.1
                                    0.0
       74.0 12.7 5546.5 6248.9
                                    0.0
112.00
                                                 .P
                                                    I
                                                 .P
113.00
       80.0 13.1 5546.5 6254.2
                                  0.0
                                                     Ι
114.00
       87.0 13.5 5546.5
                          6260.0
                                  0.0
                                                     Ι
                                                 .P
115.00
       96.0 13.9 5546.6
                          6266.5
                                    0.0
                                                     I
                                                 .Р
116.00 109.0 14.4 5546.6
                                  0.0
                          6273.8
                                                 .P
                                                      Ι
117.00 127.0 14.9 5546.7
                                    0.0
                          6282.3
                                                 .P
                                                       I
118.00 157.0 15.6 5546.7
                          6292.8
                                    0.0
                                                 .P
             17.3 5546.8
119.00 219.0
                          6307.0
                                    0.0
                                                 .P
120.00 850.0
             22.4 5547.0
                          6349.5
                                    0.0
                                                 .P
             28.7 5547.3
121.00 479.0
                          6402.3
                                    0.0
                                                 .P
                                                                         Ι
122.00 259.0
              32.1 5547.4
                          6430.3
                                    0.0
                                                 . P
                                                              Ι
123.00 172.0
             33.9 5547.5
                          6445.4
                                    0.0
                                                . P
124.00 132.0
             35.1 5547.5
                           6455.1
                                    0.0
                                                . P
                                                        Ι
125.00 111.0
             35.9 5547.6
                           6462.2
                                    0.0
                                                . P
                                                       Ι
             36.6 5547.6
                                  0.0
       98.0
126.00
                          6467.8
                                                . P
                                                      Ι
             37.2 5547.6
                                                . P I
127.00
       88.0
                           6472.5
                                    0.0
                                                . P I
128.00
       81.0
             37.6 5547.7
                           6476.4
                                    0.0
129.00
       75.0
             38.0 5547.7
                           6479.7
                                    0.0
                                                . P I
130.00
       70.0
             38.4 5547.7
                           6482.5
                                    0.0
                                                . P I
131.00
       65.0
             38.7 5547.7
                           6484.9
                                    0.0
                                                . PI
       62.0 38.9 5547.7
                                    0.0
132.00
                           6487.0
                                                . PI
133.00
       59.0
             39.1 5547.7
                           6488.7
                                    0.0
                                                . PI
       56.0
                                    0.0
134.00
             39.3 5547.7
                           6490.2
                                                . PI
135.00
       54.0
             39.4 5547.7
                           6491.5
                                    0.0
                                                . PI
                                                . PI
136.00
       51.0
             39.6 5547.7
                           6492.6
                                    0.0
137.00
       50.0 39.7 5547.7
                           6493.5
                                    0.0
                                                . PI
```

138.00 139.00 140.00 141.00 142.00	48.0 46.0 45.0 43.0 42.0	39.8 39.8 39.9 39.9 40.0	5547.7 5547.7 5547.8 5547.8 5547.8	6494.3 6494.9 6495.3 6495.7 6495.9	0.0 0.0 0.0 0.0	. P . P . P . P
143.00 144.00 145.00 146.00 147.00 148.00	41.0 40.0 39.0 38.0 37.0 36.0	40.0 40.0 40.0 39.9 39.9	5547.8 5547.8 5547.8 5547.8 5547.8 5547.8	6496.0 6496.0 6495.9 6495.7 6495.4	0.0 0.0 0.0 0.0 0.0	. P . X . P . P . P
149.00 150.00 151.00 152.00 153.00	35.0 35.0 34.0 33.0	39.9 39.8 39.8 39.7 39.6	5547.8 5547.7 5547.7 5547.7	6495.0 6494.6 6494.2 6493.7 6493.1	0.0 0.0 0.0 0.0	. P . P . P . P
154.00 155.00 156.00 157.00 158.00 159.00	32.0 32.0 31.0 30.0 30.0 29.0	39.6 39.5 39.4 39.3 39.2 39.1		6492.6 6491.9 6491.3 6490.5 6489.8 6489.0	0.0 0.0 0.0 0.0 0.0	. P . P . P . P . IP
160.00 161.00 162.00 163.00 164.00	29.0 29.0 28.0 28.0 27.0	39.0 38.9 38.8 38.7 38.6	5547.7 5547.7 5547.7 5547.7 5547.7	6488.1 6487.3 6486.5 6485.6 6484.6	0.0 0.0 0.0 0.0	.IP .IP .IP .IP
165.00 166.00 167.00 168.00 169.00 170.00	27.0 27.0 26.0 26.0 26.0 25.0	38.5 38.4 38.3 38.1 38.0 37.9	5547.7 5547.7 5547.7 5547.7 5547.7	6483.7 6482.7 6481.8 6480.8 6479.8 6478.7	0.0 0.0 0.0 0.0 0.0	.IP .IP .IP .IP .IP
171.00 172.00 173.00 174.00 175.00	25.0 25.0 24.0 24.0 24.0	37.8 37.7 37.5 37.4 37.3	5547.7 5547.7 5547.7 5547.6 5547.6	6477.7 6476.6 6475.5 6474.4 6473.3	0.0 0.0 0.0 0.0	.IP .IP .IP .IP
176.00 177.00 178.00 179.00 180.00 181.00	24.0 23.0 23.0 23.0 23.0 22.0		5547.6 5547.6	6472.2 6471.1 6470.0 6468.8 6467.7 6466.5	0.0 0.0 0.0 0.0 0.0	.IP .IP .IP .IP .IP
182.00 183.00 184.00 185.00 186.00	22.0 22.0 22.0 22.0 21.0	36.3 36.2 36.0 35.9 35.7	5547.6 5547.6 5547.6 5547.6 5547.6	6465.3 6464.2 6463.0 6461.8 6460.7	0.0 0.0 0.0 0.0	.IP .IP .IP .IP
187.00 188.00 189.00 190.00 191.00 192.00	21.0 21.0 21.0 21.0 20.0	35.6 35.4 35.3 35.2 35.0 34.9	5547.6	6459.5 6458.3 6457.1 6455.9 6454.7 6453.4	0.0 0.0 0.0 0.0 0.0	.IP .IP .IP .IP .IP
193.00 194.00 195.00 196.00	20.0 20.0 20.0 20.0	34.7 34.6 34.4	5547.5 5547.5 5547.5 5547.5	6452.2 6451.0 6449.8 6448.6	0.0 0.0 0.0 0.0	.IP .IP .IP

```
199.00 19.0 33.8 5547.5 6444.9 0.0
                                                               .IP
200.00 19.0 33.7 5547.5 6443.7 0.0
                                                               .IP
                                                               .IP
201.00 19.0 33.6 5547.5 6442.5 0.0
202.00 19.0 33.4 5547.5 6441.3 0.0
                                                               .IP
203.00 19.0 33.3 5547.5 6440.1 0.0
                                                               .IP
204.00 18.0 33.1 5547.5 6438.9 0.0
                                                               .IP
205.00 18.0 33.0 5547.5 6437.7 0.0
                                                               .IP
         18.0 32.8 5547.5 6436.4 0.0
206.00
                                                               .IP
207.00 18.0 32.7 5547.4 6435.2 0.0
                                                               .IP
208.00 18.0 32.5 5547.4 6434.0
                                            0.0
                                                               .IP

      208.00
      18.0
      32.5
      5547.4
      6434.0
      0.0

      209.00
      18.0
      32.4
      5547.4
      6432.8
      0.0

      210.00
      18.0
      32.2
      5547.4
      6431.6
      0.0

      211.00
      17.0
      32.1
      5547.4
      6430.4
      0.0

      212.00
      17.0
      32.0
      5547.4
      6429.2
      0.0

      213.00
      17.0
      31.8
      5547.4
      6427.9
      0.0

      214.00
      17.0
      31.7
      5547.4
      6426.7
      0.0

      215.00
      17.0
      31.5
      5547.4
      6425.5
      0.0

      216.00
      17.0
      31.4
      5547.4
      6424.3
      0.0

                                                               .IP
                                                               .IP
                                                               .IP
                                                               .IP
                                                               .IP
                                                               .IP
                                                               .IP
216.00 17.0 31.4 5547.4 6424.3 0.0
                                                               .IP
217.00 17.0 31.2 5547.4 6423.1 0.0
                                                               .IP
218.00 17.0 31.1 5547.4 6422.0 0.0
                                                               .IP
                                                               .IP
219.00 17.0 30.9 5547.4 6420.8 0.0
220.00 17.0 30.8 5547.4 6419.7 0.0
                                                              .IP
221.00 16.0 30.7 5547.4 6418.5 0.0
                                                               .IP
222.00 16.0 30.5 5547.4 6417.3 0.0
                                                              .IP
223.00 16.0 30.4 5547.3 6416.1 0.0
                                                              .IP
224.00 16.0 30.2 5547.3 6414.9 0.0
                                                              .IP
                                                              .IP
225.00 16.0 30.1 5547.3 6413.7 0.0
226.00 16.0 30.0 5547.3 6412.6 0.0
                                                              .P
227.00 16.0 29.8 5547.3 6411.4 0.0
                                                               .P
228.00 16.0 29.7 5547.3 6410.3 0.0
                                                              .P
229.00 16.0 29.5 5547.3 6409.2 0.0
                                                              .P
230.00 16.0 29.4 5547.3 6408.1 0.0
                                                               .P
231.00 15.0 29.3 5547.3 6406.9 0.0
                                                               .P
232.00 15.0 29.1 5547.3 6405.7 0.0
                                                               .P
233.00 15.0 29.0 5547.3 6404.6 0.0
                                                               .P
234.00 15.0 28.9 5547.3 6403.4 0.0
                                                               .P
235.00 15.0 28.7 5547.3 6402.3 0.0
                                                               .P
236.00 15.0 28.6 5547.3 6401.2 0.0
                                                               .Р
237.00 15.0 28.5 5547.3 6400.0 0.0
                                                               .P
238.00 15.0 28.3 5547.3 6398.9 0.0
                                                               .Р
239.00 15.0 28.2 5547.3 6397.8 0.0
                                                               .P
          Qin Qout Elev Vol Area ExtVel I
                                                                          I
 Time
                                                                                        I
                                                                                                     I
                                                                                                                   Ι
                                                                                                600.
                                                                                     400.
                                                                                                              800
                                                               0.
                                                                        200.
          END NRCS-PSH PLOT
```

.IP

RATING TABLE DEVELOPED, SITE = STR1 :
BY PROGRAM FOR PS AND AUX. SPILLWAYS
AUX. RATING USED WSPVRT METHOD.

197.00 19.0 34.1 5547.5 6447.4 0.0 198.00 19.0 34.0 5547.5 6446.2 0.0

RATI	NG TABLE	NUMBER 1				
	ELEV.	Q-TOTAL	Q-PS	Q-AUX.	VOLUME	AREA
	FEET	CFS	CFS	CFS	AC-FT	ACRE
1	5545.50	0.00	0.00	0.00	6055.03	0.00
2	5546.72	15.71	15.71	0.00	6294.00	0.00

3	5547.94	44.43	44.43	0.00	6532.97	0.00		
4	5549.17	81.62	81.62	0.00	6771.95	0.00		
					FULL CONDUIT	FLOW, ELEV	= 5550.39 1	ŦΤ
5	5550.39	125.65	125.65	0.00	7015.04	0.00		
6	5550.65	125.84	125.84	0.00	7069.39	0.00		
7	5550.92	126.01	126.01	0.00	7123.74	0.00		
8	5551.18	126.17	126.17	0.00	7178.09	0.00		
9	5551.44	126.34	126.34	0.00	7232.44	0.00		
10	5551.71	126.50	126.50	0.00	7286.79	0.00		
11	5551.97	126.67	126.67	0.00	7341.14	0.00		
12	5552.23	126.83	126.83	0.00	7395.49	0.00		
13	5552.50	126.99	126.99	0.00	7449.85	0.00		

INFLOW HYDROGRAPH PROVIDED IN LOCATION 3, PEAK= 2180.00 CFS, AT 3.30 HRS. TITLE = Auxiliary Spillway (Local)

INFLOW HYDROGRAPH PROVIDED IN LOCATION 5, PEAK= 3365.00 CFS, AT 9.60 HRS. TITLE = Freeboard (General)

AUX. CREST 5548.51 FT 6644.1 ACFT 0.00 AC 61.7 CFS

PS STORAGE 589.1 ACFT, BETWEEN AUX. CREST AND SED. ACCUM ELEVATIONS.

START ELEV 5546.26 FT 6203.0 ACFT 0.00 AC 9.7 CFS

**** WARNING - AUXILIARY CREST LOWER THAN LOW POINT IN SITE.

NRCS-SDH INFLOW HYDROGRAPH INPUT, DA = 4.74 SQUARE MILES

PEAK = 2180.0 CFS, AT 3.3 HRS.

NRCS-FBH INFLOW HYDROGRAPH INPUT, DA = 4.74 SQUARE MILES

PEAK = 3365.0 CFS, AT 9.6 HRS.

**** WARNING - MAXIMUM AUX. SURFACE PROFILE ELEVATION (5549.20) AND AUXILIARY CREST (5548.51) ELEVATION DO NOT MATCH. MAXIMUM AUX. SURFACE PROFILE ELEVATION USED IN WSPVRT PROCEDURE.

**** MESSAGE - INPUT(5549.14) TO INTERPOLATION ROUTINE IS BELOW ARRAY LIMIT(5549.20).

RATING TABLE DEVELOPED, SITE = STR1 : BY PROGRAM FOR PS AND AUX. SPILLWAYS AUX. RATING USED WSPVRT METHOD.

RATI:	NG TABLE	NUMBER 2					
	ELEV.	Q-TOTAL	Q-PS	Q-AUX.	VOLUME	AREA	
	FEET	CFS	CFS	CFS	AC-FT	ACRE	
1	5545.50	0.00	0.00	0.00	6055.03	0.00	
2	5545.83	2.25	2.25	0.00	6120.52	0.00	
3	5546.17	6.37	6.37	0.00	6186.02	0.00	
4	5546.50	11.71	11.71	0.00	6251.52	0.00	
5	5546.84	18.03	18.03	0.00	6317.01	0.00	
6	5547.17	25.20	25.20	0.00	6382.51	0.00	
7	5547.51	33.12	33.12	0.00	6448.00	0.00	
8	5547.84	41.74	41.74	0.00	6513.50	0.00	
9	5548.18	50.99	50.99	0.00	6578.99	0.00	
10	5548.51	60.85	60.85	0.00	6644.49	0.00	
11	5549.14	80.67	80.67	0.00	6766.41	0.00	
12	5549.76	128.97	102.35	26.63	6888.71	0.00	
					FULL CONDUI	T FLOW, ELEV	= 5550.39 FT
13	5550.39	227.03	125.67	101.36	7015.14	0.00	
14	5550.49	242.46	125.75	116.71	7036.88	0.00	
15	5550.60	260.89	125.81	135.07	7058.62	0.00	
16	5550.79	295.79	125.93	169.86	7097.77	0.00	
17	5551.02	338.51	126.08	212.44	7145.68	0.00	
18	5551.44	429.26	126.34	302.92	7232.64	0.00	
19	5551.97	558.86	126.67	432.19	7341.44	0.00	
20	5552.50	706.93	126.99	579.94	7450.25	0.00	
* * *	*****	**********	******	*****	*****	*****	****

SUMMARY OF AUXILIARY SPILLWAY SURFACE CONDITIONS USED IN COMPUTATIONS BY REACH

REACH	FROM STA (ft)	TO STA (ft)	SLOPE	RETARDANCE CURVE INDEX@	VEGETAL COVER FACTOR	MAINT. CODE +	ROOTING DEPTH (ft)	REACH LOCATION *
1	0.	75.	-25.6	0.025	* *	* *	* *	INLET
2	75.	115.	0.0	0.025	* *	* *	* *	CREST
3	115.	475.	15.4	0.025	0.00	1		EXIT !
4	475.	610.	8.5	0.025	0.00	1		EXIT
5	610.	1057.	6.6	0.025	0.00	1		EXIT
6	1057.	1153.	15.6	0.025	0.00	1		EXIT

- @ The program interprets retardance curve index entries of less than 1 as Manning's n values.
- + The minimum maintenance code value of 2 is used in INTEGRITY computations (the program changes values of 1 to 2 during computation).
- * Upper case indicates a reach of constructed spillway channel.
- ** The program does not use vegetal cover factor, maintenance code, and rooting depth for inlet and crest reaches in computations.
 - ! Reach 3 used in computing exit channel velocities.

HYD	AO	4.74Cove Res				COVRES	1	
	0	0.3000					STR1	2
		7.76	7.76	7.79	8.01	8.88	AO D	3
		10.93	14.81	20.04	25.63	31.00	AO D	4
		35.80	40.07	43.92	47.45	50.65	AO D	5
		53.79	56.77	59.50	61.84	63.63	AO D	6
		64.79	65.46	65.79	65.90	65.87	AO D	7
		65.76	65.58	65.37	65.13	64.89	AO D	8
		64.63	64.38	64.12	63.87	63.62	AO D	9
		63.36	63.11	62.86	62.62	62.37	AO D	10

62.12	61.87	61.63	61.39	61.14	AO D 11
60.90	60.67	60.45	60.23	60.01	AO D 12
59.79	59.57	59.35	59.14	58.92	AO D 13
58.70	58.49	58.27	58.06	57.85	AO D 14
57.64	57.43	57.22	57.01	56.80	AO D 15
56.59	56.38	56.18	55.97	55.77	AO D 16
55.56	55.36	55.16	54.96	54.76	AO D 17
54.56	54.36	54.16	53.96	53.76	AO D 18
53.57	53.37	53.17	52.98	52.79	AO D 19
52.59	52.40	52.21	52.02	51.83	AO D 20
51.64	51.45	51.26	51.08	50.90	AO D 21
50.72	50.55	50.38	50.20	50.03	AO D 22
49.86	49.69	49.52	49.35	49.18	AO D 23
49.01	48.84	48.68	48.51	48.34	AO D 24
48.18	48.01	47.85	47.68	47.52	AO D 25
47.36	47.20	47.03	46.87	46.71	AO D 26
46.55	46.39	46.23	46.08	45.92	AO D 27
45.76	45.60	45.45	45.29	45.14	AO D 28
44.98	44.83	44.68	44.52	44.37	AO D 29
44.22	44.07	43.92	43.77	43.62	AO D 30
43.47	43.32	43.17	43.03	42.88	AO D 31
42.73	42.59	42.44	42.30	42.15	AO D 32
42.01	41.86	41.72	41.59	41.46	AO D 33
41.33	41.19	41.06	40.93	40.80	AO D 34
40.67	40.54	40.41	40.29	40.16	AO D 35
40.03	39.90	39.78	39.65	39.53	AO D 36
39.40	39.27	39.15	39.03	38.90	AO D 37
38.78	38.66	38.53	38.41	38.29	AO D 38
38.17	38.05	37.93	37.81	37.69	AO D 39
37.57	37.45	37.33	37.21	37.09	AO D 40
36.97	36.86	36.74	36.62	36.51	AO D 41
36.39	36.28	36.16	36.05	35.93	AO D 42
35.82	35.71	35.59	35.48	35.37	
35.26	35.15	35.03	34.92	34.81	AO D 44
34.70	34.59	34.48	34.37	34.27	AO D 45
34.16	34.05	33.94	33.83	33.73	AO D 46
33.62	33.51	33.41	33.30	33.20	AO D 47
33.10	33.00	32.90	32.81	32.71	AO D 48
32.62	32.52	32.43	32.33	32.24	AO D 49
32.15	32.05	31.96	31.87	31.78	AO D 50
31.68	31.59	31.50	31.41	31.32	AO D 51
31.23	31.14	31.05	30.96	30.87	AO D 51
30.78	30.69	30.60	30.51	30.42	AO D 53
30.33	30.25	30.16	30.07	29.98	AO D 54
29.90	29.81	29.72	29.64	29.55	AO D 55
29.47	29.38	29.30	29.21	29.13	AO D 56
29.04	28.96	28.87	28.79	28.71	AO D 57
28.62	28.54	28.46	28.38	28.30	AO D 58
28.21	28.13	28.05	27.97	27.89	AO D 59
27.81	27.73	27.65	27.57	27.49	AO D 60
27.41	27.73	27.25	27.17	27.19	AO D 61
		26.86			
27.02	26.94		26.78	26.71	AO D 62
26.63	26.55	26.48	26.40	26.32	AO D 63
26.25	26.17	26.10	26.02	25.95	AO D 64
25.87	25.80	25.72	25.65	25.57	AO D 65
25.50	25.43	25.35	25.28	25.21	AO D 66
				P	1,T 2 67

ENDTABLE 23.30 23.43 23.33 23.26 23.21 A0 D 00 ENDTABLE

1SITES ------

ROUTED BTM WIDTH MAX ELEV VOL-MAX AREA-MAX AUX.-HP VOL-AUX. RESULTS FT FT ACFT AC FT ACFT NRCS-SDH 30.0 5548.67 6675.5 0.0 0.16 31.0

PEAK - CFS Q-PS Q-AUX. Q-TOT. DISCHARGE = 65.7 0.2 65.9

CRITICAL CRITICAL CRITICAL 25% OF Q
DEPTH VELOCITY SLOPE-Sc Sc

AUXILIARY FT FT/SEC FT/FT FT/FT
SPILLWAY --- 0.01 0.57 0.039 0.054

AUXILIARY SPILLWAY DURATION FLOW = 8.7 HOURS

**** MESSAGE - MAX. DISCHARGE OF 0. CFS IS BELOW CREST AUXILIARY SPILLWAY. NO STABILITY STRESS COMPUTED.

	PLO	T NRCS-SDH			1 IN =	5 0.	00.	CFS 500		1000.	1500.	2000
Time	Qin	Qout Elev	Vol	Area	ExtVel	J.		300 I		1000. I	1300. I	2000 I
1.50	~ 0	8 5546.3	6203.0	0.0	0.00							
1.80	6	8 5546.3	6203.0	0.0	0.00							
2.10	39	8 5546.3	6203.4	0.0	0.00	.I						
2.40	194	8 5546.3	6206.1	0.0	0.00		I					
2.70	687	9 5546.3	6216.8	0.0	0.00				I			
3.00	1365	11 5546.5	6242.0	0.0	0.00						I	
3.30	2027	15 5546.7	6283.7	0.0	0.00							
3.60	2180	20 5546.9	6335.4	0.0	0.00							
3.90	1955	26 5547.2	6386.1	0.0	0.00	.P						I
4.20	1683	31 5547.4	6430.5	0.0	0.00	.P						I
4.50	1441	36 5547.6	6468.4	0.0	0.00	.P					I	
4.80	1248	40 5547.8	6500.8	0.0	0.00	.P					I	
5.10	1107	44 5547.9	6528.9	0.0	0.00	.P				I		
5.40	1001	47 5548.1	6553.9	0.0	0.00	.P				I		
5.70	924	51 5548.2	6576.6	0.0	0.00	.P				I		
6.00	874	54 5548.3	6597.6	0.0	0.00	.P				I		
6.30	833	57 5548.4	6617.4	0.0	0.00	.P				I		
6.60	748	60 5548.5	6635.5	0.0	0.00	.P				I		
6.90	589	62 5548.5	6650.6	0.0	0.00	.A			I			
7.20	423	64 5548.6	6661.6	0.0	0.00	.A		I				
7.50	283	65 5548.6	6668.8	0.0	0.00	.A		I				
7.80	180	65 5548.7	6672.9	0.0	0.00	.A	I					
8.10	112	66 5548.7	6674.9	0.0	0.00	.AI						
8.40	73	66 5548.7	6675.5	0.0	0.00	.X						
8.70	47	66 5548.7	6675.4	0.0	0.00	.A						
9.00	28	66 5548.7	6674.7	0.0	0.00	.A						
9.30	16	66 5548.7	6673.6	0.0	0.00	. A						
9.60	9	65 5548.7	6672.3	0.0	0.00	.A						
9.90	5	65 5548.6	6670.8	0.0	0.00	.A						
10.20	3	65 5548.6	6669.3	0.0	0.00	.A						
10.50	1	65 5548.6	6667.8	0.0	0.00	.A						
10.80	1	64 5548.6	6666.2	0.0	0.00	.A						
11.10	0	64 5548.6	6664.6	0.0	0.00	.A						

12.30 12.60 12.90 13.20 13.50 13.80 14.10 14.40 15.00 15.30 15.60 15.90 16.20 16.50 16.50 17.10 17.40 17.70 18.00 18.30 19.20 19.50 19.20 19.50 19.20 19.50 19.20 20.40 20.70 21.00 21.00 21.30 21.60 22.20 22.50 23.40 23.70 24.00 24.90 25.50 26.40 26.70 27.00 27		622211110000009999888887777766666555555555555555555555	5548.5 5548.5 5548.5 5548.5 5548.5 5548.6 55548.6 555555.6 55548.6 555548.6 55548.6 55548.6 55548.6 55548.6 55548.6 55548.6 555548.6 55548.6 55548.6 55548.6 55548.6 55548.6 55548.6 555548.6 55548.6 55548.6 55548.6 55548.6 55548.6 55548.6 555548.6 55548.6 55548.6 55548.6 55548.6 55548.6 55548.6 555548.6 55548.6 55548.6 55548.6 55548.6 55548.6 55548.6 555548.6 555556.6 55556.6 55566.6 55566.6 55566.6 55566.6 55566.6 55566.6 55566.6 55666.6	6655.4 6653.8 6652.3 6659.8 6649.3 6647.8 6644.8 6644.8 6643.9 6643.1 6633.1 6633.1 6633.1 6633.1 6633.1 6634.6 6634.6 6624.6 6624.6 6623.1 6617.6 6618.8 6617.6 6618.8 6618.1 6610.7 6609.4 6609.4 6609.7			. A A A A A A A A P P P P P P P P P P P
26.40	0	53	5548.2	6592.2	0.0	0.00	.P
26.70	0	53	5548.2	6590.9	0.0	0.00	.P
27.00	0	53	5548.2	6589.6	0.0	0.00	.P

46.80	0	42	5547.8	6514.4	0.0	0.00	.P
47.10	0		5547.8	6513.4	0.0	0.00	.P
47.40	0		5547.8	6512.4	0.0	0.00	.P
47.70	0		5547.8	6511.4	0.0	0.00	.P
48.00	0		5547.8	6510.4	0.0	0.00	.P
	0						
48.30			5547.8	6509.4	0.0	0.00	.Р
48.60	0		5547.8	6508.4	0.0	0.00	.Р
48.90	0		5547.8	6507.4	0.0	0.00	.P
49.20	0		5547.8	6506.4	0.0	0.00	.Р
49.50	0		5547.8	6505.4	0.0	0.00	.P
49.80	0		5547.8	6504.4	0.0	0.00	.P
50.10	0	40	5547.8	6503.4	0.0	0.00	.P
50.40	0	40	5547.8	6502.5	0.0	0.00	.P
50.70	0	40	5547.8	6501.5	0.0	0.00	.P
51.00	0	40	5547.8	6500.5	0.0	0.00	.P
51.30	0	40	5547.8	6499.6	0.0	0.00	.P
51.60	0	40	5547.8	6498.6	0.0	0.00	.P
51.90	0	40	5547.8	6497.6	0.0	0.00	.P
52.20	0		5547.8	6496.7	0.0	0.00	.P
52.50	0		5547.8	6495.7	0.0	0.00	.P
52.80	0		5547.7	6494.8	0.0	0.00	.P
53.10	0		5547.7	6493.8	0.0	0.00	. P
53.40	0		5547.7	6492.9	0.0	0.00	.P
53.70	0		5547.7	6491.9	0.0	0.00	.P
54.00	0		5547.7	6491.0	0.0	0.00	.P
54.30	0		5547.7	6490.1	0.0	0.00	.P
54.60	0		5547.7	6489.1	0.0	0.00	.Р
54.90	0		5547.7	6488.2	0.0	0.00	.Р
55.20	0		5547.7	6487.3	0.0	0.00	.P
55.50	0		5547.7	6486.4	0.0	0.00	.Р
55.80	0		5547.7	6485.4	0.0	0.00	.Р
56.10	0		5547.7	6484.5	0.0	0.00	.P
56.40	0		5547.7	6483.6	0.0	0.00	.P
56.70	0		5547.7	6482.7	0.0	0.00	.P
57.00	0		5547.7	6481.8	0.0	0.00	.P
57.30	0	37	5547.7	6480.9	0.0	0.00	.P
57.60	0	37	5547.7	6480.0	0.0	0.00	.P
57.90	0	37	5547.7	6479.1	0.0	0.00	.P
58.20	0	37	5547.7	6478.2	0.0	0.00	.P
58.50	0	37	5547.7	6477.3	0.0	0.00	.P
58.80	0	37	5547.7	6476.4	0.0	0.00	.P
59.10	0		5547.7	6475.5	0.0	0.00	.P
59.40	0		5547.6	6474.6	0.0	0.00	.P
59.70	0		5547.6	6473.7	0.0	0.00	.P
60.00	0		5547.6	6472.9	0.0	0.00	. P
60.30	0		5547.6	6472.0	0.0	0.00	.P
60.60	0		5547.6	6471.1	0.0	0.00	.P
60.90	0		5547.6	6470.2	0.0	0.00	.P
61.20	0		5547.6	6469.4	0.0	0.00	.P
61.50	0		5547.6	6468.5	0.0	0.00	.P
61.80	0			6467.7		0.00	
			5547.6		0.0	0.00	.P
62.10	0		5547.6 5547.6	6466.8 6465.9	0.0		.Р
62.40	0				0.0	0.00	.Р
62.70	0		5547.6	6465.1	0.0	0.00	.Р
63.00	0		5547.6	6464.2	0.0	0.00	.Р
63.30	0		5547.6	6463.4	0.0	0.00	.Р
63.60	0		5547.6	6462.5	0.0	0.00	.Р
63.90	0		5547.6	6461.7	0.0	0.00	.Р
64.20	0	35	5547.6	6460.9	0.0	0.00	.P

81.30 0 29 5547.4 6417.1 0.0 0.00 .P 81.60 0 29 5547.3 6416.4 0.0 0.00 .P
--

```
82.20
                 29 5547.3
                             6415.0
                                       0.0
                                              0.00
 82.50
                 29 5547.3
                             6414.3
                                       0.0
                                              0.00
                                                      .P
            0
                                                      .P
 82.80
                 29 5547.3
                             6413.6
                                       0.0
                                              0.00
 83.10
            0
                 29 5547.3
                             6412.9
                                       0.0
                                              0.00
                                                      .P
 83.40
            0
                 29 5547.3
                             6412.2
                                       0.0
                                              0.00
                                                      .P
                                                      .P
 83.70
            0
                 29 5547.3
                             6411.5
                                       0.0
                                              0.00
 84.00
                 29 5547.3
                             6410.8
                                              0.00
                                                      .P
           0
                                       0.0
 84.30
           0
                 29 5547.3
                             6410.2
                                       0.0
                                              0.00
                                                      .P
 84.60
           0
                 28 5547.3
                             6409.5
                                       0.0
                                              0.00
                                                      .P
 84.90
                 28 5547.3
           0
                             6408.8
                                       0.0
                                              0.00
                                                      .P
 85.20
                 28 5547.3
           0
                             6408.1
                                       0.0
                                              0.00
                                                      .P
 85.50
           0
                 28 5547.3
                             6407.4
                                       0.0
                                              0.00
                                                      .P
                 28 5547.3
 85.80
           0
                             6406.8
                                       0.0
                                              0.00
                                                      .P
 86.10
           0
                 28 5547.3
                             6406.1
                                       0.0
                                              0.00
                                                      .P
 86.40
           0
                 28 5547.3
                             6405.4
                                       0.0
                                              0.00
                                                      .P
 86.70
           0
                 28 5547.3
                             6404.8
                                       0.0
                                              0.00
                                                      .P
 87.00
           0
                 28 5547.3
                             6404.1
                                       0.0
                                              0.00
                                                      .P
 87.30
           0
                 28 5547.3
                             6403.4
                                                      .P
                                       0.0
                                              0.00
 87.60
           0
                 28 5547.3
                             6402.8
                                                      .P
                                       0.0
                                              0.00
                                                      .P
 87.90
           0
                 28 5547.3
                            6402.1
                                       0.0
                                              0.00
 88.20
           0
                 27 5547.3
                             6401.4
                                       0.0
                                              0.00
                                                      .P
 88.50
           0
                 27 5547.3
                             6400.8
                                       0.0
                                              0.00
                                                      .P
 88.80
           0
                 27 5547.3
                             6400.1
                                       0.0
                                              0.00
                                                      .P
 89.10
           0
                 27 5547.3
                             6399.5
                                       0.0
                                              0.00
                                                      .P
                                              0.00
 89.40
           0
                 27 5547.3
                             6398.8
                                       0.0
                                                      .P
 89.70
           0
                             6398.2
                 27 5547.3
                                       0.0
                                              0.00
                                                      .P
                 27 5547.3
 90.00
           0
                             6397.5
                                       0.0
                                              0.00
                                                      .P
                 27 5547.2
           0
 90.30
                             6396.9
                                       0.0
                                              0.00
                                                      .P
 90.60
           0
                 27 5547.2
                             6396.3
                                       0.0
                                              0.00
                                                      .P
 90.90
           0
                 27 5547.2
                             6395.6
                                       0.0
                                              0.00
                                                      .P
 91.20
           0
                 27 5547.2
                             6395.0
                                       0.0
                                              0.00
                                                      .P
 91.50
           0
                 27 5547.2
                             6394.3
                                       0.0
                                              0.00
                                                      .P
 91.80
           0
                 27 5547.2
                             6393.7
                                       0.0
                                              0.00
                                                      .P
                 26 5547.2
                                                      .P
 92.10
           0
                             6393.1
                                       0.0
                                              0.00
 92.40
           0
                 26 5547.2
                             6392.4
                                       0.0
                                              0.00
                                                      .P
 92.70
           0
                 26 5547.2
                             6391.8
                                       0.0
                                              0.00
                                                      .P
 93.00
           0
                 26 5547.2
                             6391.2
                                       0.0
                                              0.00
                                                      .P
                 26 5547.2
 93.30
           0
                             6390.6
                                       0.0
                                              0.00
                                                      .P
                 26 5547.2
 93.60
           0
                             6389.9
                                       0.0
                                              0.00
                                                      .P
 93.90
           0
                 26 5547.2
                             6389.3
                                       0.0
                                              0.00
                                                      .P
                 26 5547.2
 94.20
           0
                             6388.7
                                       0.0
                                              0.00
                                                      .P
           0
                 26 5547.2
 94.50
                             6388.1
                                       0.0
                                              0.00
                                                      .P
                 26 5547.2
 94.80
           0
                             6387.5
                                       0.0
                                              0.00
                                                      .P
 95.10
           0
                 26 5547.2
                             6386.9
                                       0.0
                                              0.00
                                                      .P
 95.40
           0
                 26 5547.2
                             6386.2
                                       0.0
                                              0.00
                                                      .P
 95.70
           0
                 26 5547.2
                             6385.6
                                       0.0
                                              0.00
                                                      .P
                             6385.0
 96.00
           0
                 26 5547.2
                                       0.0
                                              0.00
                                                      .P
           0
                 25 5547.2
                                                      .P
 96.30
                             6384.4
                                       0.0
                                              0.00
                                                      .P
 96.60
            0
                 25 5547.2
                             6383.8
                                       0.0
                                              0.00
                                                      .P
 96.90
            0
                 25 5547.2
                             6383.2
                                       0.0
                                              0.00
                                                      .P
 97.20
            0
                 25 5547.2
                             6382.6
                                       0.0
                                              0.00
 Time
         Qin Qout
                       Elev
                               Vol
                                      Area
                                            ExtVel
                                                      Ι
                                                                Ι
                                                                            Ι
                                                                                       Ι
                                                                                                  Ι
                                                      0.
                                                              500.
                                                                        1000.
                                                                                   1500.
                                                                                              2000
        END NRCS-SDH
                         PLOT
          FO
                            4.74Cove Res
                                                                              COVRES
HYD
                                                                                      1
           0
                                                                                       2
                          1.2000
                                                                              STR1
                                       7.74
                                                 7.84
                                                             8.25
                                                                        9.31
                                                                                      3
                            7.74
                                                                                FO D
                           11.73
                                      20.36
                                                 49.54
                                                           130.06
                                                                      325.02
                                                                                FO D
```

	458.59 652.22 605.49 359.06 232.38 158.83 118.04 97.22 80.44 74.28 68.61 63.37 58.71 54.56 50.73 47.36 44.22 41.33 38.78 36.40 34.16 32.15 30.33 28.63 27.02 25.50 24.18 22.96 21.80 20.70 19.66 18.67 17.77 16.99 16.24 15.53 14.85 14.20 13.59 13.00 12.44 11.90 11.44 11.03 10.63 10.25 9.89 9.53	540.79 651.18 552.09 325.87 215.72 147.14 113.55 93.53 79.17 73.11 67.53 62.37 57.85 53.77 50.03 46.72 43.62 40.81 38.29 35.94 33.73 31.78 29.98 28.30 26.71 25.21 23.93 22.72 21.57 20.49 19.46 18.48 17.61 16.84 17.61 16.85 17.61 17.61 17.61 17.62 17.63 17	594.66 647.05 496.87 298.36 199.82 136.31 109.22 89.97 77.92 71.96 66.46 61.39 57.01 52.98 49.35 46.08 43.03 40.29 37.81 35.48 33.31 31.41 29.64 27.97 26.40 24.95 23.68 22.48 21.35 20.27 19.26 18.29 17.45 16.69 15.95 14.59 13.95 14.59 15.25 14.59 13.95 14.59 15.25 14.59 13.95 14.59 15.25 14.59 13.95 14.59 15.25 14.59 13.95 14.59 15.25 16.69 15.25 16.69 15.25 16.69 15.25 16.69 15.25 16.69 15.25 16.69 17.45 16.69 17.22 17.45 16.69 17.22 17.45 16.69 17.22 17.45 16.69 17.22 17.45 16.69 17.22 17.45 16.69 17.22 17.45 16.69 17.22 17.45 16.69 17.22 17.45 16.69 17.22 17.45 16.48 16.48 17.45 16.48 17.45 16.48 17.45 16.48 17.45 16.48 17.45 16.48 17.45 16.48 17.45 16.48 17.45 16.48 17.45 16.48 17.45 16.48 17.45	627.20 642.62 443.06 273.18 185.09 127.58 105.07 86.56 76.69 70.82 65.41 60.46 56.18 52.21 48.68 45.45 42.44 39.78 37.33 35.04 32.91 31.05 29.30 27.65 26.10 24.69 23.44 22.25 21.13 20.07 19.06 18.11 17.30 16.54 15.81 15.12 14.46 13.83 13.23 12.66 12.12 11.61 11.19 10.79 10.40 10.03 9.67 9.33	644.87 634.58 398.14 250.64 171.45 122.72 101.07 83.27 75.48 69.71 64.38 59.58 55.36 51.46 48.01 44.83 41.87 39.28 36.86 34.60 32.53 30.69 28.96 27.33 25.80 24.43 23.20 22.02 20.91 19.86 17.93 17.14 16.39 15.67 14.98 14.33 13.71 11.53 11.11 10.71 10.33 9.60 9.26	FO D 5 FO D 6 FO D 7 FO D 8 FO D 10 FO D 11 FO D 12 FO D 13 FO D 16 FO D 15 FO D 16 FO D 17 FO D 22 FO D 23 FO D 24 FO D 25 FO D 26 FO D 27 FO D 28 FO D 27 FO D 30 FO D 31 FO D 32 FO D 30 FO D 31 FO D 32 FO D 33 FO D 34 FO D 35 FO D 36 FO D 37 FO D 38 FO D 37 FO D 36 FO D 37 FO D 36 FO D 37 FO D 38 FO D 37 FO D 36 FO D 37 FO D 38 FO D 37 FO D 36 FO D 37 FO D 36 FO D 37 FO D 38 FO D 37 FO D 38 FO D 39 FO D 40 FO D 41 FO D 42 FO D 43 FO D 45 FO D 50 FO D 50 FO D 50
ENDTABLE	9.53	9.46	9.40	9.33		FO D 52 1,T 2 53
1SITES						
XEQ 08/28/2020		COV RES			WSID= (
VER 2005.1.8 TIME 16:21:21	SITE = S	Cove Re STR1		S= 1	SUBW= PART=	
ROUTED BTM WIDTH RESULTS FT					VOL-AUX ACFT	

NRCS-FBH 30.0 5552.31 7410.0 0.0 3.79 765.6

PEAK - CFS Q-PS Q-AUX. Q-TOT. DISCHARGE = 126.9 525.3 652.2

CRITICAL CRITICAL CRITICAL 25% OF Q
DEPTH VELOCITY SLOPE-SC SC
AUXILIARY FT FT/SEC FT/FT FT/FT
SPILLWAY --- 2.02 7.63 0.008 0.010

INTEGRITY ANALYSIS - REACH SURFACE PERFORMANCE SUMMARY
(The auxiliary spillway began flow at time = 9.6 hours
and peaked at time = 20.4 hours.)

- REACH 3: FROM STATION 115. TO 475. ON 15.4% SLOPE.

 Non-vegetated conditions implied: flow concentration

 assumed with minimal flow: Time = 12.0 hours.
- REACH 4: FROM STATION 475. TO 610. ON 8.5% SLOPE.
 Non-vegetated conditions implied: flow concentration
 assumed with minimal flow: Time = 12.0 hours.
- REACH 5: FROM STATION 610. TO 1057. ON 6.6% SLOPE.

 Non-vegetated conditions implied: flow concentration

 assumed with minimal flow: Time = 12.0 hours.
- REACH 6: FROM STATION 1057. TO 1153. ON 15.6% SLOPE.

 Non-vegetated conditions implied: flow concentration

 assumed with minimal flow: Time = 12.0 hours.

INTEGRITY ANALYSIS - HEADCUT EROSION DAMAGE SUMMARY

The most upstream headcut began at station 115 and progressed upstream to station 94. The final height of the headcut was 4.3 ft.

The headcut having the maximum final overfall height began at station 475. and progressed upstream to station 414. The final height of the headcut was 14.1 ft.

THE HYDROGRAPH WAS NOT ADJUSTED FOR THE EFFECTS OF EROSION.

DURATION ATTACK DIST. FROM MOST U/S FLOW OE/B HEADCUT TO U/S EDGE AUXILIARY HRS ACFT/FT AUX. CREST, FT SPILLWAY --- 73.2 28.0 19.

EXIT CHANNEL FLOW SUPERCRITICAL: MAX VELOCITY= 19.8 FT/SEC

EXIT SLOPE = 0.154 FT/FT

FLOW DEPTH = 0.8 FT

PLOT NRCS-FBH 1 IN = 500. CFS

```
2.40
           0
                  8 5546.3
                             6203.0
                                        0.0
                                               0.00
 3.60
                  8 5546.3
                              6203.0
                                        0.0
                                               0.00
           4
                                                       .I
 4.80
          35
                  8
                   5546.3
                              6204.0
                                        0.0
                                               0.00
 6.00
          84
                  8
                   5546.3
                              6209.1
                                        0.0
                                               0.00
                                                         Т
 7.20
         195
                  9 5546.4
                              6222.1
                                        0.0
                                               0.00
                                                           Ι
                 12 5546.5
 8.40
         425
                             6251.8
                                               0.00
                                        0.0
                                                                 Ι
       1352
                 20 5546.9
                             6338.3
                                                                                      Ι
 9.60
                                        0.0
                                               0.00
10.80
       3365
                 50 5548.1
                             6568.7
                                        0.0
                                               0.00
                                                       .P
12.00
        3296
                130 5549.8
                             6890.1
                                        0.0
                                               6.33
                                                       •
                                                          Α
13.20
                325 5550.9
                                             13.72
        2008
                             7130.6
                                        0.0
                                                               Α
14.40
       1331
                459 5551.6
                             7257.3
                                             16.69
                                                                                      Ι
                                        0.0
                                                                 Α
15.60
        1060
                541 5551.9
                             7326.3
                                              18.14
                                        0.0
                                                                   Α
                                                                               Ι
16.80
         912
                595 5552.1
                             7367.8
                                        0.0
                                              19.00
                                                                     Α
                                                                            Ι
         792
                                                                         Ι
18.00
                627 5552.2
                             7391.7
                                        0.0
                                             19.48
                                                                      Α
19.20
         742
                645 5552.3
                             7404.6
                                        0.0
                                             19.73
                                                                      Α
                                                                        Ι
20.40
         664
                652 5552.3
                             7410.0
                                        0.0
                                             19.84
                                                                      Χ
21.60
         624
                651 5552.3
                             7409.3
                                        0.0
                                             19.82
                                                                     ΙA
                647 5552.3
                             7406.2
                                             19.77
22.80
         613
                                        0.0
                                                                     ΙA
                643 5552.3
24.00
                             7403.0
                                             19.70
         611
                                        0.0
                                                                     ΙA
25.20
         547
                635 5552.2
                             7397.1
                                        0.0
                                             19.59
                                                                    ΙA
26.40
                605 5552.1
                             7375.7
                                        0.0
                                             19.16
         262
                                                             Ι
                                                                     Α
27.60
          90
                552 5551.9
                             7335.8
                                        0.0
                                             18.33
                                                         Ι
                                                                   Α
                497 5551.7
28.80
          24
                             7289.4
                                        0.0
                                             17.39
                                                                  Α
30.00
           5
                443 5551.5
                             7244.2
                                        0.0
                                             16.39
                                                                 Α
31.20
           1
                398 5551.3
                             7202.8
                                        0.0
                                             15.47
                                                                Α
32.40
           0
                359 5551.1
                             7165.4
                                        0.0
                                             14.58
                                                               Α
33.60
           0
                326 5551.0
                             7131.5
                                        0.0
                                             13.75
                                                               Α
                298 5550.8
34.80
           0
                             7100.6
                                        0.0
                                             12.99
                                                              Α
36.00
           0
                273 5550.7
                             7072.4
                                        0.0
                                             12.22
                                                             Α
37.20
           0
                251 5550.5
                             7046.5
                                        0.0
                                             11.46
                                                            Α
38.40
           0
                232 5550.4
                             7022.7
                                        0.0
                                             10.78
                                                            Α
39.60
                216 5550.3
                             7000.6
                                        0.0
                                             10.21
           0
                                                           Α
40.80
                200 5550.2
                             6980.1
                                        0.0
                                               9.67
           0
                                                           Α
                185 5550.1
42.00
           0
                             6961.1
                                        0.0
                                               9.12
                                                           Α
43.20
                171 5550.0
                             6943.5
                                        0.0
                                               8.55
           0
                                                          Α
                                                       •
44.40
                159 5550.0
                             6927.2
                                        0.0
                                               7.97
           0
                                                          Α
                                                       .
                             6912.1
45.60
           0
                147 5549.9
                                        0.0
                                               7.38
                                                          Α
46.80
           0
                136 5549.8
                             6898.2
                                        0.0
                                               6.74
                                                          Α
48.00
                128 5549.7
           0
                             6885.2
                                        0.0
                                               6.18
                                                          Α
49.20
                123 5549.7
           0
                             6872.9
                                        0.0
                                               5.93
                                                         Α
50.40
                118 5549.6
                                               5.67
           0
                             6861.0
                                        0.0
                                                         Α
                                                       .
                114 5549.6
51.60
           0
                             6849.7
                                        0.0
                                               5.39
                                                         Α
52.80
           0
                109 5549.5
                             6838.7
                                        0.0
                                               5.11
                                                         Α
                                                       .
54.00
           0
                105 5549.5
                              6828.2
                                        0.0
                                               4.80
                                                         Α
                                                       .
55.20
           0
                101 5549.4
                             6818.1
                                        0.0
                                               4.48
                                                         Α
                                                       .
56.40
           0
                 97 5549.4
                              6808.3
                                        0.0
                                               4.12
                                                         Α
                                                       .
57.60
           0
                 94 5549.3
                              6799.0
                                        0.0
                                               3.73
                                                         Α
                                                       •
           0
                 90 5549.3
58.80
                              6790.0
                                        0.0
                                               3.28
                                                         Α
                                                       .
                                                       . A
60.00
           0
                 87 5549.2
                              6781.3
                                        0.0
                                               2.74
                                                       . A
61.20
           0
                 83 5549.2
                              6773.0
                                        0.0
                                               1.98
62.40
           0
                 80 5549.1
                                               0.00
                                                       . A
                             6765.0
                                        0.0
63.60
           0
                 79 5549.1
                             6757.2
                                        0.0
                                               0.00
                                                       . A
64.80
           0
                 78 5549.1
                             6749.5
                                        0.0
                                               0.00
                                                       . A
           0
                 77 5549.0
                                                       . A
66.00
                             6741.9
                                        0.0
                                               0.00
67.20
           0
                 75 5549.0
                             6734.4
                                               0.00
                                        0.0
                                                       . A
           0
68.40
                 74 5548.9
                              6727.1
                                        0.0
                                               0.00
                                                       .A
           0
69.60
                 73 5548.9
                              6719.9
                                        0.0
                                               0.00
                                                       .A
           0
70.80
                 72 5548.9
                              6712.8
                                        0.0
                                               0.00
                                                       . A
72.00
           0
                 71 5548.8
                              6705.8
                                        0.0
                                               0.00
                                                       .A
```

74.40	0	69	5548.8	6692.2	0.0	0.00	.A				
75.60	0	68	5548.7	6685.6	0.0	0.00	.A				
76.80	0	66	5548.7	6679.0	0.0	0.00	.A				
78.00	0	65	5548.7	6672.6	0.0	0.00	.A				
79.20	0	64	5548.6	6666.2	0.0	0.00	.A				
Time	Qin	Qout	Elev	Vol	Area	ExtVel	I	I	I	I	
							0.	500.	1000.	1500.	
	END N	RCS-FE	BH PLO	Т							

2000

Inflow Hyd 1 PSH-Peak = 39.99 CFS at 143.00 hrs., Location Point

Inflow Hyd 1 SDH-Peak = 65.90 CFS at 8.10 hrs., Location Point

Inflow Hyd 1 FBH-Peak = 652.22 CFS at 19.20 hrs., Location Point
HYDOUT 1 STR1

1SITES....JOB NO. 1 COMPLETE.

COVRES COV RES

- 0 SUBWATERSHED(S) ANALYZED.
- 1 STRUCTURE(S) ANALYZED.
- 3 HYDROGRAPHS ROUTED AT LOWEST SITE.

73.20 0 70 5548.8 6699.0 0.0 0.00 .A

O TRIALS TO OBTAIN BOTTOM WIDTH FOR SPECIFIED STRESS OR VELOCITY.

SUMMARY TABLE 1 SITES VERSION 2005.1.8

SITES.....COMPUTATIONS COMPLETE

			-				DA'	TED 01/	01/2005
WATER	RSHED ID				N DATE 8/2020			,	RUN TIME 16:21:21
		GIIDIIG G							
>>>	SITE ID	SUBWS S	UBWS DA	CURVE NO.	TC (HRS)	TOTAL DA (SQ MI)	TYPE DESIGN	STRUC CLASS	<<<
	STR1	CR	4.74	0.	0.00	4.74	TR60	С	
PASS NO.	DIA./ WIDTH (IN/FT)	AUX.CREST ELEV (FT)	BTM. WIDTH (FT)	MAX. HP (FT)	MAX. ELEV (FT)	VOL. DI	ST.	XIT* VEL. /SEC)	TYPE HYD
1	30.0	5548.5	30.0	3.8	5552.3	0.	19.	19.8 N	RCS-FBH

* INTEGRITY DIST. AND EXIT VEL. VALUES ARE BASED ON THE ROUTED HYDROGRAPH SHOWN UNDER TYPE HYD.

SITES.....SUMMARY TABLE 1 COMPLETED.

NRCS SITES VERSION 2005.1.8 ,01/01/2005 COVRES FILES

INPUT = H:\DAMS\Cove.200401-025\TASK 1 - Cove Reservoir EA Project\SITES\Aug 2020\SITES\08
OUTPUT = H:\DAMS\Cove.200401-025\TASK 1 - Cove Reservoir EA Project\SITES\Aug 2020\SITES\08
DATED 08/28/2020 16:21:21

FILE GEN. = H:\DAMS\Cove.200401-025\TASK 1 - Cove Reservoir EA Project\SITES\Aug

GRAPHICS FILES GENERATED

OPTION "L" = H:\DAMS\Cove.200401-025\TASK 1 - Cove Reservoir EA Project\SITES\Aug 2020\SIT

OPTION "P" = H:\DAMS\Cove.200401-025\TASK 1 - Cove Reservoir EA Project\SITES\Aug 2020\SIT

OPTION "E" = H:\DAMS\Cove.200401-025\TASK 1 - Cove Reservoir EA Project\SITES\Aug 2020\SIT

 ${\tt AUX.GRAPHICS = H:\DAMS\Cove.200401-025\TASK\ 1 - Cove\ Reservoir\ EA\ Project\SITES\Aug\ 2020\SIRLS\EARls\Ear$

APPENDIX E-18COVE DAM OPINION OF PROBABLE COST

COVE DAM

OPINION OF PROBABLE COST

OPINION OF PROBABLE COS RB&G - March 1, 2019

Dam crest = 5550 ft, high water = 5545 ft, ~6,000 ac-ft storage

Item	Quantity	Unit	Unit Price	Total Price
Mobilization & Demobilization (5%)	1	Lump Sum	\$ 925,610.00	\$ 925,610
Excavation	644,000	CU. YD.	\$ 3.30	\$ 2,125,200
Foundation Preperation	12,000	SQ. YD.	\$ 11.00	\$ 132,000
Earthfill, Zone I – Dam Embank.	1,575,000	CU. YD.	\$ 4.00	\$ 6,300,000
Earthfill, Zone II – Filter / Drain*	82,000	CU. YD.	\$ 50.00	\$ 4,100,000
Roadbase / Riprap Bedding	19,000	CU. YD.	\$ 36.00	\$ 684,000
Rock Riprap	28,000	CU. YD.	\$ 47.00	\$ 1,316,000
Grout Curtain	31,500	LIN. FT.	\$ 100.00	\$ 3,150,000
Outlet Pipe	550	LIN. FT.	\$ 300.00	\$ 165,000
Spillway	1	Lump Sum	\$ 500,000	\$ 500,000
Instrumentation	1	Lump Sum	\$ 40,000	\$ 40,000
			SUBTOTAL	\$ 19,438,000
			Contingency (20%)	\$ 3,887,000
		Engineering, Legal ar	nd Fiscal (15%)	\$ 2,916,000
Land Right	ts Additional Ground P	urchase Cost (Approx. 10	0 Acres @ \$6,000/acre)	\$ 600,000
_		Pro	portinal Cost of Road	\$ 1,310,000
			TOTAL	\$ 28,151,000

MP Structure			
Construction	\$19,491,600	\$4,542,400	\$24,034,000
Engineering	\$2,437,000	\$568,000	\$3,005,000
Land Rights	\$487,000	\$113,000	\$600,000
SubTotal	\$22,415,600	\$5,223,400	\$27,639,000
Road			
Construction	\$944,000	\$220,000	\$1,164,000
Engineering	\$146,000		\$146,000
Subtotal	\$1,090,000	\$220,000	\$1,310,000
SubTotal MP Structure	\$23,505,600	\$5,443,400	\$28,949,000

Average Annual Cost Calculations

Total AAC	\$775,400
Replacement	\$400
Operation And Maintenance	\$12,000
AAC for Dam @ 103 yrs=	\$763,000
Amort, 2.5%, 103 years =	0.0271
Amort, 2.5%, 100 years =	0.0273

amort 100 yrs = \$769,000 amort 103 yrs = \$763,000 The dam and reservoir are anticipated to have a 100-year life, but the gate structure will probably require replacement once every 50 years. An amount of \$50,000 should be budgeted for this item. ^{/1}

PV of 1, 2.5%, 50 years hence = 0.2909 times \$50,000 = \$14,545

0.0271 We anticipate the operation and maintenance of the Cove Reservoir and associated facilities will require and average of 2 man-days per month. It is anticipated that a budget should be provided of \$1,000 per month or \$12,000 per year.

/1 See MEMO dated 5/19/2020 fro Alpha Engineering to Scott Hoag

APPENDIX E-19

COVE RESERVOIR RECREATION FACILITIES PROBABLE COST

Cove Reservoir Recreation Improvements (No Utilities) Kane County Water Conservancy District Preliminary Engineer's Opinion of Probable Cost 5-21-19

ITEM	DESC	RIPTION	QUANTITY	UNITS	UNIT PRICE	TOTAL
1	Mobilizatio	n at 5%	1	L.S.	\$21,350.00	\$21,350
2	Excavation Subgrade P		88,000	S.F.	\$1.50	\$132,000
3	6" Reinforce	ed Concrete	6,500	S.F.	\$10.00	\$65,000
4	6" Untreate Course (Boa		6,500	S.F.	\$1.00	\$6,500
5	6" Untreate Course (Par		28,500	S.F.	\$1.00	\$28,500
6	6" Untreated Base Course (Roads)		53,000	S.F.	\$1.00	\$53,000
7	Camp/RV Si (Barbeque (Fire Pit)	te Facilities Grill, Table,	20	Each	\$1,000.00	\$20,000
8	Pavilion		1	Each	\$50,000.00	\$50,000
9	Signage		5	Each	\$400.00	\$2,000
10		m Facility septic tank	2	Each	\$35,000.00	\$70,000
					Subtotal	\$448,350
				Contin	gency (20%)	\$89,670
			Engineeri	nd Fiscal (15%)	\$67,253	
	SCHEDULE A TOTAL					
	Proportional road cost 1/					
	Land Rights					
				Total Recre	ation	\$1,033,000

Average Cost Calculations

Amort, 25%, 100 years =	0.0273
Amort, 2.5%, 103 years =	0.0271
AAC for Recreation Facilities	\$28,000
Operation And Maintenance	\$12,000
Replacement	\$0
Total	\$40,000
Amort, 25%, 100 years = Amort, 2.5%, 103 years =	\$28,000 \$28,000

The recreation component of the project will most likely require 8 man-days per month (lower skill level) for 6 months to maintain the rest rooms and camp sites which would be an annual cost of approximately \$12,000 /1 See MEMO dated 5/19/2020 fro Alpha Engineering to Scott Hoag

APPENDIX E-20

COVE RESERVOIR ACCESS ROAD PROBABLE COST

Cove Reservoir Access Road Kane County Water Conservancy District Preliminary Engineer's Opinion of Probable Cost 5-21-19

ITEM	DESCRIPTION	QUANTITY	UNITS	UNIT PRICE	TOTAL
1	Mobilization at 5%	1	L.S.	\$ 57,060	\$57,060
2	Excavation and Subgrade Prep	145,000	C.Y.	\$5.00	\$725,000
3	6" Untreated Base Course	440,726	S.F.	\$0.85	\$374,617
4	Misc. Culverts	1	L.S.	\$40,000.00	\$40,000
5	Signage	4	Each	\$400.00	\$1,600
				SUBTOTAL	\$1,198,277
		Conting	ency (20%)		\$239,655.42
	Engir	neering, Legal	Fiscal (15%)		\$179,741.57
				TOTAL	\$1,618,000

Amort, 2..5%, 100 years = Amort, 2.5%, 103 years =

Const Cost
Reservoir Access \$1,310,000 80.96%

Recreation Road \$308,000 19.04%

Total \$1,618,000 \$1,378,000

Total Cost

Recreation and Access Road Improvements

Attached are the estimates for the recreation components and access road around the proposed Cove Reservoir. The recreation area consists of a boat ramp including parking area, 20 campground spots, pavilion, and restrooms is \$605,000. There is also an access road being constructed around the reservoir that is approximately 17,850 feet in length with an estimated cost of \$1,618,000. Of this amount approximately 3,400 feet of the roadway is needed for access to the recreation facilities. The proportionate cost for the roadway needed for the recreation facilities would be \$308,000. The remainder of the roadway is needed to re-establish access to properties surrounding the reservoir that was eliminated by construction of the reservoir

See MEMO of 5/31/2019 from Alpha Engineering to Scott Hoag

	Cost	$\frac{9}{0}$
Total Cost of Road=	\$1,618,000	
Cost of Road for Recreation Facilities=	\$308,000	19% Assigned to Recreation Facilities Cost
Cost of Road for Reservoir Access=	\$1,310,000	81% Assigned to Cove Reservoir Construction

0.0273			
0.0271 AA	C		
103 yrs	100 yrs		0.0273
\$35,500	\$35,800	\$35,763 \$35,501.0000	
\$8,300	\$8,300		
\$43,800	\$44,100		

APPENDIX E-21GLENDALE PIPING PROBABLE COST

Glendale Piping Kane County Water Conservancy District Preliminary Engineer's Opinion of Probable Cost 8-7-2020

ITEM	DESCRIPTION	QUANTITY	UNITS	UNIT PRICE	TOTAL
1	Mobilization at 5%	1	L.S.	\$28,150	\$28,150
	Replace Line from Existing Glendale Hydro to				
2	Orderville Diversion Dam w/ 14" Pipeline	9,200	L.F.	\$50	\$460,000
	Replace Existing 18" and 14" BV Valves with Gate				
3	Valves	2	Each	\$8,000	\$16,000
4	Clean Pipeline	1	L.S.	\$22,000	\$22,000
5	Furnish and Install 12" Plunger Valve and Vault	1	L.S.	\$55,000	\$55,000
6	Power Interconnection	1	Each	\$10,000	\$10,000
				Subtotal	\$591,150
	_	•		. (200()	6440.220

Contingency (20%) \$118,230 Engineering, Legal Fiscal (15%) \$88,673

SCHEDULE A TOTAL \$798,000

Average Annual Cost - Piping

Amort, 2.5%, 103 yrs 0.0273 \$22,000 O&M \$6,000

> Replacement \$6,000 @ 50 years = 2.5, PV of 1, 50 yrs TOTAL \$34,000

> > 1186 882 15700 \$ 11,676

Amort, 2.5%, 100 yrs = \$22,000

74.4%

Glendale Piping Net Benefits

Average Annual Benefit \$15,700

Average Annual Cost \$34,000

Net Benefit (\$18,300)

3) There will be additional water available to run through the Quail Creek piping system to provide additional power production through existing hydro facilities. The additional 1,186 AF of yield being provided to the WCWCD reservoirs will produce an additional 313,200 Kw-Hrs of energy (average of 15 cfs for 40 days with 330 feet of head). They are currently selling the water at a rate of \$0.05 per kW-Hr which would have a value of \$15,660.

7) We do not see any change to the power production of the existing Orderville Hydro facility except for the additional yield that is being provided to the WCWCD from the Cove Reservoir. This will provide for a flow of 15 cfs over 40 days which would provide for the addition of approximately 172,800 kW-Hrs. The annual revenue derived from the additional production would be \$6,912.

APPENDIX E-22

COVE RESERVOIR TOTAL PROJECT COST

Total Project Cost - Cove Reservoir

Total Troject Cost Reserve.									
<u>Item</u>	<u>Total Cost</u>	AAC							
Multipurpose Structure 1/	\$28,151,000	\$775,400							
Recreation Facilities /2	\$1,033,000	\$40,000							
Road Cost - \$1,618,000									
Glendale Piping	\$798,000	\$34,000							
Total	\$29,982,000	\$849,400							

\$809,400

<--Apportioned to Multipurpose Structure -\$1,310,000 and \$308,000 to Recreation

Amort,2.5%,1

		O&M	Replace	total		03yrs	AAC		
Dam		\$12,000	\$400		\$12,400			dam*	\$28,151,000
Rec		\$12,000			\$12,000			rec*	\$1,033,000
Glendale		\$6,000	\$6,000		\$12,000			road	\$1,618,000
	total	\$30,000	\$6,400		\$36,400	\$812,512	\$849,000	glendale	\$798,000
									\$29,982,000

^{*} cost of road included in dam and rec

Cove Reservoir Project Costs /1

	engineering	Construction	SubTotal 1	Land Rights	SubTotal 2
MPS	\$2,916,000	\$23,325,000	\$26,241,000	\$600,000	\$26,841,000
access road	\$180,000	\$1,438,000	\$1,618,000		\$1,618,000
glendale piping	\$89,000	\$709,000	\$798,000		\$798,000
recreation	\$67,000	\$538,000	\$605,000	\$120,000	\$725,000
Land Rights					\$0
	\$3,320,000	\$26,010,000	\$29,262,000	\$720,000	\$29,982,000

/1 see Cost Estimates for Appendix D & E

^{1/} Includes \$600,000 for Land Rights and \$1,310,000 for Proportional Road Cost - See Cost of Road tab

^{2/} Includes \$120,000 for Land Rights and \$308,000 for Proportional Cost of Road

APPENDIX E-23

PROJECT COST SUMMARY

Project Costs

Dam		Rec		Glendale		Road		Total	
Cost Est	\$ 19,438,000	\$448,000		\$591,000		\$1,198,000		\$ 21,675,000	
Contingency	\$ 3,887,000	\$90,000		\$118,000		\$240,000		\$ 4,335,000	
Engineering	\$ 2,916,000	\$67,000		\$89,000		\$180,000		\$ 3,252,000	
Land Right	\$ 600,000	\$120,000						\$ 720,000	
Road	\$ 1,310,000	\$308,000						\$ 1,618,000	
Total	\$ 28,151,000	\$1,033,000		\$798,000				\$ 29,982,000	

Average Annual Cost

Amortization	\$ 763,000	\$ 28,000	\$ 22,000		\$ 813,000
O&M	\$ 12,000	\$ 12,000	\$ 6,000		\$ 30,000
Replace	\$ 400		\$ 6,000		\$ 6,400
Tot AAC	\$775,400	\$40,000	\$34,000		\$849,400

^{*}Cost of Road (\$1,310,000 for the dam and \$308,000 for the rec facilities = \$1,618,000) is included in the amortization for dam and rec

Benefits

Irrigation	\$ 826,100				\$ 826,100
Recreation		\$ 176,000			\$ 176,000
Glendale			\$ 11,200		\$ 11,200
Total	\$826,100	\$176,000	\$ 11,200		\$ 1,013,300

Net Benefits\$163,900B:C Ratio1.19

APPENDIX E-24ECONOMIC ANALYSIS WORKBOOKS

Economic Analysis Workbooks

1 Cost Estimates for Appendix D & E

This Workbook contains 5 sheets with the engineers cost estimates for each of the project components and are totaled in the Total Project Cost sheet.

Cost of Dam

Recreation Facilities

Cost of Road

Glendale Piping

Total Project Cost

2 Cove SCRB - 082020

This Workbook details the cost allocation process.

3 Incremental Analysis

This Workbook describes the incremental analysis moving from a 3,000 acft reservoir to a 6,055 actf reservoir

4 Irrigation Benefit Analysis

This Workbook details the Irrigation Analysis in a series of sheets showing Alfalfa and Alfalfa Establishment for Kane and Washington Counties

Crop budgets are from: Budget prepared by: E. Bruce Godfrey, Cody Bingham and Kevin Heaton

go to: https://extension.usu.edu/apec/agribusiness-food/crops

scroll to Kane, click Alfalfa

and for Washington County Budget prepared by: E. Bruce Godfrey, Cody Bingham and Dean Miner

goto: https://extension.usu.edu/apec/agribusiness-food/crops

scroll to Washington, click alfalfa

5 Recreation Analysis Spreadsheets

The sheets in this workbook describe the recreation analysis and provide traffic counts on Highway 89 through Oderville, Mt Carmel and Glendale. There is also National Park use data and State Park use data.

6 Work Plan Tables - 10-14-2020 for plan-ea

The sheets in this Workbook are the basis for tables in the Plan/EA

APPENDIX E-25

COVE SCRB TABLE

Example 6–1 Separable cost - remaining benefit method

Table 6–1 Separable cost - remaining benefit cost allocation

		Purposes							
		Flood		Irri	gation	Recreation		To	tal
Step		Preve	ntion						
1	Benefits	\$	10,000	\$	8,000	\$	4,000	\$	22,000
2	Alternative cost	\$	8,000	\$	8,000	\$	10,000	\$	26,000
3	Lesser of step 1&2	\$	8,000	\$	8,000	\$	4,000	\$	20,000
4	Separable cost	\$	1,000	\$	6,000	\$	3,000	\$	10,000
5	Remaining benefits	\$	7,000	\$	2,000	\$	1,000	\$	10,000
5a	Percentage of remaining benefits		70%	20%		6 10%			100%
6	Allocated joint cost	\$	5,600	\$	1,600	\$	800	\$	8,000
7	Total allocated cost	\$	6,600	\$	7,600	\$	3,800	\$	18,000

Cove Reservoir Separable cost - remaining benefit (SCRB) cost allocation

			Purposes			
		Irr	igation	Recreation	Total	
Step						
1	Benefits		\$30,670,000	\$6,446,886		\$37,116,886
2	Alternative cost		\$28,226,000	\$27,154,000		\$55,380,000
3	Lesser of step 1&2		\$28,226,000	\$6,446,886		\$34,672,886
4	Separable cost		\$1,661,000	\$1,036,000		\$2,697,000
5	Remaining benefits		\$26,565,000	\$5,410,886		\$31,975,886
5a	Percentage of remaining benefits		83%	17%		100%
6	Allocated joint cost		\$22,668,000	\$4,617,000.00	\$	27,285,000
7	Total allocated cost	\$	24,329,000	\$ 5,653,000		\$29,982,000
Percent of	of Total Cost for each purpose =		81.1%	18.9%		100.00%

- Step 1 Report the benefits for each purpose for which the plan was formulated. Benefits are shown in present value terms.
- Step 2 The alternative cost is the financial cost of achieving the same or equivalent benefits by a single- purpose project.
- Step 3 Record the lesser of the benefits or the alternative cost, by purpose.
- Step 4 Separable cost is the cost of adding each purpose to the multiple purpose project. This figure indicates the minimum cost that will be allocated to the purpose. If the separable cost for a purpose exceeds the amount shown in step 3, the project contains an infeasible purpose.
- Step 5 Remaining benefits are equal to the difference between the amount in step 3 and the separable cost (step 4).
- Step 5a Calculate the remaining benefits for a purpose as a percentage of the total remaining benefits.
- Step 6 The allocated joint cost in the total column is the difference between project financial cost and the sum of the separable costs for all of the purposes.

 The total allocated joint cost is distributed to each purpose by the percentage shown for that purpose in step 5a.
- Step 7 Total allocated cost for each purpose is the sum of the separable cost and allocated joint cost for the purpose.

Separable cost—The difference between the cost of a multiple-purpose project and the cost of the project with that purpose omitted. In calculating separable cost, each purpose should be treated as if it were the last addition of the multiple-purpose project. This calculation shows the added cost of increasing project size, changes in design, or other factors that would be necessary to add to the purpose to the project.

Joint cost—The difference between the cost of the multiple-purpose project and the sum of the separable costs for each purpose.

Alternative cost—The least cost method of achieving by use of a single purpose project, the same or equivalent benefits that accrue to that purpose in the multiple-purpose project. The alternative single-purpose project should be realistically devised; e.g., it should be one that could be built and one that could provide equivalent benefits. However, the physical project may be entirely different from the multipurpose project.

APPENDIX E-26

COVE RESERVOIR BENEFITS AND COSTS

Cove Reservoir Benefits and Costs

			Cost of Access			
Cove Reservoir Project Costs			Road	Glendale Piping	Land Rights	Cost of Dam
Dam Construction ^{/1}	\$28,946,000	>	\$1,310,000	\$798,000	\$720,000	\$26,118,000
Recreation ^{/2}	\$1,036,000	>	\$308,000			
TOTAL	\$29,982,000		\$1,618,000			\$1,661,050
/1 In almala Danamaia Canatana	in Duning with and Control An	DI		•		

Proportional

/1 Includes Reservoir Construction, Proportional Cost of Access Road,
Glendale Piping and Land Rights

/2 Includes Proportional Cost of Access Road

Project Costs^{/1}

Project Costs				
MPS	\$28,946,000			
Recreation Faci	\$1,036,000			
Glendale Piping*		\$798,000		
		\$29,982,000		

MPS^{/2}

Recreation Facilities^{/2}

TOTAL

13) We anticipate the following cost allocation for the Cove Reservoir: Irrigation 5700 AF/ 6000 AF x \$28,271,000 =

Rec Cost

\$27,154,000

Irr Cost

\$28,226,000

Recreation 300 AF/ 6000 AF x \$28,271,000 =

\$27,284,950 \$1,413,550

/1 See Cost Estimates for Appendix D and E and notes below *Glendal Piping included in MPS

Amort

Average Annual Project Costs

\$785,000

\$28,000

\$813,000

OM&R

\$24,400

\$12,000

\$36,400

Total AAC

\$809,400

\$40,000

\$849,400

Cove Reservoir Project Benefits

Agricultural Water Management $^{/1}$	\$826,100
Recreation ^{/2}	\$176,000
Glendale Piping ^{/3}	\$11,200
TOTAL	\$1,013,300

/1 See Irrigation Benefit Anaysis

/2 See Recreation Analysis Spreadsheets

/3 See Cost Estimates for Appendix D and E and attached paragraph

/1c FW: Virgin River Simulation

Yahoo/Inbox

Brent Gardner brentgardner@alphaengineering.com To:Brian Parker,Ronald Bolander,Scott Hoag Jr

Cc:Michael Noel, Zach Renstrom, Dirk Clayson

Mon, Sep 28 at 1:49 PM

I have talked with Scott Hoag and he indicated that going to the yield of 1638 AF with 756 AF going to the KCWCD and 882 AF going to the WCWCD will still provide for a benefit cost ratio of over 1.

Operation and Maintenance Costs from MEMO of 5/31/2019 from Alpha Engineering to Scott Hoag.

8) We anticipate the operation and maintenance of the Cove Reservoir and associated

facilities will require and average of 2 man-days per month. It is anticipated that a budget

should be provided of \$1,000 per month or \$12,000 per year.

9) The KCWCD currently has a functioning hydroelectric facility which will require similar costs for operation and maintenance as the proposed Glendale Hydro. The budget for O&M for the existing hydro plant is \$4,000 per year.

10) The recreation component of the project will most likely require 8 man-days per month (lower skill level) for 6 months to maintain the rest rooms and camp sites which would be an annual cost of approximately \$12,000.

Repair and Replacement Costs from MEMO of 5/31/2019 from Alpha Engineering to Scott Hoag. 11) The dam and reservoir are anticipated to have a 100-year life, but the gate structure will probably require replacement once every 50 years. An amount of \$50,000 should be budgeted for this item.

12) It is anticipated the piping and hydroelectric facility will have a 50-year life. The costs associated with the piping and mechanical and electrical components of these facilities has a present value of approximately \$656,000.

There is also an access

road being constructed around the reservoir that is approximately 17,850 feet in length with an estimated cost of \$1,618,000. Of this amount approximately 3,400 feet of the roadway is needed for access to the recreation facilities. The proportionate cost for the roadway needed for the recreation facilities would be \$308,000.

Cove Reservoir B/C Ratio and Net Renefits

Cove Reservoir B/C Ratio and Net Benefits					
Project Benefits	\$1,013,300				
Project Costs	\$849,400				
B/C Ratio	1.19				
Net Benefits	\$163,900				

APPENDIX E-27

COVE SCRB PROJECT SUMMARY

Amortization

amort100 0.0273 amort3 0.0271 PV150 0.2909

Project Costs

Dam		Rec	Glendale	Road	Total
Cost Est	\$ 19,438,000	\$448,000	\$591,000	\$1,198,000	\$ 21,675,000
Contingency	\$ 3,887,000	\$90,000	\$118,000	\$240,000	\$ 4,335,000
Engineering	\$ 2,916,000	\$67,000	\$89,000	\$180,000	\$ 3,252,000
Land Right	\$ 600,000	\$120,000			\$ 720,000
Road	\$ 1,310,000	\$308,000			\$ 1,618,000
Total	\$ 28,151,000	\$1,033,000	\$798,000	\$1,618,000	\$ 29,982,000

Average Annual Cost

Amortization	\$ 763,000	\$ 28,000	\$ 22,000		\$ 813,000
O&M	\$ 12,000	\$ 12,000	\$ 6,000		\$ 30,000
Replace	\$ 400		\$ 6,000		\$ 6,400
Tot AAC	\$775,400	\$40,000	\$34,000		\$849,400

^{*}Cost of Road (\$1,310,000 for the dam and \$308,000 for the rec facilities = \$1,618,000) is included in the amortization for dam and rec

Benefits

Irrigation	\$ 826,100				\$ 826,100
Recreation		\$ 176,000			\$ 176,000
Glendale			\$ 11,200		\$ 11,200
Total	\$826,100	\$176,000	\$ 11,200		\$ 1,013,300

Net Benefits \$163,900 B:C Ratio \$1.19

APPENDIX E-28

INCREMENTAL ANALYSIS—DAM

Item	DESCRIPTION	Quantity	<u>Unit</u>	Unit Price	Total Price
1	Mobilization & Demobilization (5%)	1	Lump Sum	\$ 712,845	\$ 712,845
2	Excavation	523,000	CU. YD.	\$ 3	\$ 1,725,900
3	Foundation Preperation	11,000	SQ. YD.	\$ 11	\$ 121,000
4	Earthfill, Zone I – Dam Embank.	1,050,000	CU. YD.	\$ 4	\$ 4,200,000
5	Earthfill, Zone II – Filter / Drain*	64,000	CU. YD.	\$ 50	\$ 3,200,000
6	Roadbase / Riprap Bedding	15,000	CU. YD.	\$ 36	\$ 540,000
7	Rock Riprap	20,000	CU. YD.	\$ 47	\$ 940,000
8	Grout Curtain	29,000	LIN. FT.	\$ 100	\$ 2,900,000
9	Outlet Pipe	300	LIN. FT.	\$ 300	\$ 90,000
10	Spillway	1	Lump Sum	\$ 500,000	\$ 500,000
11	Instrumentation	1	Lump Sum	\$ 40,000	\$ 40,000
			_	SUBTOTAL	\$ 14,969,745

Contingencies(Estimated at 20% at EA Stage) 20% \$ 2,993,949

Engineering, Legal and Fiscal (15%) \$ 2,245,462

Land Rights \$ 600,000

Proportional Road Cost \$ 1,310,000

TOTAL \$ 22,119,000

Amortization of Installation Cost at 2.5% for 100 years

Operation and Maintenance Cost

Replacement Cost

\$ 400

\$ 616,400

Cove Reservoir Recreation Improvements (No Utilities) Kane County Water Conservancy District Preliminary Engineer's Opinion of

ITEM	DESCRIPTION	QUANTITY	UNITS	UNIT PRICE	
IILIVI	DESCRIPTION	QOANTITI	ONITS	OWN PRICE	TOTAL
1	Mobilization at 5%	1	L.S.	\$21,350.00	\$21,350
2	Excavation and Subgrade Prep	88,000	S.F.	\$1.50	\$132,000
3	6" Reinforced Concrete (Boat Ramp)	6,500	S.F.	\$10.00	\$65,000
4	6" Untreated Base Course (Boat Ramp)	6,500	S.F.	\$1.00	\$6,500
5	6" Untreated Base Course (Parking)	28,500	S.F.	\$1.00	\$28,500
6	6" Untreated Base Course (Roads)	53,000	S.F.	\$1.00	\$53,000
7	Camp/RV Site Facilities (Barbeque Grill,	20	Each	\$1,000.00	\$20,000
	Table, Fire Pit)				
8	Pavilion	1	Each	\$50,000.00	\$50,000
9	Signage	5	Each	\$400.00	\$2,000
10	Restroom Facility (Assume septic tank	,	Fach	\$35,000.00	¢70.000
10	system)	2	Each	\$35,000.00	\$70,000
				Subtotal	\$448,350
				Contingency (20%)	\$89.670

Contingency (20%) \$89,670

Engineering, Legal, and Fiscal (15%) \$67,253

SCHEDULE A TOTAL TOTAL

Land Rights \$120,000

Proportional road cost \$308,000

Total Recreation \$1,033,000

1/ From Cost Estimates for Appendix D & E.xlsx Cost of Road

/1 See Cost Estimates for Appendix D and E. Includes MPS at \$26,241,000; Land Rights at \$600,000; proportional Road Cost at \$1,310,000 = /2 See Cost Estimates for Appendix D and E. Includes Facilities at \$605,000; Land Rights at \$120,000; Proportional Road Cast at \$308,000 =

Average Amnual Cost Calculations

Amort, 2.5%, 100 years =	0.0273
AAC for Recreation Facilities	\$28,000
Proportional Road Cost	\$8,000
Operation And Maintenance	\$12,000
Replacement	\$0
Total	\$48,000

Cove Reservoir Recreation Improvements (No Utilities) Kane County Water Conservancy District

Preliminary Engineer's Opinion of Probable Cost 5-21-19 3000 AF Reservloir							
ITEM	DESCRIPTION	QUANTITY	UNITS	UNIT	TOTAL		
				PRICE	IOIAL		
1	Mobilization at 5%	1	L.S.	\$14,500	\$14,500		
2	Excavation and Subgrade Prep	44,000	S.F.	\$1.50	\$66,000		
3	6" Reinforced Concrete (Boat Ramp)	6,500	S.F.	\$10.00	\$65,000		
4	6" Untreated Base Course (Boat	6,500	S.F.	\$1.00	\$6,500		
5	6" Untreated Base Course (Parking)	15,000	S.F.	\$1.00	\$15,000		
6	6" Untreated Base Course (Roads)	40,000	S.F.	\$1.00	\$40,000		
7	Camp/RV Site Facilities (Barbeque	10	Each	\$1,000.00	\$10,000		
	Grill, Table, Fire Pit)						
8	Pavilion	1	Each	\$50,000.00	\$50,000		
9	Signage	5	Each	\$400.00	\$2,000		
10	Restroom Facility (Assume septic tank	1	Each	\$35,000.00	\$35,000		
	system)						

 Subtotal
 \$304,000

 Contingency (20%)
 \$60,800

 Engineering, Legal, and Fiscal (15%)
 \$45,600

 TOTAL
 \$410,400

 Proportional road cost^{1/2}
 \$308,000

 Land Rights
 \$120,000

 Total Recreation
 \$838,000

Average Amnual Cost Calculations

Amort, 2.5%, 100 years =	0.027
AAC for Recreation Facilities Proportional Road Cost Operation And Maintenance Replacement	\$23,000 \$8,000 \$6,000 \$0
Total	\$37,000

/1 See Cost Estimates for Appendix D and E. Includes MPS at \$26,241,000; Land Rights at \$600,000; proportional Road Cost at \$1,310,000 = /2 See Cost Estimates for Appendix D and E. Includes Facilities at \$605,000; Land Rights at \$120,000; Proportional Road Cast at \$308,000 = Glendale Piping =

idale Piping Total \$28,151,000 \$1,033,000 \$798,000 \$29,982,000 14475

APPENDIX E-29

INCREMENTAL ANALYSIS—IRRIGATION BENEFITS

Brent Gardner

Fo:Ronald Bolander

Cc:Brian Parker,Scott Hoag Jr

Mon, Oct 5 at 3:37 PM

The three irrigation companies in Kane County have a water right to irrigate roughly 1,110 acres of ground between them. The latest DOWR model shows an increase of yield of 1,638 AF of water. We are proposing that 882 AF of that yield goes to WCWCD – St. George/Washington Canal and 756 AF goes to three irrigation companies namely Glendale, Orderville, and Mt. Carmel who have a right to irrigated 1,110 acres. When we looked at this originally we thought we would put the same ratio of benefit to acreage that the KCWCD has. However we can't separate the water right into a smaller service area. I have asked Scott to put the 882 AF of increased water right over the total 10,000* acres being irrigated by the

acres (round to 4,958) according to the Division of Water Rights Group Use

Number 610649 From 10/22/2020 email to Scott Hoag from Alpha Engineering

The allocated water right for irrigation in the Washington Fields area is 4,958.2

* see change beginning at N9

St. George/Washington Canal. The water would be provided when stream flows are below the on farm requirement in July and August when water is needed thus providing increased production to the acreage being served.

1) The cost estimate for the Cove Reservoir is \$26,961,000 with 6,055 AF capacity. For an incremental cost analysis an estimate of the reservoir with 3,000 AF was provided.

The estimated cost of the reservoir with this capacity was \$20,209,000. The smaller reservoir would also have a decreased yield associated with it as there would not be enough capacity in the reservoir to carry over through drought years. It is anticipated you would only have half the yield or 1,056 AF additional yield. The cost per acre foot yield for the smaller reservoir would be approximately \$19,000 and the larger reservoir \$12,700

See MEMO from Alpha Engineering to Scott Hoag dated 8072020

The cost estimate for Cove Reservoir is currently \$28,949,000 and includes road (\$1,310,000), Glendale Piping (\$798,000) and land rights (\$600,000) see Cost Estimates for Appendix D

Cove Reservoir, para 1 - The 1056 AF is more than the 926 AF for the Kane Co irrigators. So for the inc anal can we assume a full irrigation supply for Kane Co total kcwcd wcwcd and none for WA Co? I think the yield of 1,056 AF would be pro-rated between the two districts as it was with the larger reservoir. 593 AF to WCWCD and 463 AF to KCWCD. 756 1638 882 Email from Alpha Engineering to Scott Hoag dated 8172020 78% 28% 36% 3) The Division of Water Resources updated their model in February 2020 which now indicates an increased yield in the system of 2,112 AF. As modeled 926 AF would be 2112 926 1186 distributed to Kane County irrigators and 1,186 AF to WCWCD and the irrigators they serve. 44% 56% See MEMO from Alpha Engineering to Scott Hoag dated 8072020 Everything has changed with the DOWR model. There is 882 AF now which to go through the Quail Creek Hydroplant. This will produce 223,315 kW-Hrs of energy (average of 11.1 cfs for 40 days with 330 feet of head). They are currently selling the water at a rate of \$0.05 per kW-hr which would have an annual value of \$11,165. Email fro m Alpha Engineering, October 22,2020 to Scott Hoag 1632 kcwcd wcwcd total 756 77% 6055 acft 882 1638 3000 acft 50% reduction

For purposes of an incremental analysis for a 3000 AF Cove Reservoir, irigation net benefits for Kane County would 50% of the benefits assessed for a 6055 AF Cove Reservoir.

\$118,800 Kane County Irrigation Benefits - 6055 acft Reservoir = \$118,800

Kane County Irrigation Benefits for 3000 AF reservoir = \$59,400 \$707,300

For purposes of an incremental analysis for a 3000 AF Cove Reservoir, irigation net benefits for Washington County would 50% of the benefits assessed for a 6055 AF Cove Reservoir.

Washington County Irrigation Benefits - 6055 acft Reservoir = \$707,300 Washington Co Irrigation Benefits for 3000 AF reservoir = \$353,650

Total Irrigation Benefits 3000 acft reservoir = \$413,050

APPENDIX E-30

INCREMENTAL ANALYSIS—RECREATION BENEFITS

	10/1/2016	10/1/2018	Multiplier
CPI ^{3/}	241.432	252.146	1.04
2019 Wate	er Resource D	iscount Rate	2.875%

3/ Consumer Price Index 1983-84 =10

	Kane Co	Glendale	Mt Carmel	Orderville					
Total population	7,216	215	60	771					
Glendale	Glendale, Mt. Carmel, Oderville								
Kane Co Popu	6,170								
Population	within 150 mi ra	adius of Ord	erville ^{/1}	130,564					

1/ From: https://www.freemaptools.com/find-population.htm

Recreation Benefits

Cove Reservoir Recreation Analysis 6055 AF Reservoir

	2016 Recr	eation Day	2018 Rec	reation Day
Activity	Va	lue	V	alue
			No.	Value
Leisure Bicycling	\$47.52		17	\$49.63
Camping	\$23.73		59	\$24.78
Freshwater Fishing	\$88.20		63	\$92.11
Nonmotorized Boating	\$122.23		47	\$127.65
Beach	\$58.61		24	\$61.21
Hiking	\$73.98		81	\$77.26
Motorized Boating	\$53.68		21	\$56.06
Picnicking	\$21.98		9	\$22.96
Sightseeing	\$52.46		16	\$54.79
Swimming	\$31.63		8	\$33.03
Wildlife Viewing	\$78.62		126	\$82.11
General Recreation	\$36.68		98	\$38.31
Other Recreation	\$41.70		68	\$43.55
TOTAL			637	\$40,579
Ave Rec Day Value Cove Reservl	oir			\$63.70

Cove Reservoir Recreation Analysis 3000 AF Reservoir

2) For the incremental analysis, if a smaller reservoir were constructed there would be fewer surface acres of water for recreational benefits. The surface area with 6,055 AF of capacity would be 188 acres. The surface area of the reservoir with 3,000 AF of capacity would be 125 acres. There would be approximately 1/3rd less surface area of water to recreate with the smaller size reservoir.

From 8/07/2020 MEMO from Alpha Engineering to Scott Hoag

Utah State Parks in Proximity to Cove Reservoir

Visitor Data

Park	Oct 2017	Nov 2017	Dec 2017	Jan 2018	Feb 2018	Mar 2018	Apr 2018	May 2018	Jun 2018	July 2018	Aug 2018	Sept 2018	Total	·	Visitors per Campsite
Coral Pink Sand Dunes State Park	6,888	26,228	3,613	2,379	2,889	11,118	12,472	14,593	12,443	12,542	8,950	14,190	128,305	22	5,832
Gunlock State Park	546	290	46	124	199	228	2,425	6,197	11,777	9,368	4,556	3,815	39,571	4	9,893
Sand Hollow State Park	14,799	52,093	10,848	13,418	21,907	44,597	97,150	121,468	118,732	101,343	71,391	72,914	740,661	49	15,116
Quail Creek State Park	2,272	6,716	1,478	1,538	2,146	5,661	13,616	19,676	29,279	26,075	17,455	12,966	138,878	20	6,944
From: https://stateparks.utah.gov/resources/park-visitation-data/ FY2018 and 2019 Total Visitor Days 1,047,416												95	11,025		

With 1/3 less surface area on the reservoir, we can expect the benefits to be reduced by 1/3. Therefore recreation

benefits for a 3000 AcFt reservoir would be \$176,000 x .667 = \$117,000

Average Annual Benefit \$176,000 based on campsites at 4 reservoirs near

\$832,000

Average for 4 Sites

2,756

Cove Reservoir Recreation Improvements (No Utilities) Kane County Water Conservancy
District Preliminary Engineer's Opinion of Probable Cost 5-21-19

District i reminiary Engineer	3 Opinion of 1 Tobabic	CO3t 3 21 13	
DESCRIPTION	QUANTITY UNITS	UNIT PRICE	TOTAL
Mobilization at 5%	1 L.S.	\$21,350	\$21,350
Excavation and Subgrade Prep	88,000 S.F.	\$1.50	\$132,000
6" Reinforced Concrete (Boat Ramp)	6,500 S.F.	\$10.00	\$65,000
6" Untreated Base Course (Boat Ramp)	6,500 S.F.	\$1.00	\$6,500
6" Untreated Base Course (Parking)	28,500 S.F.	\$1.00	\$28,500
6" Untreated Base Course (Roads)	53,000 S.F.	\$1.00	\$53,000
Camp/RV Site Facilities (Barbeque Grill, Tab	20 Each	\$1,000	\$20,000
Pavilion	1 Each	\$50,000	\$50,000
Signage	5 Each	\$400.00	\$2,000
Restroom Facility (Assume septic tank system	e 2 Each	\$35,000	\$70,000

Subtotal \$448,350
Contingency (20%) \$89,670
Engineering, Legal, and Fiscal (15%) \$67,253
SCHEDULE A TOTAL \$605,000
Proportional road cost 1/ \$308,000
Land Rights \$120,000
Total Recreation \$1,033,000

\$40,000

The recreation facilities would be reduced with 13 campsites. Therefore the recreation facilities cost would be reduced by 1/3. Recreation facilities cost would be $.667 \times $605,000 = $404,000$

plus proportion road cost \$308,000 plus landrights \$120,000

Average Cost Calculations

Amort, 2.5%, 100 years = 0.0273

AAC for Recreation Facilities \$23,000

Operation And Maintenance \$9,000

Total \$32,000

Average Cost Calculations

Amort, 2.875%, 100 years = 0.0273

AAC for Recreation Facilities \$28,000

Operation And Maintenance \$12,000

Total

The recreation component of the project will most likely require 8 man-days per month (lower skill level) for 6 months to maintain the rest rooms and camp sites which would be an annual cost of approximately \$12,000 /1 See MEMO dated 5/19/2020 from Alpha Engineering to Scott Hoag

APPENDIX E-31

RESULTS OF INCREMENTAL ANALYSIS

		AV Ann	Benefits		Project Costs					Av Ann Cost			
Reservoir	Irr	Recreation	Piping	Total	Reservoir	Rec Facilities	Piping	Total	Reservoir	Rec Facilities	Piping	Total	
3000 AF	\$413,050	\$117,000	\$11,200	\$541,250	\$22,119,000	\$838,000	\$798,000	\$23,755,000	\$616,400	\$32,000	\$34,000	\$682,400	(\$141,150)
6055 AF	\$826,100	\$176,000	\$11,200	\$1,013,300	\$28,151,000	\$1,033,000	\$798,000	\$29,982,000	\$780,400	\$40,000	\$34,000	\$854,400	\$158,900

10/1/2020

0.79

Change in Benefits = \$472,050 Change in Cost = \$172,000 change in Net Ben = \$300,050

Therefore adding 3,055 AcFt is a beneficial increment

APPENDIX E-32

IRRIGATION BENEFIT ANALYSIS EXPLANATORY NOTES

Explanatory Notes for Irrigation Analysis

- 1 Kane County Crop Budgets tab 2006 budget data by USU Extension
- be sure to include the entire link in your browser 1a Washington County Crop Budgets tab - 2006 budget data by USU Extension
 - https://extension.usu.edu/apec/agribusiness-food/crops

https://extension.usu.edu/apec/agribusiness-food/crops

- be sure to include the entire link in your browser
- 2 Alfalfa Hay NR Tab Without and With analysis of the base budget from Utah State University Extension Service. Net return for alfalfa hay calculated based on Costs and Returns for Growing Alfafa Hay, Kane County, 2006, USU. Cost data was brought to current value using Producers Prices Paid 2006 to 2020. Value of hay is based on UT State level current normalized prices.
- 3 Oat Hay NR Tab Without and With analysis of the base budget from Utah State University Extension Service Net return for oat hay calculated based on Costs and Returns for Growing Oat Hay, Kane County, 2006, USU. Cost data was brought to current value using Producers Prices Paid 2006 to 2020. Value of hay is based on UT State level current normalized prices.
- * Same ananlysis for Washington County as in 2 and 3 above
- 4 Weighted Net Return Weighted per acre net return based on a 10 year rotation 8 yrs alfalfa and 2 yrs oat hay. This tab shows the calculations for irrigation in Kane and Washington Counties
- 5 Project Costs Each of the panels in this tab show the engineer's estimate for each of the construction componenents of the project. This tab also shows the average annual cost calculations as well as memos concerning the cost figures. The memos also discuss the derivation of the F&W and the Power benefits.
- 6 Benefit-Cost ia a summary of project benefits and costs.
- 7 Price and Indices Tab Producer Prices Paid and Received and current normalized price for hay FY 2019 values

The WO/Proj crop budget production costs were updated from 2006 to current value using a multiplier calculated by dividing the 2020 prices paid index by the 2006 prices paid index

The W/Proj crop budget production costs were updated from 2006 to current value using a multiplier calculated by dividing the 2020 prices paid index by the 2006 prices paid index

The W/Proj crop budget production costs were also increased to account for the increased crop production.

Gross return is calculated using estimated production times the Utah current normalized price for hay in both the WO/ and W/Proj scenarios

Ownership costs were held constant in the without and with project situations since hay production in the benefit area is a well-established, long-term,

and ongoing production activity. Producers have a full complement of machinery and wheel-line irrigation systems

scroll to Kane, click Alfalfa or Oat Hay

scroll to Washington, click Alfalfa or Oat Hay

APPENDIX E-33KANE COUNTY CROP BUDGETS

Utah State University

Modify Colored Columns Extension Economics Costs and Returns per acre from growing alfalfa hay, 2006

Kane County

		Quantity		Price/cost	Value/cost	Base
Receipts		per acre	Unit	per unit	per acre	Value
	Alfalfa hay	3.3	tons	\$88.57	\$292.27	\$292.27
	Residue	0.25	AUM	\$11.53	\$2.88	\$2.88
	Subtotal				\$295.15	\$295.15
Operating	costs					
	Fertilization					
	Phosphate	125	pounds	\$0.18	\$22.31	\$22.31
	Custom ap	1	acre	\$7.82	\$7.82	\$7.82
	Pesticides/herbicides					
	Furadan	1.00	pints	\$10.50	\$10.50	\$10.50
	Custom ap	1	acre	\$7.82	\$7.82	\$7.82
	Irrigation (wheel line)	7	irrigations			
	Labor	2.33	hours	\$10.00	\$23.33	\$23.33
	Water asse	1	share	\$20.00	\$20.00	\$20.00
	Repairs/ma	1	acre	\$2.30	\$2.30	\$2.30
	Pumping	43	acre inch	\$0.00	\$0.00	\$0.00
	Harvesting					
	Swathing	3	acre	\$15.56	\$46.68	\$46.68
	Turning	3	acre	\$4.69	\$14.07	\$14.07
	Baling	3.30	tons	\$4.79	\$15.81	\$15.81
	Hauling/sta	3.30	tons	\$3.63	\$11.98	\$11.98
	Interest on operating of	capital		7.61%	\$4.40	\$5.24
	Subtotal				\$187.02	\$232.11
Ownership	costs (excludes cost of	f land)			\$117.83	\$117.83
	Farm insurance	1	acre	\$2.00	\$2.00	\$2.00
	Machinery ownership	1	acre	\$107.58	\$107.58	\$107.58
	Irrigation equipment (1	acre	\$8.25	\$8.25	\$8.25
	Total costs				\$304.84	\$349.94
Net return	s to owner for unpaid l	abor, mana	gement. ea	uity and risk		
	Above operating costs		J , C q	1,	\$108.14	\$63.04
	Above total listed cost				-\$9.69	-\$54.78

Assumptions

- 1. Alfalfa already established. Harvested in June, August, September.
- 2. Interest computed on fertilization/herbicide costs for 6 months and operating costs for 3 months.
- 3. Custom rates for all field operations.
- 4. Only owned machinery are a loader and truck.

Budget prepared by: E. Bruce Godfrey, Cody Bingham and Kevin Heaton go to: https://extension.usu.edu/apec/agribusiness-food/crops

be sure to include the entire link in your browser scroll to Kane, click Alfalfa

Utah State University

Extension Economics **Modify Colored Columns** Costs and Returns per acre from establishing alfalfa in oat hay, 2006

			Quantity		Price/cost	Value/cost	Base
Receipts			per acre	Unit	per unit	per acre	Value
	Oat hay		2.3	tons	\$67.67	\$155.63	\$155.63
	Residue		-	AUM	\$0.00	\$0.00	\$0.00
		Subtotal				\$155.63	\$155.63
Operating	costs						
	Land prep	paration					
		Plowing	1	acre	\$22.78	\$22.78	\$22.78
		Roller harrow	2	acre	\$14.33	\$28.66	\$28.66
	Planting		1	acre	\$12.21	\$12.21	\$12.21
	Seed						
		Oat seed	20	pounds	\$0.17	\$3.40	\$3.40
		Alfalfa seed	16	pounds	\$2.52	\$40.32	\$40.32
	Fertilizati	on					
		Nitrogen (34-0-0)	294	pounds	\$0.18	\$52.48	\$52.48
		Phosphate (11-52-0)	96	pounds	\$0.18	\$17.14	\$17.1
		Custom application	1	acre	\$7.82	\$7.82	\$7.8
	Irrigation	(wheel line)	6	irrigations			
	-	Labor	2.00	hours	\$10.00	\$20.00	\$20.0
		Water assessment	1	share	\$20.00	\$20.00	\$20.0
		Repairs/maintenance	1	acre	\$2.30	\$2.30	\$2.30
		Pumping	43	acre inch	\$0.00	\$0.00	\$0.0
	Harvestin	ıg					
		Swathing	1	acre	\$15.56	\$15.56	\$15.56
		Turning/raking	1	acre	\$4.69	\$4.69	\$4.69
		Baling	2.30	tons	\$4.79	\$11.02	\$11.02
		Hauling/stacking	2.30	tons	\$3.63	\$8.35	\$8.35
	Interest o	on operating capital			7.61%	\$11.36	\$11.30
		Subtotal				\$278.09	\$308.93
Ownershi	o costs (ex	cludes cost of land)				\$117.83	\$117.83
O Willersting	Farm insu		1	acre	\$2.00	\$2.00	\$2.0
		ry ownership costs	1	acre	\$107.58	-	\$107.5
		equipment costs	1	acre	\$8.25	\$8.25	\$8.2
		Total costs		uel e	γο.23	\$395.91	\$426.7
Net return	ns to owne	r for unpaid labor, manag	sement equ	iity and rick			
MELICIUII		erating costs	sement, eqt	aity ailu 1151	•	-\$122.45	-\$182.0
		tal listed costs				-\$240.28	-\$271.1

Assumptions

- 1. Grain and alfalfa planted in May and harvested in July.
- 2. Interest computed on land preparation and planting costs for 10 months and fertilization/herbicide/irrigation costs for 6 months.
- 3. Custom rates for all field operations.
- 4. Only owned machinery are a loader and truck.

Budget prepared by: E. Bruce Godfrey, Cody Bingham and Kevin Heaton

go to: https://extension.usu.edu/apec/agribusiness-food/crops

be sure to include the entire link in your browser scroll to Kane, click Established Alfalfa Oat Hay

APPENDIX E-34

KANE COUNTY COSTS AND RETURNS PER ACRE FOR GROWING ALFALFA HAY

Costs and Returns per acre from growing alfalfa hay, 2006 **Kane County**

Kane County	J	•				WO/Projec	t		W/Project	1
	Quantity		Price/cost	Value/cost	Quantity	Price/cost	Value/cost	Quantity	Price/cost	Value/cost
Receipts	per acre	Unit	per unit	per acre	per acre	per unit	per acre	per acre	per unit	per acre
Alfalfa hay	3.3	tons	\$88.57	\$292.27	3.3	\$149.07	\$491.93	4.8	\$149.07	\$715.54
Residue	0.25	AUM	\$11.53	\$2.88	0.25	\$14.20	\$3.55	0.4	\$14.20	\$5.68
Subtotal				\$295.15			\$495.48		_	\$721.22
Operating costs										
Fertilization										
Phosphate (11-52-0)	125	pounds	\$0.18	\$22.31	125	\$0.27	\$33.17	125	\$0.27	\$33.17
Custom application	1	acre	\$7.82	\$7.82	1	\$11.62	\$11.62	1	\$11.62	\$11.62
Pesticides/herbicides										
Furadan	1.00	pints	\$10.50	\$10.50	1.00	\$15.61	\$15.61	1.00	\$15.61	\$15.61
Custom application	1	acre	\$7.82	\$7.82	1	\$11.62	\$11.62	1	\$11.62	\$11.62
Irrigation (wheel line)	7	irrigations			7			7	\$0.00	\$0.00
Labor	2.33	hours	\$10.00	\$23.33	2.33	\$14.86	\$34.68	2.33	\$14.86	\$34.68
Water assessment	1	share	\$20.00	\$20.00	1	\$29.73	\$29.73	1	\$29.73	\$29.73
Repairs/maintenance	1	acre	\$2.30	\$2.30	1	\$3.42	\$3.42	1	\$3.42	\$3.42
Pumping	43	acre inch	\$0.00	\$0.00	43	\$0.00	\$0.00	43	\$0.00	\$0.00
Harvesting										
Swathing	3	acre	\$15.56	\$46.68	2.5	\$23.13	\$57.82	4.0	\$23.13	\$92.52
Turning	3	acre	\$4.69	\$14.07	2.5	\$6.97	\$17.43	4.0	\$6.97	\$27.89
Baling	3.30	tons	\$4.79	\$15.81	3.3	\$7.12	\$23.50	4.8	\$7.12	\$34.18
Hauling/stacking	3.30	tons	\$3.63	\$11.98	3.3	\$5.40	\$17.81	4.8	\$5.40	\$25.90
Interest on operating capital			7.61%	\$4.40		1.375%	\$6.25		1.375%	\$7.46
Subtotal			•	\$187.02		- -	\$216.89		- -	\$327.81
Ownership costs (excludes cost of land)				\$117.83		Current Ope	rating Loan interest	from Troy Henri,	, FSA Panguit	ch, UT
Farm insurance	1	acre	\$2.00	\$2.00			-	-		
Machinery ownership costs	1	acre	\$107.58	\$107.58						
Irrigation equipment costs	1	acre	\$8.25	\$8.25						
Total costs				\$304.84						

\$108.14

-\$9.69

Budget prepared by: E. Bruce Godfrey, Cody Bingham and Kevin Heaton

go to: https://extension.usu.edu/apec/agribusiness-food/crops

be sure to include the entire link in your browser

Net returns to owner for unpaid labor, management, equity and risk

scroll to Kane, click Alfalfa

- 1. Alfalfa already established. Harvested in June, August, September.
- 2. Interest computed on fertilization/herbicide costs for 6 months and operating costs for 3 months.
- 3. Custom rates for all field operations.
- 4. Only owned machinery are a loader and truck.

Above operating costs

Above total listed costs

\$278.59

\$393.41

	Change in NR - Hay	
per acre		\$114.82
acres =	1,110	
Tot WS		\$127,452

APPENDIX E-35

KANE COUNTY COSTS AND RETURNS PER ACRE FOR ESTABLISHING ALFALFA IN OAT HAY

WO/Project Costs and Returns per acre from establishing alfalfa in oat hay, 2006 W/Project Kane County Quantity Price/cost Value/cost Quantity Price/cost Value/cost Quantity Price/cost Price/cost Value/cost **Base** Receipts Value per acre per unit per unit per acre per acre per unit per acre per acre per unit Oat hay 2.3 \$67.67 \$155.63 \$155.63 2.3 \$149.07 \$342.86 3 \$149.07 \$447.21 tons 0.20 Residue AUM \$11.53 \$2.31 \$0.00 0.2 \$14.20 \$2.84 0.3 \$14.20 \$4.26 \$155.63 \$345.70 \$451.47 Subtotal \$157.94 Operating costs Land preparation Plowing \$22.78 \$22.78 \$22.78 1 \$33.86 \$33.86 1 \$33.86 \$33.86 acre 1 Roller harrow 2 acre \$14.33 \$28.66 \$28.66 2 \$21.30 \$42.60 2 \$21.30 \$42.60 Planting 1 acre \$12.21 \$12.21 \$12.21 1 \$18.15 \$18.15 1 \$18.15 \$18.15 Seed pounds \$0.17 \$3.40 \$3.40 20 \$0.25 \$5.05 20 \$0.25 \$5.05 Oat seed 20 pounds 16 16 Alfalfa seed 16 \$2.52 \$40.32 \$40.32 \$3.75 \$59.94 \$3.75 \$59.94 Fertilization Nitrogen (34-0-0) 294 pounds \$0.18 \$52.48 \$52.48 294 \$0.27 \$78.01 294 \$0.27 \$78.01 \$17.14 96 \$0.27 \$25.47 96 \$0.27 \$25.47 Phosphate (11-52-0) 96 pounds \$0.18 \$17.14 \$7.82 \$7.82 \$7.82 1 \$11.62 \$11.62 1 \$11.62 \$11.62 Custom application 1 acre Irrigation (wheel line) irrigations 6 6 \$0.00 6 2.00 \$10.00 \$20.00 \$20.00 2.00 \$14.86 \$29.73 2.00 \$14.86 \$29.73 Labor hours \$20.00 \$20.00 \$29.73 \$29.73 Water assessment 1 share \$20.00 1 \$29.73 1 \$29.73 Repairs/maintenance 1 \$2.30 \$2.30 \$2.30 1 \$3.42 \$3.42 1 \$3.42 \$3.42 acre 43 43 \$0.00 \$0.00 \$0.00 43 Pumping acre inch Harvesting Swathing 2.3 \$15.56 \$35.79 \$15.56 2.3 \$23.13 \$53.20 3.00 \$23.13 \$69.39 acre 2.3 \$6.97 \$20.91 Turning/raking 2.3 acre \$4.69 \$10.79 \$4.69 \$16.03 3.00 \$6.97 \$4.79 \$11.02 2.30 \$7.12 \$7.12 \$21.36 Baling 2.30 \$11.02 \$16.38 3.00 tons Hauling/stacking 2.30 \$3.63 \$8.35 \$8.35 2.30 \$5.40 \$12.41 3.00 \$5.40 \$16.19 tons Interest on operating capital 7.61% \$11.36 \$11.36 1.375% \$3.73 1.375% \$3.93 \$304.41 \$439.34 \$469.37 **Subtotal** \$308.93 Current Operating Loan interest from Troy Henri, FSA Panguitch, UT Ownership costs (excludes cost of land) \$117.83 \$117.83 Farm insurance \$2.00 \$2.00 \$2.00 1 acre \$107.58 \$107.58 \$107.58 Machinery ownership costs 1 acre Irrigation equipment costs 1 acre \$8.25 \$8.25 \$8.25 **Total costs** \$422.24 \$426.75 Net returns to owner for unpaid labor, management, equity and risk -\$146.47 -\$182.00 -\$93.63 -\$17.90 Above operating costs Above total listed costs -\$264.30 -\$271.12 Change in NR - Hay per acre \$75.73 acres = 1,110

Tot WS

\$84,062

Assumptions

- 1. Grain and alfalfa planted in May and harvested in July.
- 2. Interest computed on land preparation and planting costs for 10 months and fertilization/herbicide/irrigation costs for 6 months.
- 3. Custom rates for all field operations.
- 4. Only owned machinery are a loader and truck.

Budget prepared by: E. Bruce Godfrey, Cody Bingham and Kevin Heaton

go to: https://extension.usu.edu/apec/agribusiness-food/crops

be sure to include the entire link in your browser scroll to Kane, click Established Alfalfa Oat Hay

Brent Gardner

brentgardner@alphaengineering.com>

To:Scott Hoag Jr Cc:Michael Noel,Brian Parker

Tue, Oct 6 at 1:54 PM

I wasn't able to get with Merlin Esplin but spoke with Mike Noel and he got me on the phone with Kevin Heaton, Agriculture and Natural Resources, USU Extension Service -Garfield and Kane County Director.

He indicated that having the additional supply of water in the later summer months would allow the irrigators in Kane County to go from 2 ½ cuttings to 4 cuttings and increase production by 1 ½ tons per acre.

APPENDIX E-36WASHINGTON COUNTY CROP BUDGETS

Utah State University

Extension Economics Costs and Returns per acre from growing alfalfa hay, 2006 Modify Colored Columns

Washington County

			Quantity		Price/cost	Value/cost	
Receipts			per acre	Unit	per unit	per acre	Base Value
	Alfalfa hay	•	4.2	tons	\$88.57	\$371.98	\$371.98
	Residue		-	AUM	\$0.00	\$0.00	\$0.00
		Subtotal				\$371.98	\$371.98
Operating	costs						
	Fertilization						
		Phosphate (11-52-0)	48	pounds	\$0.18	\$8.57	\$8.57
		Custom application	1	acre	\$7.82	\$7.82	\$7.82
	Pesticides/he	erbicides					
		Furadan	1	pint	\$10.50	\$10.50	\$10.50
		Custom application	1	acre	\$7.82	\$7.82	\$7.82
	Irrigation (w	heel line)	9	irrigations			
		Labor	3.00	hours	\$10.00	\$30.00	\$30.00
		Water assessment	1	share	\$10.00	\$10.00	\$10.00
		Repairs/maintenance	1	acre	\$2.30	\$2.30	\$2.30
		Pumping	46	acre inch	\$0.00	\$0.00	\$0.00
	Harvesting						
		Swathing	4	acre	\$15.56	\$62.24	\$62.24
		Turning	4	acre	\$4.69	\$18.76	\$18.76
		Baling	4.20	tons	\$4.79	\$20.12	\$20.12
		Hauling/stacking	4.20	tons	\$3.63	\$15.25	\$15.25
	Interest on c	perating capital			7.61%	\$4.34	\$5.41
		Subtotal				\$197.71	\$255.10
Ownership	costs (exclude	s cost of land)				\$44.37	\$44.37
•	Insurance	•	1	acre	\$2.00	\$2.00	\$2.00
	Machinery o	wnership costs	1	acre	\$34.12	\$34.12	\$34.12
	-	uipment costs	1	acre	\$8.25	\$8.25	\$8.25
		Total costs				\$242.08	\$299.47
Net returns	to owner for	unpaid labor, manageme	nt. equity and	d risk			
	Above opera	·	, - q, s	-		\$174.27	\$116.88
	Above total	•				\$129.90	\$72.51

Assumptions

- 1. Alfalfa already established. Harvested in June, July, August, and September.
- 2. Interest computed on fertilization/herbicide costs for 6 months and operating costs for 3 months.
- 3. Custom rates for all field operations.
- 4. Only owned machinery are a loader and truck.

Budget prepared by: E. Bruce Godfrey, Cody Bingham and Dean Miner

goto: https://extension.usu.edu/apec/agribusiness-food/crops

scroll to Washington, click alfalfa

Utah State University

Extension Economics Costs and Returns per acre from establishing alfalfa with oat hay, 2006

Washington County

			Quantity		FIICE/COSt	value/COSt	
Receipts			per acre	Unit	per unit	per acre	Base Value
	Oat hay		2.3	tons	\$67.67	\$155.63	\$155.63
	Alfalfa		1.5	tons	\$88.57	\$132.85	\$132.85
		Subtotal				\$288.48	\$288.48
Operating	g costs						
	Land prep	aration					
		Plowing	1	acre	\$22.78	\$22.78	\$22.78
		Discing	1	acre	\$11.56	\$11.56	\$11.56
		Roller harrow	2	acre	\$14.33	\$28.66	\$28.66
	Planting		1	acre	\$12.21	\$12.21	\$12.21
	Seed						
		Oat seed	90	pounds	\$0.17	\$15.30	\$15.30
		Alfalfa seed	16	pounds	\$2.52	\$40.32	\$40.32
	Fertilizatio	on					
		Nitrogen (34-0-0)	249	pounds	\$0.18	\$44.45	\$44.45
		Phosphate (11-52-0)	48	pounds	\$0.18	\$8.57	\$8.57
		Custom application	1	acre	\$7.82	\$7.82	\$7.82
	Pesticides,	/herbicides					
		2-4-D	-	pint	\$2.75	\$0.00	\$0.00
		Custom application	1	acre	\$7.82	\$7.82	\$7.82
	Irrigation	(wheel line)	4	irrigations			
		Labor	1.33	hours	\$10.00	\$13.33	\$13.33
		Water assessment	1	share	\$10.00	\$10.00	\$10.00
		Repairs/maintenance	1	acre	\$2.30	\$2.30	\$2.30
		Pumping	22	acre inch	\$0.00	\$0.00	\$0.00
	Harvesting	5					
		Swathing	2	acre	\$15.56	\$31.12	\$31.12
		Turning	2	acre	\$4.69	\$9.38	\$9.38
		Baling	3.80	tons	\$4.79	\$18.20	\$18.20
		Hauling/stacking	3.80	tons	\$3.63	\$13.79	\$13.79
	Interest or	n operating capital			7.61%	\$10.09	\$10.09
		Subtotal				\$307.70	\$358.66
Ownership	costs (exclu	ides cost of land)				\$44.37	\$44.37
·	Insurance		1	acre	\$2.00	\$2.00	\$2.00
	Machinery	y ownership costs	1	acre	\$34.12	\$34.12	\$34.12
	_	equipment costs	1	acre	\$8.25	\$8.25	\$8.25
		Total costs				\$352.08	\$403.03
Net returns	s to owner fo	or unpaid labor, managemer	nt, equity and	d risk			
		erating costs				-\$19.22	-\$70.18
	-	al listed costs				-\$63.59	-\$114.55
						•	

Quantity

Modify Colored Columns

Price/cost Value/cost

Assumptions

- 1. Oat hay planted in late March and harvested in July.
- 2. Interest computed on land preparation and plan
- 3. Custom rates for all field operations.
- 4. Only owned machinery are a loader and truck.

Budget prepared by: E. Bruce Godfrey, Cody Bingham and Dean Miner

https://extension.usu.edu/apec/agribusiness-food/crops scroll to Washington , click Established Alfalfa Oat Hay

APPENDIX E-37

WASHINGTON COUNTY COSTS AND RETURNS PER ACRE FOR GROWING ALFALFA HAY

Costs and Returns per acre from growing alfalfa hay, 2006 **Washington County**

Washing	ton County	•						WO/Projec	t		W/Project		
		Quantity		Price/cost	Value/cost	Base	Quantity	Price/cost	Value/cost	Quantity	Price/cost	Value/cost	
Receipts		per acre	Unit	per unit	per acre	Value	per acre	per unit	per acre	per acre	per unit	per acre	
	Alfalfa hay	4.2	tons	\$88.57	\$371.98	\$371.98	4.2	\$149.07	\$626.09	5.2	\$149.07	\$775.16	
	Residue	0.25	AUM	\$11.53	\$2.88	\$0.00	0.25	\$14.20	\$3.55	0.31	\$14.20	\$4.40	
	Subtotal				\$374.86	\$371.98			\$629.64			\$779.57	
Operating	g costs												
	Fertilization												
	Phosphate (11-52-0)	48	pounds	\$0.18	\$8.57	\$8.57	48	\$0.27	\$12.74	48	\$0.27	\$12.74	
	Custom application	1	acre	\$7.82	\$7.82	\$7.82	1	\$11.62	\$11.62	1	\$11.62	\$11.62	
	Pesticides/herbicides												
	Furadan	1	pint	\$10.50	\$10.50	\$10.50	1	\$15.61	\$15.61	1	\$15.61	\$15.61	
	Custom application	1	acre	\$7.82	\$7.82	\$7.82	1	\$11.62	\$11.62	1	\$11.62	\$11.62	
	Irrigation (wheel line)	9	irrigations				9			9			
	Labor	3.00	hours	\$10.00	\$30.00	\$30.00	3.00	\$14.86	\$44.59	3.00	\$14.86	\$44.59	
	Water assessment	1	share	\$10.00	\$10.00	\$10.00	1	\$14.86		1	\$14.86		
	Repairs/maintenance	1	acre	\$2.30	\$2.30	\$2.30	1	\$3.42	\$3.42	1	\$3.42	\$3.42	
	Pumping	46	acre inch	\$0.00	\$0.00	\$0.00	46	\$0.00	\$0.00	46	\$0.00	\$0.00	
	Harvesting												
	Swathing	4	acre	\$15.56	\$62.24	\$62.24	4	\$23.13		4.0	\$23.13	\$92.52	
	Turning	4	acre	\$4.69	\$18.76	\$18.76	4	\$6.97	\$27.89	4.0	\$6.97	\$27.89	
	Baling	4.20	tons	\$4.79	\$20.12	\$20.12	4.20	•		5.20	·		
	Hauling/stacking	4.20	tons	\$3.63	\$15.25	\$15.25	4.20	\$5.40		5.20	\$5.40	\$28.06	
	Interest on operating capital			7.61%	\$4.34	\$5.41		1.375%	\$1.17		1.375%	\$1.21	
	Subtotal				\$197.71	\$255.10			\$288.61			\$301.17	297.6
								Current Oper	rating Loan interes	t from Troy Henri, I	SA Panguitch	, UT	
Ownership	o costs (excludes cost of land)				\$44.37	\$44.37							
	Insurance	1	acre	\$2.00	\$2.00	\$2.00							
	Machinery ownership costs	1	acre	\$34.12	\$34.12	\$34.12	Net Returr	n per Acre	\$341.03			\$478.40	-\$297.6
	Irrigation equipment costs	1	acre	\$8.25	\$8.25	\$8.25							
	Total costs	;			\$242.08	\$299.47				Change in NR	- Hay		
								per acre				\$137.36	
Net return	ns to owner for unpaid labor, manageme	nt, equity and	d risk					acres =	4,958				
	Above operating costs				\$177.15	\$116.88		Tot WS				\$681,044	\$691,07
	Above total listed costs				\$132.78	\$72.51							

Assumptions

- 1. Alfalfa already established. Harvested in June, July, August, and September.
- 2. Interest computed on fertilization/herbicide costs for 6 months and operating costs for 3 months.
- 3. Custom rates for all field operations.
- 4. Only owned machinery are a loader and truck.

Budget prepared by: E. Bruce Godfrey, Cody Bingham and Dean Miner

https://extension.usu.edu/apec/agribusiness-food/crops

scroll to Washington, click Alfalfa

Inc in Prod production Inc in Prod per acre for 2235 ac for 10,000 ac

1.80 4,023.00 0.4023 Hay Residue 0.06 134.1 0.01341

2235 ac 5 tons = 11175 10000 ac

5.3

1.1175

On Thursday, October 8, 2020, 12:21:05 PM MDT, Brent Gardner brentgardner@alphaengineering.com wrote:

I was finally able to get with Ben Scow with Washington County USDA. We discussed the effects of LaVerkin Springs on crop production and I developed the following information.

1. During the later part of the summer the main stream flow of the Virgin River reduces substantially. The LaVerkin Springs (Pah Temp Springs) introduces 10 to 12 cfs of 10,000 ppm TDS water into the Virgin River above the diversion to the St. George/Washington Canal. The TDS of the Virgin River is around 500 ppm TDS above the influence of the LaVerkin Springs. When the Virgin River flow at the St. George Washington Canal diversion reduces to 60 cfs there is less dilution of the LaVerkin Springs with the main stream flow. The dilution effect is 6:1. The Cove Reservoir yield of 882 AF provided to the WCWCD will allow the release of approximately 10 cfs for a 45 day period during this critical stage and the dilution factor would be 7:1. This would reduce TDS levels from 2100 ppm to 1850 ppm and provide an additional 10 cfs water supply to the 10,000 acres being irrigated.

would provide for an increase of up to 1 ton per acre.

2. It is difficult to establish the increased crop production from the increased water supply but it was felt the dilution of the salts would be as much benefit as the increased water supply. It would not be difficult to say that the combined benefit of reduced salinity and increased water supply during the critical growing season.

Brent E. Gardner, PE

APPENDIX E-38

WASHINGTON COUNTY COSTS AND RETURNS PER ACRE FOR ESTABLISHING ALFALFA IN OAT HAY

Costs and Returns per acre from establishing alfalfa with oat hay, 2006 **Washington County**

Nashington	County					_	WO/Project				<u>t</u>	
3 !4-		Quantity	11!4		Value/cost	Base	Quantity		Value/cost	Quantity		Value/cost
Receipts		per acre	Unit	per unit	per acre	Value	per acre	per unit	per acre	per acre	per unit	per acre
	at hay	2.3	tons	\$67.67	\$155.63	\$155.63	2.3	\$149.07	\$342.86	3.0	\$149.07	
А	lfalfa	1.5	tons	\$88.57	\$132.85	\$132.85	1.5	\$149.07	\$223.61	2.0	\$149.07	•
	Subtotal				\$288.48	\$288.48			\$566.47			\$745.3
Operating c												
La	and preparation											
	Plowing	1	acre	\$22.78		\$22.78	1	\$33.86	\$33.86	1	\$33.86	
	Discing	1	acre	\$11.56	\$11.56	\$11.56	1	\$17.18	\$17.18	1	\$17.18	\$17.18
	Roller harrow	2	acre	\$14.33	\$28.66	\$28.66	2	\$21.30	\$42.60	2	\$21.30	\$42.60
Pl	lanting	1	acre	\$12.21	\$12.21	\$12.21	1	\$18.15	\$18.15	1	\$18.15	\$18.15
Se	eed											
	Oat seed	90	pounds	\$0.17	\$15.30	\$15.30	90	\$0.25	\$22.74	90	\$0.25	\$22.74
	Alfalfa seed	16	pounds	\$2.52	\$40.32	\$40.32	16	\$3.75	\$59.94	16	\$3.75	\$59.94
Fe	ertilization											
	Nitrogen (34-0-0)	249	pounds	\$0.18	\$44.45	\$44.45	249	\$0.27	\$66.07	249	\$0.27	\$66.07
	Phosphate (11-52-0)	48	pounds	\$0.18	\$8.57	\$8.57	48	\$0.27	\$12.74	48	\$0.27	\$12.74
	Custom application	1	acre	\$7.82	\$7.82	\$7.82	1	\$11.62	\$11.62	1	\$11.62	\$11.62
Po	esticides/herbicides											
	2-4-D	-	pint	\$2.75	\$0.00	\$0.00	-	\$4.09	\$0.00	-	\$4.09	\$0.00
	Custom application	1	acre	\$7.82	\$7.82	\$7.82	1	\$11.62	\$11.62	1	\$11.62	\$11.62
lr	rigation (wheel line)	4	irrigations				4		\$0.00	4		
	Labor	1.33	hours	\$10.00	\$13.33	\$13.33	1.33	\$14.86	\$19.82	1.33	\$14.86	\$19.82
	Water assessment	1	share	\$10.00		\$10.00	1	\$14.86	\$14.86	1	\$14.86	
	Repairs/maintenance	1	acre	\$2.30		\$2.30	1	\$3.42	\$3.42	1	\$3.42	
	Pumping	22	acre inch	\$0.00		\$0.00	22	\$0.00	\$0.00	22	\$0.00	
Н	arvesting											
	Swathing	2	acre	\$15.56	\$31.12	\$31.12	2	\$23.13	\$46.26	2	\$23.13	\$46.26
	Turning	2	acre	\$4.69	\$9.38	\$9.38	2	\$6.97	\$13.94	2	\$6.97	
	Baling	3.80	tons	\$4.79	\$18.20	\$18.20	3.80			5.00		
	Hauling/stacking	3.80	tons	\$3.63	\$13.79	\$13.79	3.80		\$20.50	5.00	•	
In	iterest on operating capital			7.61%		\$10.09		1.375%	\$2.71		1.375%	
	Subtotal				\$307.70	\$358.66			\$445.11			\$460.13
					,	,		Current Ope	rating Loan interest	from Trov Henri.	FSA Panguit	
Ownership co	sts (excludes cost of land)				\$44.37	\$44.37			0 11 11	,		- , -
•	surance	1	acre	\$2.00		\$2.00						
	lachinery ownership costs	1	acre	\$34.12		\$34.12						
	rigation equipment costs	1	acre	\$8.25	\$8.25	\$8.25						
	Total costs	-	dore	ψ0.23	\$352.08	\$403.03						
Net returns to	o owner for unpaid labor, manageme	ent, equity ar	nd risk									
	bove operating costs	, 11			-\$19.22	-\$70.18			\$121.36			\$285.22
	bove total listed costs				-\$63.59	-\$114.55			Ţ			7200.27
^					705.55	Ψ11-1.00			Clara and in	NR - Establish Alf	16	

Assumptions

- 1. Oat hay planted in late March and harvested in July.
- 2. Interest computed on land preparation and planting costs for 10 months and fertilization/herbicide/irrigation costs for 3 months.
- 3. Custom rates for all field operations.
- 4. Only owned machinery are a loader and truck.

Budget prepared by: E. Bruce Godfrey, Cody Bingham and Dean Miner goto: https://extension.usu.edu/apec/agribusiness-food/crops scroll to Washington , click Established Alfalfa Oat Hay

	Change in NR - Establish Alfalfa	
per acre		\$163.86
acres =	4,958	
Tot WS		\$812,440

641686

			Inc in
			Prod per
	Inc in Prod	production	Acre
	per acre	for 2235 ac	or 10,000 ac
oat hay	1.50	3352.5	0.33525
alfalfa	0.3	670.5	0.06705

APPENDIX E-39

WEIGHTED NET RETURN FOR ALFALFA HAY AND OAT HAY

9/29/2020

Weighted Net Return for Alfalfa hay and Oat hay assuming a 10 year rotation Kane County

		Net return per acre		Irrigation Net Benefit		Weighted Average	
		WO Project	W Project				
8 years in alfalfa=	80%	\$279	\$393		\$115	\$9	2
2 years in oat hay=	20%	-\$94	-\$18	\$76		\$76 \$15	
		Weigh	ted Average	Net return	per acre	\$10)7

Weighted Net Return for Alfalfa hay and Oat hay assuming a 10 year rotation Washington County

			Net return per acre		Irrigation Net Benefit		Weighted Average	
			WO Project	W Project				
8 years in alfalfa=		80%	\$341	\$478	\$137		\$109.89	
2 years in oat hay=		20%	\$121	\$285	\$164		\$164 \$32.77	
			Weighted Average Net return per acre				\$142	.66

		OM&R
$^{/1}$ Dam Includes MPS at \$26,241,000; Land Rights at \$600,000; proportional Road Cost at \$1,310,000 =	\$28,151,000	\$12,400
^{/2} Rec Includes Facilities at \$605,000; Land Rights at \$120,000; Proportional Road Cast at \$308,000 =	\$1,033,000	\$12,000
Glendale Piping = _	\$798,000	\$12,000
Total Project Cost	\$29,982,000	\$36,400
AAC @ 2.5, 103 yrs		
0.0271	\$812,512	

O&M

\$812,512 \$36,400 Acre Fee \$848,912 Feb-20 S 2112

FW: Virgin River Simulation

Yahoo/Inbox

Brent Gardner brentgardner@alphaengineering.com

To:Brian Parker,Ronald Bolander,Scott Hoag Jr

Cc:Michael Noel, Zach Renstrom, Dirk Clayson

Mon, Sep 28 at 1:49 PM

I have talked with Scott Hoag and he indicated that going to the yield of 1638 AF with

 $756\ \text{AF}$ going to the KCWCD and $882\ \text{AF}$ going to the WCWCD will still provide for a

benefit cost ratio of over 1. When we get into the final design phase we will get the program updated to take the other items into account which should increase the

overall yield of the system.

/1See Memo from UT Dvision of Water Resources to Alpha Engineering

Recent Studies on Cove Reservoir Simulation Division of Water Resources August 2020

Based on the yield predicted by UT DOWR, irrigation benefits are 78% of full irrigation at a 2112 AcFt yield

	Kane County Irrigated Acres Washington County Irrigated Acres	1110 4958	Benefit by County \$118,800 \$707,300	Benefit at 1638 AcFt
	Total acres	6068		
	Total Irrigation	on Benefit	\$826,100	\$640,700
	Recreation Bene	efit	\$176,000	
	Glendale		\$11,200	
	to	tal	\$1,013,300	
	Net Benefit		\$164,388	
Acre Feet Yield ^{/1} Sep-20	B/C Ratio		1.24711974	
1638	78%			

APPENDIX E-40

IRRIGATION BENEFIT ANALYSIS SUMMARY

Benefi	ts		Costs		Amortization		
Irrigation	\$826,100	Dam	\$26,841,000	amort100	0.0273		
Recreation	\$176,000	Rec	\$725,000	amort3	0.0271		
Glendale Piping	\$11,200	Road	\$1,618,000	PV150	0.2909		
PPPI	1.49	damrd	\$1,310,000				
PPRI	1.23	recrd	\$308,000				
		Glen	\$798,000				
		Total	\$29,982,000				

Project Costs

Dam		Rec	Glendale	Road	Total	
Cost Est	\$ 19,438,000	\$448,000	\$591,000	\$1,198,000	\$ 21,675,000	
Contingency	\$ 3,887,000	\$90,000	\$118,000	\$240,000	\$ 4,335,000	
Engineering	\$ 2,916,000	\$67,000	\$89,000	\$180,000	\$ 3,252,000	
Land Right	\$ 600,000	\$120,000			\$ 720,000	
Road	\$ 1,310,000	\$308,000			\$ 1,618,000	
Total	\$ 28,151,000	\$1,033,000	\$798,000	\$1,618,000	\$ 29,982,000	

Average Annual Cost

Amortization	\$ 763,000	\$ 28,000	\$ 22,000		\$ 813,000
O&M	\$ 12,000	\$ 12,000	\$ 6,000		\$ 30,000
Replace	\$ 400		\$ 6,000		\$ 6,400
Tot AAC	\$775,400	\$40,000	\$34,000		\$849,400

^{*}Cost of Road (\$1,310,000 for the dam and \$308,000 for the rec facilities = \$1,618,000) is included in the amortization for dam and rec

Benefits

Irrigation	\$ 826,100				\$ 826,100
Recreation		\$ 176,000			\$ 176,000
Glendale			\$ 11,200		\$ 11,200
Total	\$826,100	\$176,000	\$ 11,200		\$ 1,013,300

Net Benefits \$163,900 B:C Ratio \$1.19

APPENDIX E-41

IRRIGATION BENEFIT ANALYSIS PRICES AND INDICES

Table 3—State-level normalized price received estimates for commodities (ERS report year = 2020)

Hay, all types, baled \$ / ton

Utah

\$ 149.07

Source: USDA, Economic Research Service using data from USDA, National Agricultural Statistics Service. Contact: Aaron Hrozencik, 816-926-1444, aaron.hrozencik@usda.gov.

Release date: September 30, 2020.

Amortization Rate at 2.50%

100 years 0.0273 103 years 0.0271 Producer Prices Producer Prices
Paid Indices Received Indices

PF	PI	PPRI				
Year	Index		Index			
	1992=100		1992=100			
2006	148		121			
2020	220		149			
Multiplier	1.49		1.23			

CCI (ENR's Construction Cost Index) (Ann. Avg.) 2.

Year	Inde	×
1913=100		
2013	9546.66	
2018	11498.81	
Multiplier	1.20	

Data Sources:

1. Prices paid and Received by Farmers, ERS/NASS data provided through Cornell University. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1002 http://www.nass.usda.gov/Charts_and_Maps/graphics/data/pitw.txt

Note: The Limited Resource Farmer index is based on the October, 2004 PPPI of 125.

2. Engineering News Review, Construction Cost Index History

http://enr.construction.com/economics/default.asp

The ENR website only provides the current month CCI. History of CCI available to subscribers.

Values for prior years are averages of the monthly indexes.

3. Consumer Price Index-All Urban Consumers http://www.bls.gov/news.release/cpi.t01.htm

The annual average CPI is reported.

- 4. FY Plan Formulation Rate For Federal Water Projects, updated annually in early October http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/cntsc/?&cid=nrcs143 009685
- **5.** OMB Circ. A-94 10-Year Nominal Discount Rate, Updated annually in January https://www.whitehouse.gov/omb/circulars/
 https://www.whitehouse.gov/wp-content/uploads/2017/11/DISCHIST-2018-1.pdf

APPENDIX E-42RECREATION ANALYSIS EXPLANATORY NOTES

Explanatory Notes for Recreation Analysis

- 1 Population Tab Day use recreation value and population data
- 2 NP Use Data Tab Visitor days at Nattioal Parks near Cove
- 3 UT State Park Use Data Tab Use data for State Parks in proximity to Cove
- 4 Benefits Tab Benefit calculations based on data from several sources
- 5 Recreation AAC Tab Ave Ann Cost Calculation based on Engineer Cost Estimate (converted .pdf to Excel format)
- 6 B:C Ration and Net Benefits Tab Calculation of B:C Ratio and Net Benefits for Benefit data from 3 sources (Tab 4)
- 7 Int and Ann Tab Interest and annuity factors the Water Resource Discount Rate of 2.875%

APPENDIX E-43

COVE RESERVOIR RECREATION ANALYSIS—POPULATION

Cove Reservoir Recreation Analysis

	2016 Reci	reation	2018 Rec	reation Day	Cove Res
Activity	Day Va			alue	User Days
,	,		No.	Value	No.
Leisure					
Bicycling	\$47.52		17	\$49.63	
Camping	\$23.73		59	\$24.78	
Freshwater					
Fishing	\$88.20		63	\$92.11	
Nonmotorized					
Boating	\$122.23		47	\$127.65	
Beach	\$58.61		24	\$61.21	
Hiking	\$73.98		81	\$77.26	
Motorized					
Boating	\$53.68		21	\$56.06	
Picnicking	\$21.98		9	\$22.96	
Sightseeing	\$52.46		16	\$54.79	
Swimming	\$31.63		8	\$33.03	
Wildlife Viewing	\$78.62		126	\$82.11	
General	\$36.68		98	\$38.31	
Other					
Recreation	\$41.70		68	\$43.55	
TOTAL			637	\$40,578.60	
Ave Rec Day Valu	ie Cove Res	ervloir		\$63.70	

From: RECREATION USE VALUES DATABASE – SUMMARY
Randall S. Rosenberger, Oregon State University, Nov 2016

	10/1/2016	10/1/2018	Multiplier
CPI ^{3/}	241.432	252.146	1.04
2019 Water Re	source Discount Rate		2.875%

^{3/} Consumer Price Index 1983-84 =100

	Kane Co	Glendale	Mt Carmel	Orderville						
Total population	7,216	215	60	771						
Glendal	1046									
Kane Co P	opulation net of Glendale, N	Mt Carmel,								
		6,170								
Po	pulation within 150 mi rad	ius of Ordervil	le ^{/1}	130,564						

^{1/} From: https://www.freemaptools.com/find-population.htm

APPENDIX E-44NPS USE DATA

Crisis in our national parks: How tourists are loving nature to death

By Charlotte Simmonds, Annette McGivney, Patrick Reilly, Brian Maffly, Todd Wilkinson, Gabrielle Canon, Michael Wright and Monte Whaley

Bozeman Daily Chronicle 11/25/2018

Editor's Note

This story originally appeared in The Guardian as part of its two-year series, This Land Is Your Land, with support from the Society of Environmental Journalists. It was reported and published in collaboration with The Denver Post, The Missoulian, the Salt Lake Tribune, Mountain Journal and the Bozeman Daily Chronicle.

Recreation Use Selected Utah National Parks

	Site	Horseshoe Bend		Zion	N.P.		Bryce	e N.P
	Use	53,051		4,335,124			2,694,626	
_	Year	2018		2018			2018	
	Dec Visits			Dec Visits			Dec Visits	
12/18 est		4,817	12/18 est		162,885	12/18 est		59110
12/17/2017	2,986	0.651396161	12/17/2017	138,866	1.115945	12/17/2017	49,013	1.272239
12/17/2016	4,584	0.399825556	12/17/2016	124,438	1.276248	12/17/2016	38,525	1.120956
12/1/2015	11,465	3.870695476	12/1/2015	97,503	0.956043	12/1/2015	34,368	1.158069
12/1/2014	2,962	1.530749354	12/1/2014	101,986	1.343636	12/1/2014	29,677	1.272762
12/1/2013	1,935		12/1/2013	75,903		12/1/2013	23,317	
5 year avera	ge December Increase	1.613166637			1.172968			1.206006

from: https://irma.nps.gov/Stats/SSRSReports/Park%20Specific%20Reports/Recreation%20Visitors%20By%20Month%20(1979%20-%20Last%20Calendar%20Year)?Park=BRCA

Recreation Visits by Month (1979 - Last Calender Year) https://irma.nps.gov/Stats/Reports/Park/BRCA

APPENDIX E-45

UTAH STATE PARKS IN PROXIMITY TO COVE RESERVOIR

Utah State Parks in Proximity to Cove Reservoir

Visitor Data

Park	Oct 2017	Nov 2017	Dec 2017	Jan 2018	Feb 2018	Mar 2018	Apr 2018	May 2018	Jun 2018	July 2018	Aug 2018	Sept 2018	Total	Camp Sites	Visitors per Campsite
Coral Pink Sand Dunes State Park	6,888	26,228	3,613	2,379	2,889	11,118	12,472	14,593	12,443	12,542	8,950	14,190	128,305] 2	5,832
Gunlock State Park	546	290	46	124	199	228	2,425	6,197	11,777	9,368	4,556	3,815	39,571]	4 9,893
Sand Hollow State Park	14,799	52,093	10,848	13,418	21,907	44,597	97,150	121,468	118,732	101,343	71,391	72,914	740,661	4	15,116
Quail Creek State Park	2,272	6,716	1,478	1,538	2,146	5,661	13,616	19,676	29,279	26,075	17,455	12,966	138,878] 2	6,944
From: https://stateparks.utah.gov/res	sources/park-v	/isitation-data	/ FY2018 and	2019							Total Visito	r Davs	1.047.416	_	11,025

2,756 Average for 4 Sites

\$175,587.30 Average Annual Benefit

APPENDIX E-46RECREATION ANALYSIS—BENEFITS

Recreation Use Selected Utah National Parks

Site	Horseshoe Bend	Zion N.P.	Bryce N.P
Use	53,051	4,335,124	2,694,626
Year	2018	2018	2018

from: https://irma.nps.gov/Stats/SSRSReports/Park%20Specific%20Reports/Recreation%20V is itors%20By%20Month%20(1979%20-%20Last%20Calendar%20Year)? Park=BRCA to the first of the properties of

Recreation Visits by Month (1979 - Last Calender Year) https://irma.nps.gov/Stats/Reports/Park/BRCA

Population within 150 mi radius of Orderville $^{'1}$ 130,564 1/ From: https://www.freemaptools.com/find-population.htm

Utah State Parks in Proximity to Cove Reservoir

Visitor Data

						Tibitoi Da	· ·							_	
Park	Oct 2017	Nov 2017	Dec 2017	Jan 2018	Feb 2018	Mar 2018	Apr 2018	May 2018	Jun 2018	July 2018	Aug 2018	Sept 2018		Camp Sites	Visitors per Campsite
Coral Pink Sand Dunes State Park	6,888	26,228	3,613	2,379	2,889	11,118	12,472	14,593	12,443	12,542	8,950	14,190	128,305	22	5,832
Gunlock State Park	546	290	46	124	199	228	2,425	6,197	11,777	9,368	4,556	3,815	39,571	4	9,893
Sand Hollow State Park	14,799	52,093	10,848	13,418	21,907	44,597	97,150	121,468	118,732	101,343	71,391	72,914	740,661	49	15,116
Quail Creek State Park	2,272	6,716	1,478	1,538	2,146	5,661	13,616	19,676	29,279	26,075	17,455	12,966	138,878	20	6,944
From: https://stateparks.utah.gov/reso	ources/park-vi	sitation-data/	FY2018 and 2019								Total Visitor	Days	1.047.416	95	11.025

2,756 Average for 4 Sites

Average Annual Benefit \$176,000

based on campsites at 4 reservoirs near Cove Reservoir

Jackson Flat Reservoir

From Mike and Dirk	1,200 people/month or 40/day average visitation rate		
From Kelly Brown	30-40 a day during week days and 40-50 a day on weeker	ds	

Average Annual Traffic Count for Route 89 through Glendale, Mt Carmel and Orderville

ROUTE NAME	BEG. ACCUM. MILEAGE	END ACCUM. MILEAGE	BEGIN MILEAGE LOCATION DESCRIPTION	2017 AADT	2016 AADT	2015 AADT	2014 AADT
0089	000.000	007.293	Arizona St Line via SR 89 - Ethan Allen Visitor Center	4,391	4,000	3,600	3,000
0089	007.293	054.629	Ethan Allen Visitor Ctr via SR 89 - Johnson Cyn Rd *ATR 411*	3,230	3,000	2,700	2,200
0089	054.629	062.908	Johnson Canyon Rd via SR 89 - 900 E Kanab	4,263	3,800	3,400	2,800
0089	062.908	063.832	900 E via SR 89 (300 S) - 100 E Kanab	2,367	2,300	2,200	2,100
0089	063.832	064.940	SR 89A (300 S) via 100 E/Center St/300 W - 300 N Kanab	10,448	10,000	9,600	9,200
0089	064.940	081.211	300 N Kanab via SR 89 - SR 9 Mt Carmel Jct	2,829	3,600	3,400	3,300
0089	081.211	085.212	SR 9 Mt. Carmel via SR 89 - Frost Lane Orderville	2,621	2,500	2,400	2,300
0089	085.212	086.222	Frost Lane via SR 89 (State St) - Sand St (100 N) Orderville	3,725	3,600	3,400	3,300
0089	086.222	089.294	100 N Orderville via SR 89 - 400 S Glendale	2,419	2,700	2,500	2,400
0089	089.294	090.018	400 S via SR 89 (Main St) - 300 N Glendale	283	270	260	250
0089	090.018	103.684	300 N Glendale via SR 89 - SR 14 Long Valley Jct	1,970	1,900	1,800	1,700
0089	103.684	114.480	SR 14 Long Valley Jct via SR 89 - Fish Hatchery Rd	1,803	1,700	1,600	1,600
0089	114.480	115.847	Fish Hatchery Rd via SR 89 - 200 S Hatch	3,963	3,800	3,700	3,500

0089	115.847	116.423	200 S via SR 89 - 300 N Hatch	2,014	2,000	1,900	1,800
0089	116.423	124.227	300 N Hatch via SR 89 - SR 12 (Bryce Cyn Jct)	2,058	2,400	2,300	2,200
0089	124.227	130.562	SR 12 (Bryce Cyn Jct) via SR 89 - 500 E Panquitch	4,055	3,900	3,700	3,600
0089	130.562	131.088	500 E via Center St - SR 143 (Main St) Panguitch	4,426	4,300	4,100	3,900
0089	131.088	131.980	Center St via Main St - Rodeo Gnds Panguitch	2,325	3,600	3,400	3,300

From: https://www.udot.utah.gov/main/f?p=100:pg:0::::V,T:,529

Contact Info: Send requests for information to: trafficcount@utah.gov -or- call Nicolas Black at 385-215-527

APPENDIX E-47RECREATION ANALYSIS AVERAGE COST CALCULATIONS

Cove Reservoir Recreation Improvements (No Utilities) Kane County Water Conservancy District Preliminary Engineer's Opinion of Probable Cost 5-21-19

ITEM	DESCRIPTION		QUANTITY	UNITS	UNIT PRICE	TOTAL
1	Mobilization at 5%		1	L.S.	\$21,350.00	\$21,350
2	Excavation and Subgrade Prep		88,000	S.F.	\$1.50	\$132,000
3	6" Reinforced Concrete (Boat Ramp)		6,500	S.F.	\$10.00	\$65,000
4	6" Untreated Base Course (Boat Ramp)		6,500	S.F.	\$1.00	\$6,500
5	6" Untreated Base Course (Parking)		28,500	S.F.	\$1.00	\$28,500
6	6" Untreated Base Course (Roads)		53,000	S.F.	\$1.00	\$53,000
7	Camp/RV Site Facilities		20	Each	\$1,000.00	\$20,000
8	Pavilion		1	Each	\$50,000.00	\$50,000
9	Signage		5	Each	\$400.00	\$2,000
10	Restroom		2	Each	\$35,000.00	\$70,000
					Subtotal	\$448,350

Contingency (20%) \$89,670

(a) \$67,253

Engineering, Legal, and Fiscal (15%)

SCHEDULE A TOTAL

\$605,000

Proportional road cost^{1/}
Land Rigjhts

\$308,000 \$120,000 \$1,033,000

Total Recreation

1/ From Cost Estimates for Appendix D & E.xlsx Cost of Road

Average Cost Calculations

Amort, 2.5%, 103 years =	0.0271
AAC for Recreation Facilities Operation And Maintenance Replacement	\$28,000 \$12,000 \$0
Total	\$40,000

The recreation component of the project will most likely require 8 man-days per month (lower skill level) for 6 months to maintain the rest rooms and camp sites which would be an annual cost of approximately \$12,000 /1 See MEMO dated 5/19/2020 fro Alpha Engineering to Scott Hoag

APPENDIX E-48RECREATION ANALYSIS SUMMARY

Amortization

amort100 0.0273 amort3 0.0271 PV150 0.2909

Project Costs

Da	Dam		Rec Glendale		Road		Total		
Cost Est	\$ 19,438,000		\$448,000		\$591,000		\$1,198,000		\$ 21,675,000
Contingency	\$ 3,887,000		\$90,000		\$118,000		\$240,000		\$ 4,335,000
Engineering	\$ 2,916,000		\$67,000		\$89,000		\$180,000		\$ 3,252,000
Land Right	\$ 600,000		\$120,000						\$ 720,000
Road	\$ 1,310,000		\$308,000						\$ 1,618,000
Total	\$ 28,151,000		\$1,033,000		\$798,000		\$1,618,000		\$ 29,982,000

Average Annual Cost

Amortization	\$ 763,000	\$ 28,000	\$ 22,000		\$ 813,000
O&M	\$ 12,000	\$ 12,000	\$ 6,000		\$ 30,000
Replace	\$ 400		\$ 6,000		\$ 6,400
Tot AAC	\$775,400	\$40,000	\$34,000		\$849,400

^{*}Cost of Road (\$1,310,000 for the dam and \$308,000 for the rec facilities = \$1,618,000) is included in the amortization for dam and rec

Benefits

Irrigation	\$ 826,100				\$ 826,100
Recreation		\$ 176,000			\$ 176,000
Glendale			\$ 11,200		\$ 11,200
Total	\$826,100	\$176,000	\$ 11,200		\$ 1,013,300

Net Benefits \$163,900 B:C Ratio \$1.19

APPENDIX E-49

RECREATION ANALYSIS COMPOUND INTEREST AND ANNUITY TABLES

COMPOUND INTEREST AND ANNUITY TABLES									
2.875	Percent								
NO. OF YEARS	COM- POUND	PRESENT VALUE OF ONE	AMORTI- ZATION	ANNUITY -	E OF AN - ONE PER AR		ALUE OF AN		
HENCE	POUND	DOLLAR	ZATION	Present	Future	Increasing	Decreasing		
1	1.03	0.972	1.029	0.972	1.000	0.972	0.972		
2	1.06	0.945	0.522	1.917	2.029	2.862	2.889		
3	1.09	0.918	0.353	2.835	3.087	5.617	5.724		
4	1.12	0.893	0.268	3.728	4.176	9.189	9.453		
5	1.15	0.868	0.218	4.596	5.296	13.528	14.049		
6	1.19	0.844	0.184	5.440	6.448	18.589	19.488		
7	1.22	0.820	0.160	6.260	7.634	24.330	25.748		
8	1.25	0.797	0.142	7.057	8.853	30.707	32.805		
9	1.29	0.775	0.128	7.832	10.108	37.680	40.637		
10	1.33	0.753	0.116	8.585	11.398	45.212	49.222		
11	1.37	0.732	0.107	9.317	12.726	53.266	58.539		
12	1.41	0.712	0.100	10.029	14.092	61.806	68.567		
13	1.45	0.692	0.093	10.720	15.497	70.799	79.288		
14	1.49	0.672	0.088	11.393	16.942	80.213	90.681		
15	1.53	0.654	0.083	12.047	18.429	90.018	102.727		
16	1.57	0.635	0.079	12.682	19.959	100.184	115.409		
17	1.62	0.618	0.075	13.300	21.533	110.684	128.709		
18	1.67	0.600	0.072	13.900	23.152	121.491	142.609		
19	1.71	0.584	0.069	14.484	24.818	132.579	157.093		
20	1.76	0.567	0.066	15.051	26.531	143.925	172.143		
21	1.81	0.551	0.064	15.602	28.294	155.505	187.746		
22	1.87	0.536	0.062	16.138	30.108	167.298	203.884		
23	1.92	0.521	0.060	16.659	31.973	179.282	220.543		
24	1.97	0.506	0.058	17.166	33.892	191.437	237.709		
25	2.03	0.492	0.057	17.658	35.867	203.745	255.367		
26	2.09	0.479	0.055	18.137	37.898	216.188	273.504		
27	2.15	0.465	0.054	18.602	39.988	228.748	292.106		
28	2.21	0.452	0.052	19.054	42.137	241.410	311.160		
29	2.28	0.440	0.051	19.494	44.349	254.157	330.654		
30	2.34	0.427	0.050	19.921	46.624	266.975	350.575		
31	2.41	0.415	0.049	20.336	48.964	279.850	370.911		
32	2.48	0.404	0.048	20.740	51.372	292.770	391.651		
33	2.55	0.392	0.047	21.132	53.849	305.720	412.784		
34	2.62	0.381	0.046	21.514	56.397	318.690	434.298		
35	2.70	0.371	0.046	21.885	59.018	331.669	456.182		
36	2.77	0.360	0.045	22.245	61.715	344.645	478.428		
37	2.85	0.350	0.044	22.596	64.489	357.609	501.023		
38	2.94	0.341	0.044	22.936	67.343	370.551	523.959		
39	3.02	0.331	0.043	23.267	70.280	383.463	547.227		
40	3.11	0.322	0.042	23.589	73.300	396.335	570.816		

41	3.20	0.313	0.042	23.902	76.407	409.161	594.718
42	3.29	0.304	0.041	24.206	79.604	421.932	618.924
43	3.38	0.296	0.041	24.502	82.893	434.642	643.425
44	3.48	0.287	0.040	24.789	86.276	447.284	668.214
45	3.580	0.279	0.040	25.068	89.756	459.852	693.282
46	3.68	0.271	0.039	25.340	93.337	472.341	718.622
47	3.79	0.264	0.039	25.604	97.020	484.744	744.225
48	3.90	0.257	0.039	25.860	100.810	497.057	770.085
49	4.01	0.249	0.038	26.109	104.708	509.276	796.195
55	4.754	0.2104	0.0364	27.466	130.567	580.375	957.711
100	17.0210	0.0588	0.0305	32.7391	557.2518	967.1390	2,339.5097

APPENDIX E-50

TABLE S-2: ESTIMATED PROJECT COSTS

Table S-2. Estimated Project Costs

ltom	NRCS PL 83- 566 Funds	Other Funds*	Total
Item Construction	\$18,114,000	\$7,896,000	\$26,010,000
Engineering		N/A	\$3,252,000
Land Rights	\$60,000	\$660,000	\$720,000
Total	\$21,426,000	\$8,556,000	\$29,982,000

^{*}Note: Funds contributed by KCWCD, WCWCD, and Utah Division of Wildlife Resources (UDWR). See Section 6.8 for details

APPENDIX E-51

TABLE 1: ESTIMATED INSTALLATION COST

Table 1. Estimated Installation Cost, Cove Reservoir, UT (Dollars)^{/1}

Works of Improvement	Nu	umber	Estimated Cost (Dollars)1/					
			Public Law 83-566 Funds	Other Funds	Total			
Multipurpose Structure/2		1 \$20,859,000		\$8,090,000	\$28,949,000			
Recreation Facilities/3		1	\$567,000	\$466,000	\$1,033,000			
Total			\$21,426,000	\$8,556,000	\$29,982,000			

/1 Price Base: FY 2021 Prepared: 10/2020

/2 Includes Dam Construction, Proportion of Access Road (\$1,310,000), Land Rights (\$600,000), Glendale Piping (\$799,000)

/3 Includes construction and proportion of access road (\$308,000), Land Rights (\$120,000)

71.5% 28.5%

	amort, 2.5%, 103 yr	om&r	total	Benefits
dam	\$763,000	\$12,400	\$775,400	
rec	\$28,000	\$12,000	\$40,000	
glendale	\$22,000	\$12,000	\$34,000	_
	\$813,000	\$36,400	\$849,400	•
dam + glendale	\$785,000	\$24,400	\$809,400	
rec	\$28,000	\$12,000	\$40,000	
	\$813,000	\$36,400	\$849,400	

APPENDIX E-52

TABLE 2: ESTIMATED COST DISTRIBUTION

Table 2. Estimated Cost Distribution—Water Resource Project Measures Cove Reservoir, UT (Dollars) 1/

Table 2	. Latimateu Co	at Distribution	i water nes	ource Project i	vicasules cove	e neservoir,	OT (Dollars)			ı	
	Installat	ion Cost - Public Lav	v 83-566			Installation (Cost - Other				
Works of Improvement	Construction	Engineering	Real property rights	Total Public Law 566	Construction	Engineering	Real property rights	Total Other	Total		
Multipurpose Structure /2	\$16,890,000	\$3,005,000		\$19,895,000	\$7,144,000			\$7,144,000	\$27,039,000		
Road	\$818,000	\$146,000		\$964,000	\$346,000			\$346,000	\$1,310,000	\$28,949,000	96.6%
Land Rights							\$600,000	\$600,000	\$600,000		
Recreation Facilities /2	\$269,000	\$67,000		\$336,000	\$269,000			\$269,000	\$605,000		\$29,982,000
Road	\$137,000	\$34,000		\$171,000	\$137,000			\$137,000	\$308,000		
Land Rights			\$60,000	\$60,000			\$60,000	\$60,000	\$120,000	\$1,033,000	3.4%
TOTAL	\$18,114,000	\$3,252,000	\$60,000	\$21,426,000	\$7,896,000		\$660,000	\$8,556,000	\$29,982,000		

Prepared: 10/2020

/1 Price Base: FY 2021
/2 Includes proportional road cost = \$1,310,000 for the MPS and\$308,000 for Recreation

construction \$26,010,000 eng \$3,252,000 land rights \$720,000 \$29,982,000

APPENDIX E-53

TABLE 2A: COST ALLOCATION AND COST SHARING SUMMARY

Table 2a – Cost Allocation and Cost Sharing Summary Water Resource Project Measures Cove Reservoir, UT (Dollars) 1/

			Cost Allocation,	/2			Cost Sha	ring			
		Pur	pose		F	Public Law 83-56	56		Other		
Item		Irrigation	Recreation	Total	Irrigation	Recreation	Total	Irrigation	Recreation	Total	TOTAL
MPS	Structure										
	Construction	\$19,492,000	\$4,542,000	\$24,034,000	\$14,619,000	\$2,271,000	\$16,890,000	\$4,873,000	\$2,271,000	\$7,144,000	\$24,034,000
	Engineering	\$2,437,000	\$568,000	\$3,005,000	\$2,437,000	\$568,000	\$3,005,000				\$3,005,000
	Land Rights	\$487,000	\$113,000	\$600,000				\$600,000		\$600,000	\$600,000
	SubTotal	\$22,416,000	\$5,223,000	\$27,639,000	\$17,056,000	\$2,839,000	\$19,895,000	\$5,473,000	\$2,271,000	\$7,744,000	\$27,639,000
	Road										
	Construction	\$944,000	\$220,000	\$1,164,000	\$708,000	\$110,000	\$818,000	\$236,000	\$110,000	\$346,000	\$1,164,000
	Engineering	\$146,000		\$146,000	\$146,000		\$146,000				\$146,000
	Subtotal	\$1,090,000	\$220,000	\$1,310,000	\$854,000	\$110,000	\$964,000	\$236,000	\$110,000	\$346,000	\$1,310,000
SubTotal	MP Structure	\$23,506,000	\$5,443,000	\$28,949,000	\$17,910,000	\$2,949,000	\$20,859,000	\$5,709,000	\$2,381,000	\$8,090,000	\$28,949,000
Recreati	ion Facilities										
	Construction		\$538,000	\$538,000		\$269,000	\$269,000		\$269,000	\$269,000	\$538,000
	Engineering		\$67,000	\$67,000		\$67,000	\$67,000				\$67,000
	Land Rights		\$120,000	\$120,000		\$60,000	\$60,000		\$60,000	\$60,000	\$120,000
	SubTotal		\$725,000	\$725,000		\$396,000	\$396,000		\$329,000	\$329,000	\$725,000
	Road										
	Construction		\$274,000	\$274,000		\$137,000	\$137,000		\$137,000	\$137,000	\$274,000
	Engineering		\$34,000	\$34,000		\$34,000	\$34,000				\$34,000
	SubTotal		\$308,000	\$308,000		\$171,000	\$171,000		\$137,000	\$137,000	\$308,000
SubTota	al Recreation		\$1,033,000	\$1,033,000		\$567,000	\$567,000		\$466,000	\$466,000	\$1,033,000
Т	OTAL	\$23,506,000	\$6,476,000	\$29,982,000	\$17,910,000	\$3,516,000	\$21,426,000	\$5,709,000	\$2,847,000	\$8,556,000	\$29,982,000

/1 Price Base: FY 2021

/2 Based on Separable Costs-Remaining Benefits Cost Allocation including construction, engineering, and land rights

6.7.1 Total Project Cost

Agricultural Water Management—96.6 percent (\$28,949,000)
 Recreation—3.4 percent (\$1,033,000)
 3.4%

6.7.2 NRCS Cost Sharing

NRCS total contributed funds (including construction, engineering, and land rights) would be allocated as follows:

Agricultural Water Management—97.4 percent (\$17,910,000)
 Recreation—2.6 percent (\$3,516,000)
 \$3,516,000
 \$17,910,000
 \$3,516,000

6.7.2 NRCS Cost Sharing For Agricultural Water Management

• \$18,435,300 of NRCS funds will be used for construction of the reservoir, access road, and Glendale pipeline (75 percent of the total construction cost of \$24,580,700) excluding engineering and land rights allocations

const \$15,327,000 \$20,436,000

75%

• \$989,150 of NRCS funds will be used for construction of the recreation facilities and associated portion of the access road (50 percent of total construction cost of \$1,978,300) const \$406,000 \$812,000

66.7%

Prepared: 10/2020

50%

6.7.3 Sponsor Cost Sharing including construction, engineering and land rights

• Agricultural Water Management—87.2 percent (\$6,832,800) \$5,709,000

• Recreation—12.8 percent (\$1,005,450) \$2,847,000

For Agricultural Water Management, excluding engineering and land rights allocations, sponsor contributed funds would be allocated as follows:

\$6,145,400 of KCWCD, WCWCD, and UDWR funds will be used for construction of the reservoir, access road, and Glendale pipeline (25 percent of the total construction cost of \$24,580,700)

const \$5,109,000 \$20,436,000

25%

For Recreation, excluding engineering and land rights allocations, sponsor contributed funds would be allocated as follows:

• \$989,150 of KCWCD, WCWCD, and UDWR funds will be used for construction of the recreation facilities and associated portion of the access road (50 percent of total construction cost of \$1,978,300)

33.3%

const \$2,787,000 \$5,574,000

50%

APPENDIX E-54

TABLE 2B: RECREATIONAL FACILITIES—ESTIMATED CONSTRUCTION COST

Table 2b – Recreational Facilities—Estimated Construction Costs Cove Reservoir, UT [Dollars] 1/

0 · [Bollato] 1/								
Item	Number	Unit	Estimated unit cost	Total Construction				
Mobilization at 5%	1	L.S.	\$21,350	\$21,350				
Excavation and	88,000	S.F.	\$1.50	\$132,000				
6" Reinforced	6,500	S.F.	\$10.00	\$65,000				
6" Untreated Base	6,500	S.F.	\$1.00	\$6,500				
6" Untreated Base	28,500	S.F.	\$1.00	\$28,500				
6" Untreated Base	53,000	S.F.	\$1.00	\$53,000				
Camp/RV Site Facilities	20	Each	\$1,000	\$20,000				
Pavilion	1	Each	\$50,000	\$50,000				
Signage	5	Each	\$400	\$2,000				
Restroom Facility (Assume septic tank	2	Each	\$35,000	\$70,000				
Access Road	3,400	Ft	\$91	\$308,000				
			Subtotal	\$756,000				
			Contingency (20%)	\$90,000				
		Engineering	, Legal, and Fiscal (15%)	\$67,000				
			Total	\$913,000				

/1 Price Base: FY 2019 Prepared: 06/2019

APPENDIX E-55

TABLE 4: ESTIMATED AVERAGE ANNUAL NED COSTS

Table 4 – Estimated Average Annual NED Costs Cove Reservoir, UT (Dollars) 1/

	Proje	Project Outlays						
Works of	Amortization of Installation	Operation, Maintenance, and	Total					
Improvement	Cost	Replacement Cost						
MP Structure	\$785,000	\$24,400	\$809,400					
Recreation Facilities	\$28,000	\$12,000	\$40,000					
Total	\$813,000	\$36,400	\$849,400					

^{1/} Price base: FY 2021, amortized over 103 years at a discount rate of 2.50 percent.

Prepared: 10/2020

APPENDIX E-56

TABLE 6: COMPARISON OF NED BENEFITS AND COST

Economic Table 6 – Comparison of NED Benefits and Costs, Cove Reservoir, UT (Dollars)^{/1}

					•						•			
Works of		Agricultur	e Water	Dograption		Other Economic		Average Ar	Average Annual		Average Annual		Benefit to Cost	
Improvement		Management		Recreation		Effects		Benefits		Costs ^{/2}		Ratio		Benefit
						Glendale P	iping							
Multipurpose		\$826,	100			\$11	,200	\$837,300		\$809	,400	1	03	\$27,900
Structure														
Recreation Faciliti	es			\$176	,000			\$176,000		\$40,	000	4	.40	\$136,000
Total Project		\$826,	100	\$176	,000	\$11	,200	\$1,013,300		\$849	,400	1	19	\$163,900
1/ Price base: FY 2021									=		Prepare	d: 10/2020)	

2/ From Table 4.

APPENDIX E-57

WORK PLAN TABLES SUMMARY

amort100 0.0273 amort103 0.0271 pv1-50yrs 0.0209 IrrAlloc 81.1% RecAlloc 18.9%

Project Costs

D	am	Rec	Glendale	Road	Total	
Cost Est	\$ 19,438,000	\$448,000	\$591,000	\$1,198,000	\$ 21,675,000	
Contingency	\$ 3,887,000	\$90,000	\$118,000	\$240,000	\$ 4,335,000	
Engineering	\$ 2,916,000	\$67,000	\$89,000	\$180,000	\$ 3,252,000	
Land Right	\$ 600,000	\$120,000			\$ 720,000	
Road	\$ 1,310,000	\$308,000			\$ 1,618,000	
Total	\$ 28,151,000	\$1,033,000	\$798,000	\$1,618,000	\$ 29,982,000	

Average Annual Cost

Amortization	\$ 763,000	\$ 28,000		\$ 22,000		\$ 813,000
O&M	\$ 12,000	\$ 12,000		\$ 6,000		\$ 30,000
Replace	\$ 400			\$ 6,000		\$ 6,400
Tot AAC	\$775,400	\$40,000	(\$34,000		\$849,400

^{*}Cost of Road (\$1,310,000 for the dam and \$308,000 for the rec facilities = \$1,618,000) is included in the amortization for dam and rec

Benefits

Irrigation	\$ 826,100				\$ 826,100
Recreation		\$ 176,000			\$ 176,000
Glendale			\$ 11,200		\$ 11,200
Total	\$826,100	\$176,000	\$ 11,200		\$ 1,013,300

	Ag Water Mgmt	Recreation
AAC	\$809,400	\$40,000
Benefits*	\$837,300	\$176,000
Net Benefits	\$27,900	\$136,000
B:C Ratio	1.03	4.40

^{*} includes Glendale Piping Benefits (\$11,200)

Project Net Benefits \$163,900
Project B:C Ratio \$1.19